Preview

Proceedings of the Institute of Mathematics of the NAS of Belarus

Advanced search

On the supersolubility of a group with given systems of conditionally seminormal subgroups

Abstract

The subgroups $A$ and $B$ are said to be $\mathrm{cc}$-permutable, if $A$ is permutable with $B^x$ for some ${x\in \langle A,B\rangle}$. A subgroup $A$ of a finite group $G$ is called conditionally seminormal subgroup in $G$, if there exists a subgroup $T$ of $G$ such that $G=AT$ and $A$ is $\mathrm{cc}$-permutable with all subgroups of $T$. In this paper, we proved the supersolubility of a group $G = AB$, where $A$ and $B$ are supersoluble conditionally seminormal subgroups in $G$, in the following cases: the derived subgroup $G^\prime$ is nilpotent; ${(|A|,|B|)=1}$; $G$ is metanilpotent and ${(|G:A|,|G:B|)=1}$; $G$ is metanilpotent and ${(|A/A^{\frak N}|,|B/B^{\frak N}|)=1}$. Besides, we obtained the supersolubility of a group in which maximal subgroups, Sylow subgroups, maximal subgroups of every Sylow subgroup, minimal subgroups, 2‑maximal subgroups are conditionally seminormal subgroups.

About the Author

A. A. Trofimuk
Брестский государственный университет имени А. С. Пушкина
Belarus


References

1. Guo W., Shum K. P., Skiba A. N. Conditionally permutable subgroups and supersolubility of finite groups // Southeast Asian Bull. Math. 2005. Vol. 29. P. 493–510.

2. Asaad M., Shaalan A. On the supersolubility of finite groups // Arch. Math. 1989. Vol. 53. P. 318–326.

3. Ballester-Bolinches A., Estaban-Romero R., Asaad M. Products of finite groups. Berlin: Walter de Gruyter, 2010.

4. Trofimuk A. A. On the supersol4ubility of a group with some tcc-subgroups // J. Algebra Appl. 2021. Vol. 20, N 2. P. 2150020-1–2150020-18.

5. Guo W., Shum K. P., Skiba A. N. Criterions of supersolubility for products of supersoluble groups // Publ. Math. Debrecen. 2006. Vol. 68, N 3–4. P. 433–449.

6. Монахов В. С., Трофимук А. А. О сверхразрешимости группы с полунормальными подгруппами // Сиб. мат. журн. 2020. Vol. 61, № 1. С. 148–159.

7. Монахов В. С. Введение в теорию конечных групп и их классов. Минск: Вышэйшая школа, 2006.

8. Huppert B. Endliche Gruppen I. Berlin–Heidelberg–New York: Springer, 1967.

9. Монахов В. С., Чирик И. К. О сверхразрешимом корадикале произведения субнормальных сверхразрешимых подгрупп // Сиб. мат. журн. 2017. Т. 58, № 2. C. 353–364.

10. Doerk K. Minimal nichtuberaufl ¨ osbare, endliche gruppen // Math. Zeitschrift. 1966. ¨ Vol. 91. P. 198–205.

11. Wielandt H. Subnormalitat in faktorisierten endlichen Gruppen // J. Algebra. 1981. ¨ Vol. 69, N 2. P. 305–311.

12. Baer R. Supersoluble immersion // Can. J. Math. 1959. Vol. 11. P. 353–369.

13. A system for computational discrete algebra GAP 4.12.2 [Electronic resource]. – Mode of access: https://www.gap-system.org. – Date of access: 22.09.2023.

14. Tyutyanov V. N., Kniahina V. N. 14 Finite groups with biprimary Hall subgroups // J. Algebra. 2015. Vol. 443. P. 430–440.

15. Monakhov V. S., Trofimuk A. A. On the supersolubility of a finite group with NS-supplemented subgroups // Acta Math. Hungar. 2020. Vol. 160, N 1. P. 161–167.


Review

For citations:


Trofimuk A.A. On the supersolubility of a group with given systems of conditionally seminormal subgroups. Trudy Instituta matematiki. 2023;31(2):81-90. (In Russ.)

Views: 54


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-5093 (Print)