Finite partially soluble groups with transitive π-quasinormality relation for subgroups
Abstract
Throughout the article, all groups are finite. We say that a subgroup $A$ of $G$ is $\pi$-quasinormal in $G$, if $A$ is $1 \pi$-subnormal and modular in $G$. We prove that if the group $G$ is $\pi _{0}$-solvable, where $\pi _{0}=\pi (D) $ and $D$ is the $\pi $-special residual of $G$, and $\pi$-quasi-normality is a transitive relation in $G$, then $D$ is an abelian Hall subgroup of odd order in $G$.
About the Authors
I. M. DergachevaBelarus
E. A. Zadorozhnyuk
Belarus
I. P. Shabalina
Belarus
References
1. Chunikhin S. A. Subgroups of finite groups. Minsk: Nauka i Tehnika. 1964.
2. Skiba A. N. On some results in the theory of finite partially soluble groups // Commun. Math. Stat. 2016. Vol. 4, N 3. P. 281–309.
3. Skiba A. N. Some characterizations of finite σ-soluble PσT-groups // J. Algebra. 2018. Vol. 495. P. 114–129.
4. Haiyan Li, A.-Ming Liu, Safonova I. N., Skiba A. N. Characterizations of some classes of finite σ-soluble PσT-groups // Communications in Algebra. DOI: 10.1080/00927872.2023.2235006.
5. Zhang X.-F., Guo W., Safonova I. N., Skiba A. N. A Robinson description of finite PσT-groups // J. Algebra. 2023. Vol. 631. P. 218–235.
6. A-Ming Liu, Chen M., Safonova I. N., Skiba A. N. Finite groups with modular σ-subnormal subgroups // J. Group Theory. 2023. https://doi.org/10.1515/jgth-2023-0064.
7. Kegel O. H. Untergruppenverbande endlicher Gruppen, die den subnormalteilerverband each enthalten // Arch. Math. 1978. Vol. 30, N 3. P. 225–228.
8. Ballester-Bolinches A., Ezquerro L. M. Classes of Finite groups. Dordrecht: Springer, 2006.
9. Schmidt R. Subgroup lattices of groups. Berlin–New York: Walter de Gruyter, 1994.
10. Zacher G. I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali // Atti della Accademia Nazionale dei Lincei Rend. cl. Sci. Fis. Mat. Natur. 1964. Vol. 8, N 37. P. 150–154.
11. Skiba A. N. On σ-subnormal and σ-permutable subgroups of finite groups // J. Algebra. 2015. Vol. 436, N 8. P. 1–16.
12. Zimmermann I. Submodular subgroups of finite groups // Math. Z. 1989. Vol. 202, N 2. P. 545–557.
13. Ballester-Bolinches A., Esteban-Romero R., Asaad M. Products of Finite Groups. Berlin–New York: Walter de Gruyter, 2010.
14. Doerk K., Hawkes T. Finite Soluble Groups. Berlin–New York: Walter de Gruyter, 1992.
15. Huppert B. Endliche Gruppen I. Berlin–Heidelberg–New York: Springer–Verlag, 1967.
Review
For citations:
Dergacheva I.M., Zadorozhnyuk E.A., Shabalina I.P. Finite partially soluble groups with transitive π-quasinormality relation for subgroups. Trudy Instituta matematiki. 2023;31(2):28-33. (In Russ.)