Preview

Proceedings of the Institute of Mathematics of the NAS of Belarus

Advanced search

Finite partially soluble groups with transitive π-quasinormality relation for subgroups

Abstract

Throughout the article, all groups are finite. We say that a subgroup $A$ of $G$ is $\pi$-quasinormal in $G$, if $A$ is $1 \pi$-subnormal and modular in $G$. We prove that if the group $G$ is $\pi _{0}$-solvable, where $\pi _{0}=\pi (D) $ and $D$ is the $\pi $-special residual of $G$, and $\pi$-quasi-normality is a transitive relation in $G$, then $D$ is an abelian Hall subgroup of odd order in $G$.

About the Authors

I. M. Dergacheva
Белорусский государственный университет транспорта
Belarus


E. A. Zadorozhnyuk
Белорусский государственный университет транспорта
Belarus


I. P. Shabalina
Белорусский государственный университет транспорта
Belarus


References

1. Chunikhin S. A. Subgroups of finite groups. Minsk: Nauka i Tehnika. 1964.

2. Skiba A. N. On some results in the theory of finite partially soluble groups // Commun. Math. Stat. 2016. Vol. 4, N 3. P. 281–309.

3. Skiba A. N. Some characterizations of finite σ-soluble PσT-groups // J. Algebra. 2018. Vol. 495. P. 114–129.

4. Haiyan Li, A.-Ming Liu, Safonova I. N., Skiba A. N. Characterizations of some classes of finite σ-soluble PσT-groups // Communications in Algebra. DOI: 10.1080/00927872.2023.2235006.

5. Zhang X.-F., Guo W., Safonova I. N., Skiba A. N. A Robinson description of finite PσT-groups // J. Algebra. 2023. Vol. 631. P. 218–235.

6. A-Ming Liu, Chen M., Safonova I. N., Skiba A. N. Finite groups with modular σ-subnormal subgroups // J. Group Theory. 2023. https://doi.org/10.1515/jgth-2023-0064.

7. Kegel O. H. Untergruppenverbande endlicher Gruppen, die den subnormalteilerverband each enthalten // Arch. Math. 1978. Vol. 30, N 3. P. 225–228.

8. Ballester-Bolinches A., Ezquerro L. M. Classes of Finite groups. Dordrecht: Springer, 2006.

9. Schmidt R. Subgroup lattices of groups. Berlin–New York: Walter de Gruyter, 1994.

10. Zacher G. I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali // Atti della Accademia Nazionale dei Lincei Rend. cl. Sci. Fis. Mat. Natur. 1964. Vol. 8, N 37. P. 150–154.

11. Skiba A. N. On σ-subnormal and σ-permutable subgroups of finite groups // J. Algebra. 2015. Vol. 436, N 8. P. 1–16.

12. Zimmermann I. Submodular subgroups of finite groups // Math. Z. 1989. Vol. 202, N 2. P. 545–557.

13. Ballester-Bolinches A., Esteban-Romero R., Asaad M. Products of Finite Groups. Berlin–New York: Walter de Gruyter, 2010.

14. Doerk K., Hawkes T. Finite Soluble Groups. Berlin–New York: Walter de Gruyter, 1992.

15. Huppert B. Endliche Gruppen I. Berlin–Heidelberg–New York: Springer–Verlag, 1967.


Review

For citations:


Dergacheva I.M., Zadorozhnyuk E.A., Shabalina I.P. Finite partially soluble groups with transitive π-quasinormality relation for subgroups. Trudy Instituta matematiki. 2023;31(2):28-33. (In Russ.)

Views: 39


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-5093 (Print)