Preview

Труды Института математики НАН Беларуси

Расширенный поиск

Приводимые τ-замкнутые σ-локальные формации конечных групп с заданной структурой подформаций

EDN: OLYGHB

Аннотация

Пусть $\mathfrak{F}$ и $\mathfrak{H}$ – некоторые $\tau$-замкнутые $\sigma$-локальные формации конечных групп. Через $\mathfrak{F}/^\tau_\sigma\mathfrak{H}\cap\mathfrak{F}$ обозначают решетку всех $\tau$-замкнутых $\sigma$-локальных формаций $\mathfrak{X}$ таких, что $\mathfrak{H}\cap\mathfrak{F}\subseteq \mathfrak{X}\subseteq \mathfrak{F}.$ Длину решетки $\mathfrak{F}/^\tau_\sigma\mathfrak{H}\cap\mathfrak{F}$ называют {\it $\mathfrak H^\tau_\sigma$-дефектом}, а при $\mathfrak{H}=(1)$ – формация всех единичных групп, {\it $l^\tau_\sigma$-длиной} формации $\mathfrak{F}$. Изучены общие свойства $\mathfrak H^\tau_\sigma$-дефекта $\tau$-замкнутых $\sigma$-локальных формаций, получено описание структурного строения приводимых $\tau$-замкнутых $\sigma$-локальных формаций, имеющих $\mathfrak H^\tau_\sigma$-дефект $\leq 2$ и $l^\tau_\sigma$-длину $\leq 3$.

Об авторах

В. В. Скрундь
Белорусский государственный университет
Беларусь

Минск



И. Н. Сафонова
Белорусский государственный университет
Беларусь

Минск



Список литературы

1. Shemetkov L. A., Skiba A. N. Formations of Algebraic Systems. Moscow, Nauka, 1989. 255 p. (in Russian).

2. Skiba A. N. Algebra of formations. Minsk, Belaruskaya Navuka, 1997. 240 p. (in Russian).

3. Skiba A. N. On σ-subnormal and σ-permutable subgroups of finite groups. Journal of Algebra, 2015, vol. 436, pp. 1–16. https://doi.org/10.1016/j.jalgebra.2015.04.010

4. Skiba A. N. On one generalization of the local formations. Problems of Physics, Mathematics and Technics, 2018, no. 34(1), pp. 79–82.

5. Skiba A. N. On local formations of length 5. Arithmetic and subgroup structure of finite groups: Proceedings of the Gomel Seminar. Minsk, Science and Technics, 1986, pp. 135–149 (in Russian).

6. Skiba A. N.,Targonskii E. A. Classification of local formations of finite groups with nilpotent defect 2. Mathematical Notes, 1987, vol. 41, no. 4, pp. 490–499 (in Russian).

7. Chi Z., Safonov V. G., Skiba A. N. On one application of the theory of n-multiply σ-local formations of finite groups. Problems of Physics, Mathematics and Technics, 2018, no. 2(35), pp. 85–88.

8. Zhang Ch., Skiba A. N. On Σσ-closed classes of finite groups. Ukrainian Mathematical Journal, 2019, vol. 70, no. 2, pp. 1966–1977. https://doi.org/10.1007/s11253-019-01619-6

9. Chi Z., Safonov V. G., Skiba A. N. On n-multiply σ-local formations of finite groups. Communications in Algebra, 2019, vol. 47, no. 3, pp. 957–968. https://doi.org/10.1080/00927872.2018.1498875

10. Tsarev A. Laws of the lattices of σ-local formations of finite groups. Mediterranean Journal of Mathematics, 2020, vol. 17, no. 3, art. 75. https://doi.org/10.1007/s00009-020-01510-w

11. Safonova I. N., Safonov V. G. On some properties of the lattice of totally σ-local formations of finite groups. Journal of the Belarusian State University. Mathematics and Informatics, 2020, no. 3, pp. 1–14. https://doi.org/10.33581/2520-6508-2020-3-6-16

12. Safonova I. N. On minimal σ-local non-H-formations of finite groups. Problems of Physics, Mathematics and Technics, 2020, no. 4(45), pp. 105–112 (in Russian).

13. Vorob’ev N. N., Stasel’ko I. I., Khodzhagulyev A. O. Separable lattices of multiply σlocal formations. Siberian Mathematical Journal, 2021, vol. 62, no. 4, pp. 586–597. https://doi.org/10.1134/S0037446621040029

14. Safonova I. N. Some properties of n-multiply σ-local formations of finite groups. AsianEuropean Journal of Mathematics, 2022, vol. 15, no. 7, art. 2250138 (12 p.). https://doi.org/10.1142/S1793557122501388

15. Safonova I. N. A criterion for σ-locality of a nonempty formation. Communications in Algebra, 2022, vol. 50, no. 6, pp. 2366–2376. https://doi.org/10.1080/00927872.2021.2006210

16. Safonova I. N. On properties of the lattice of all τ-closed n-multiply σlocal formations. Communications in Algebra, 2023, vol. 51, no. 10, pp. 4454–4461. https://doi.org/10.1080/00927872.2023.2210678

17. Safonova I. N. On critical σ-local formations of finite groups. Trudy Instituta matematiki Natsional’noi akademii nauk Belarusi = Proceedings of the Institute of Mathematics of NAS of Belarus, 2023, vol. 31, no. 2, pp. 63–80 (in Russian).

18. Safonova I. N. On σ-inductive lattices of n-multiply σ-local formations of finite groups. Journal of Algebra and Its Applications, 2024, vol. 23, no. 1, art. 2450017 (13 p.). https://doi.org/10.1142/S0219498824500178

19. Safonova I. N. On the τ-closedness of n-multiply σ-local formation. Advances in Group Theory and Applications, 2024, vol. 18, pp. 123–136. https://doi.org/10.32037/agta-2024-005

20. Safonova I. N. On separability of the lattice of τ-closed n-multiply σ-local formations. Communications in Algebra, 2024, vol. 52, no. 2, pp. 3309–3318. https://doi.org/10.1080/00927872.2024.2317458

21. Safonova I. N. On n-multiply σ-locality of a nonempty τ-closed formation of finite groups. Trudy Instituta matematiki Natsional’noi akademii nauk Belarusi = Proceedings of the Institute of Mathematics of NAS of Belarus, 2024, vol. 32, no. 1, pp. 32–38 (in Russian).

22. Safonova I. N., Skrundz V. V. On σ-local formations of finite groups with bounded Hσ-defect. Problems of Physics, Mathematics and Technics, 2025, no. 1(62), pp. 87–101 (in Russian).

23. Safonova I. N., Skrundz V. V. Minimal τ-closed σ-local non-H-formation of finite groups. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2025, vol. 69, no. 5, pp. 359–366. https://doi.org/10.29235/1561-8323-2025-69-5-359-366 (in Russian).

24. Shemetkov L. A. Screens of stepped formations. Proceedings of the VI All-Union Symposium on Group Theory. Kyiv, Naukova Dumka, 1980, pp. 37–50 (in Russian).

25. Skiba A. N. On critical formations. Izv. AN BSSR. Ser. phys.-math. sci., 1980, no. 4, pp. 27–33 (in Russian).

26. Birkhoff G. Lattice theory. Moscow, Nauka, 1984. 568 p. (in Russian).

27. Safonov V. G. On multiply local formations of finite groups with bounded nilpotent defect. Voprosy algebry, 1996, no. 9, pp. 161–175 (in Russian).


Рецензия

Для цитирования:


Скрундь В.В., Сафонова И.Н. Приводимые τ-замкнутые σ-локальные формации конечных групп с заданной структурой подформаций. Труды Института математики НАН Беларуси. 2025;33(2):36-53. EDN: OLYGHB

For citation:


Skrundz V.V., Safonova I.N. Reducible τ-closed σ-local formations of finite groups with a given structure of subformations. Proceedings of the Institute of Mathematics of the NAS of Belarus. 2025;33(2):36-53. EDN: OLYGHB

Просмотров: 14


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1812-5093 (Print)