Polynomials over division rings
EDN: CRDMSF
Abstract
We consider properties of polynomials with coefficients in division rings. A theorem on the decomposition of a polynomial with coefficients in an arbitrary division ring is obtained. It is shown that if a non-central element is not a root of a polynomial over an arbitrary division ring, then the conjugacy class of this element contains infinitely many elements that are not roots of this polynomial. The paper also contains estimates for the number of different conjugacy classes of spherical roots for some types of polynomials over quaternion algebras.
About the Authors
A. G. GoutorBelarus
Minsk
S. V. Tikhonov
Belarus
Minsk
References
1. Ore O. Theory of non-commutative polynomials. Ann. of Math. (2), 1933, vol. 34, no. 3, pp. 480–508.
2. Lam T. Y. A First Course in Noncommutative Rings. Graduate Texts in Mathematics 131. New York, Springer-Verlag, 1991.
3. Gordon B., Motzkin T. S. On the zeros of polynomials over division rings. Trans. Amer. Math. Soc., 1965, vol. 116, pp. 218–226.
4. Bray U., Whaples G. Polynomials with coefficients from a division ring. Can. J. Math., 1983, vol. 35, pp. 509–515.
5. Beck B. Sur les e`quations polynomiales dans les quaternions. Enseign. Math. (2), 1979, vol. 25, no. 3–4, pp. 193–201.
6. Goutor A. G., Tikhonov S. V. Roots of polynomials over division rings. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2024, vol. 68, no. 5, pp. 359–364. https://doi.org/10.29235/1561-8323-2024-68-5-359-364
7. Pierce R. S. Associative Algegras. New York, Springer, 1982. 436 p.
8. Falca˜o M. I., Miranda F., Severino R., Soares M. J. Mathematica tools for quaternionic polynomials. Computational Science and its Applications. ICCSA 2017. Part II. Lecture Notes in Comput. Sci., 10405 Springer, Cham, 2017, pp. 394–408.
9. Huang L., So W. Quadratic formulas for quaternions. Appl. Math. Lett., 2002, vol. 15, no. 5, pp. 533–540.
10. Janovska´ D., Opfer G. A note on the computation of all zeros of simple quaternionic polynomials. SIAM J. Numer. Anal., 2010, vol. 48, no. 1, pp. 244–256.
11. Seroˆdio R., Pereira E., Vito´ria J. Computing the zeros of quaternion polynomials. Comput. Math. Appl., 2001, vol. 42, no. 8–9, pp. 1229–1237.
12. Seroˆdio R., Siu L.-S. Zeros of quaternion polynomials. Appl. Math. Lett., 2001, vol. 14, no. 2, pp. 237–239.
Review
For citations:
Goutor A.G., Tikhonov S.V. Polynomials over division rings. Proceedings of the Institute of Mathematics of the NAS of Belarus. 2025;33(2):13-20. (In Russ.) EDN: CRDMSF









