Preview

Proceedings of the Institute of Mathematics of the NAS of Belarus

Advanced search

A note on finite groups with subnormal residuals of some sylow normalizers

EDN: JFHHSG

Abstract

Let $G$ be a group and the set of primes $\tau(G)=\cup\pi(G : M)$ for any maximal subgroup $M$ of $G$. For a non-empty nilpotent formation $\mathfrak{X}$, it is proved that a group $G$ has a nilpotent $\mathfrak{X}$-residual if and only if the $\mathfrak{X}$-residual of the $p$-Sylow normalizer is subnormal in $G$ for every $p$ from $\tau(G)$.

About the Authors

A. F. Vasil’ev
F. Scorina Gomel State University
Belarus

Gomel



T. I. Vasil’eva
Belarusian State University of Transport
Belarus

Gomel



A. G. Koranchuk
F. Scorina Gomel State University
Belarus

Gomel



References

1. Bianchi M., Gillio Berta Mauri A., Hauck P. On finite soluble groups with nilpotent Sylow normalizers. Arch. Math., 1986, vol. 47, iss. 3, pp. 193–197.

2. Ballester-Bolinches A., Shemetkov L. A. On normalizers of Sylow subgroup in finite groups.Siberian Mathematical Journal, 1999, vol. 40, iss. 1, pp. 1–2.

3. D’Aniello A., De Vivo C., Giordano G. Saturated formations and Sylow normalizers. Bull. Austral. Math. Soc., 2004, vol. 69, iss. 1, pp. 25–33.

4. D’Aniello A., De Vivo C., Giordano G., Pe´rez-Ramos M. D. Saturated formations closed under Sylow normalizers. Commun. Algebra, 2005, vol. 33, iss. 8, pp. 2801–2808.

5. Kazarin L., Mart´inez-Pastor A., Pe´rez-Ramos M. D. On Sylow normalizers of finite groups. J. Algebra Appl., 2014, vol. 13, iss. 3, art. 1350116–1–20.

6. Vasilyeva T. I., Koranchuk A. G. Finite groups with subnormal residuals of Sylow normalizers. Siberian Mathematical Journal, 2022, vol. 63, iss. 4, pp. 670–676.

7. Monakhov V. S. On nilpotent residuals of Sylow normalizers of a finite group. Siberian Mathematical Journal, 2025, vol. 66, iss. 4, pp. 986–990.

8. Lu J., Meng W. Finite groups with certain normalizers of Sylow subgroups. J. Algebra Appl., 2019, vol. 18, iss. 6, art. 1950101 (4 p.).

9. Shemetkov L. A. Formations of finite groups. Moscow, Nauka, 1987. 272 p. (in Russian).

10. Doerk K., Hawkes T. Finite soluble groups. Berlin, New York, Walter De Gruyter, 1992. 898 p.

11. Monakhov V. S. Finite groups with dispersive Sylow normalizers. Mathematical Notes, 2025, vol. 118, iss. 5, pp. 716–718 (in Russian).


Review

For citations:


Vasil’ev A.F., Vasil’eva T.I., Koranchuk A.G. A note on finite groups with subnormal residuals of some sylow normalizers. Proceedings of the Institute of Mathematics of the NAS of Belarus. 2025;33(2):7-12. (In Russ.) EDN: JFHHSG

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-5093 (Print)