Preview

Proceedings of the Institute of Mathematics of the NAS of Belarus

Advanced search

About one stochastic model of a dairy herd

Abstract

The paper proposes a stochastic model, which describes the dynamics of biallelic polymorphism in a dairy herd. The proposed model assumes that the herd is formed under controlled mating conditions. The system of equations describing the model is based on the use of random processes containing jumps. A discrete analog of the stochastic system is constructed, for which a Monte Carlo simulation is performed.

About the Authors

A. Zherelo
Belarusian State University
Belarus


G. Krylov
Belarusian State University
Belarus

Minsk



V. Obolonkin
Public Health Unit, Northland District Health Board
New Zealand


M. Jorgensen
University of Waikato
New Zealand

Hamilton



R. Spielman
Livestock Improvement Corporation
New Zealand

Hamilton



References

1. Hardy G. H. Mendelian proportions in a mixed population. Science, 1908, no. 28, pp. 49–50.

2. Weinberg W. U¨ ber den nachweis der vererbung beim menschen. W. Jahreshefte des Vereins fu¨r vaterla¨ndische Naturkunde in Wu¨rttemberg, 1908, no. 64, pp. 368–382.

3. Wright S. Evolution in Mendelian populations. Genetics, 1931, no. 16, pp. 97–159.

4. Fisher R. A. The Genetical Theory of Natural Selection. Oxford, Clarendon Press, 1931.

5. Feng S. Poisson-Dirichlet Distribution and Related Topics: Models and asymptotic behaviors. Berlin, Heidelberg, Springer-Verlag, 2010.

6. Donnelly P., Kurtz T. G. Genealogical processes for Fleming–Viot models with selection and recombination. Annals of Applied Probability, 1999, vol. 9, no. 4, pp. 1091–1148.

7. Kaj I., Krone S. M. The coalescent process in a population with stochastically varying size. Journal of Applied Probability, 2003, vol. 40, no. 1, pp. 33–48.

8. Steinsaltz D., Evans S. N., Wachter K. W. A generalized model of mutation-selection balance with applications to aging. Advances in Applied Mathematics, 2005, vol. 35, no. 1, pp. 16–33.

9. Moran P. A. P. Random processes in genetics. Mathematical Proceedings of the Cambridge Philosophical Society, 1958, vol. 54, pp. 60–71.

10. Feller W. Diffusion processes in genetics. Proc. Second Berkeley Symp. Math. Statist. Prob., 1951, pp. 227–246.

11. Dawson D. A. ”Stochastic population dynamics. Lectures at Summer School in Probability, at PIMS-UBC”. – URL: https://personal.math.ubc.ca/~db5d/SummerSchool09/LectureNotes.html (accessed 12.04.2025)

12. Pfaffelhuber P., Pennings P., Hermisson J. ”Tutorial: Population genetics. Mathematics and BioSciences Group, University of Vienna”. – URL: https://www.mabs.at/fileadmin/user_upload/p_mabs/popgen2009.pdf (accessed 12.04.2025).

13. Draghi J. A., Parsons T. L., Plotkin J. B. Epistasis increases the rate of conditionally neutral substitution in an adapting population. Genetics, 2011, vol. 187, pp. 1139–1152.

14. Harris B., Johnson D. Genomic predictions for New Zealand dairy bulls and integration with national genetic evaluation. Journal of Dairy Science, 2010, vol. 93, pp. 1243–1252.

15. Inbreeding and recessive genes. – URL: https://www.lic.co.nz/products-and-services/artificial- breeding/inbreeding-and-recessive-genes/ (accessed 12.04.2025).

16. Grisart B., Farnir F., Karim L., Cambisano N., Kim J. J. et al. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proceedings of the National Academy of Sciences of the United States of America, 2004, vol. 101, pp. 2398–2403.

17. Allais-Bonnet A., Grohs C., Medugorac I., Krebs S., Djari A. et al. Novel Insights into the Bovine Polled Phenotype and Horn Ontogenesis in Bovidae. PLoS ONE, 2013, vol. 8, art. e63512. https://doi.org/10.1371/journal.pone.0063512

18. Morris A. P., Zeggini E. An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genetic epidemiology, 2010, vol. 34, pp. 188–193.

19. Øksendal B. K., Sulem A. Applied stochastic control of jump diffusions. Springer, 2005.

20. Applebaum D. Le´vy processes and stochastic calculus. Cambridge University Press, 2009.

21. Gardiner C. W. Handbook of stochastic methods: for Physics, Chemistry and the Natural Sciences. Springer, 2004.

22. Smith M. Evolution and the Theory of Games. Cambridge, Cambridge University Press, 1982.

23. Egorov A. D., Sobolevsky P. I., Yanovich L. F. Functional Integrals: Approximate Evaluation and Applications. Springer, 1993.

24. Zherelo A. Approximate Calculation of Mathematical Expectations on Processes with a Drift. Nonlinear Phenomena in Complex Systems, 2015, vol. 18, no. 2, pp. 207–214.


Review

For citations:


Zherelo A., Krylov G., Obolonkin V., Jorgensen M., Spielman R. About one stochastic model of a dairy herd. Proceedings of the Institute of Mathematics of the NAS of Belarus. 2025;33(1):95-110. (In Russ.)

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-5093 (Print)