Preview

Proceedings of the Institute of Mathematics of the NAS of Belarus

Advanced search

On the topologies of a hyperspace of a metrizable topological space

Abstract

The properties of the topology $\tau_{inf}$, which is the infimum of the set of all topologies generated by the Hausdorff metrics on the hyperspace $\exp X$ of a metrizable topological space $X$ are studied. As one of the main results necessary and sufficient conditions for the metrizability (with Hausdorff metric) of $\tau_{inf}$ are obtained. We also show that $\exp X$ with the topology $\tau_{inf}$ is first-countable space if and only if a space $X$ is locally compact and second-countable. Besides we investigate relations between $\tau_{inf}$ and other topologies on the $\exp X$: Vietoris topology, Fell topology and locally finite topology.

About the Authors

A. S. Bedritskiy
Белорусский государственный университет
Belarus


V. L. Timokhovich
Белорусский государственный университет
Belarus


References

1. Hausdorff F. Grundzuge der Mengenlehre. Leipzig, 1914. ¨

2. Vietoris L. Bereiche zweiter Ordnung // Monatshefte Math. Phys. 1923. Vol. 33. P. 49–62.

3. Michael E. A. Topologies on spaces of subsets // Trans. Amer. Math. Soc. 1951. Vol. 71. P. 152–182.

4. Fell J. M. A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space // Proc. Amer. Math. Soc. 1962. Vol. 13. P. 472–476.

5. Beer G. A., Himmelberg C. J., Prikry K., van Vleck F. S. The locally finite topology on 2 X // Proc. Amer. Math. Soc. 1987. Vol. 101. P. 168–172.

6. Costantini C., Vitolo P. On the infimum of the Hausdorff metric topologies // Proc. London Math. Soc. 1995. Vol. 70. P. 441–480.

7. Пономарев В. И. Новое пространство замкнутых множеств и многозначные непрерывные отображения бикомпактов // Математический сб. 1959. Т. 48(90), № 2. С. 191–212.

8. Beer G. Topologies on Closed and Closed Convex Sets. Dordrecht: Kluwer Acad. Publ., 1993.

9. Naimpally S. A., Sharma P. L. Fine uniformity and the locally finite hyperspace topology // Proc. Amer. Math. Soc. 1988. Vol. 103. P. 611–646.

10. Энгелькинг Р. Общая топология. М.: Мир, 1986.

11. Atsuji M. Uniform continuity of continuous functions of metric spaces // Pacific J. Math. 1958. Vol. 8. P. 11–16.

12. Beer G., Tamaki R. The infinite value functional and the uniformization of hit-and-miss hyperspace topologies // Proc. Amer. Math. Soc. 1994. Vol. 122. P. 601–611.

13. Hausdorff F. Erweiterung einer Homoomorphie // Eund. Math. 1930. Vol. 16. P. 353–360.

14. Александров П. С. Введение в теорию множеств и общую топологию. М.: Наука, 1977.

15. Тимохович В. Л., Фролова Д. С. О свойствах инфимальной топологии пространства отображений // Изв. вузов. Матем. 2016. № 4. С. 87–99.

16. Тимохович В. Л., Фролова Д. С. Об инфимальной топологии пространства отображений // Вестн. БГУ. Сер. 1. 2011. № 2. С. 136–140.


Review

For citations:


Bedritskiy A.S., Timokhovich V.L. On the topologies of a hyperspace of a metrizable topological space. Trudy Instituta matematiki. 2023;31(2):15-27. (In Russ.)

Views: 52


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-5093 (Print)