On the solvability and factorization of some π-solvable irreducible linear groups of primary degree. Part II
Abstract
The article is the second in a series of papers where for a set $\pi$ of odd primes $\pi$-solvable finite irreducible complex linear groups of degree $2|H|+1$ whose Hall $\pi$-subgroups are $TI$-subgroups and are not normal in groups. The goal of this series is to prove the solvability and determine the factorization of such groups. The proof of the theorem is continued. Further properties of the minimal counterexample to the theorem are established.
About the Author
A. A. YadchenkoBelarus
References
1. Ядченко А. А. О разрешимости и факторизации некоторых π-разрешимых неприводимых линейных групп примарной степени. Часть I // Тр. Ин-та математики. 2022. Т. 30, № 1–2. С. 84–98.
2. Gorenstein D. Finite groups. New York: Harper and Row, 1968.
3. Isaacs I. M. Character theory of finite groups. New York: Academic Press, 1976.
4. Dixon J. The structure of linear groups. L.: Butler and Tanner Ltd., 1971.
5. Ядченко А. А., Романовский А. В. К проблеме Айзекса о конечных p -разрешимых линейных группах // Матем. заметки. 2001. Т. 69, Вып. 1. С. 144–152.
6. Ядченко А. А. О π-разрешимых неприводимых линейных группах с холловой TI подгруппой нечетного порядка I // Тр. Ин-та математики. 2008. Т. 16, № 2. С. 118–130.
Review
For citations:
Yadchenko A.A. On the solvability and factorization of some π-solvable irreducible linear groups of primary degree. Part II. Trudy Instituta matematiki. 2023;31(1):88-100. (In Russ.)