Preview

Proceedings of the Institute of Mathematics of the NAS of Belarus

Advanced search

Lattice characterizations of soluble and supersoluble finite groups

Abstract

Let $G$ be a finite group and ${\cal L}_{sn}(G)$ be the lattice of all subnormal subgroups of $G$. Let $A$ and $N$ be subgroups of $G$ and $G\in {\cal L}$ be a sublattice of ${\cal L}_{sn}(G)$, that is, $A\cap B$, $\langle A, B \rangle \in {\cal L}$ for all $A, B \in {\cal L} \subseteq {\cal L}_{sn}(G)$. Then: $A^{{\cal L}}$ is the $\cal L$-closure of $A$ in $G$, that is, the intersection of all subgroups in $ {\cal L}$ containing $A$ and $A_{{\cal L}}$ is the $\cal L$-core of $A$ in $G$, that is, the subgroup of $A$ generated by all subgroups of $A$ belonging $\cal L$. We say that $A$ is an $N$-${\cal L}$-subgroup of $G$ if either $A\in {\cal L}$ or $A_{{\cal L}} < A < A^{\cal L}$ and $N$ avoids every composition factor $H/K$ of $G$ between $A_{{\cal L}}$ and $ A^{\cal L}$, that is, $N\cap H=N\cap K$. Using this concept, we give new characterizations of soluble and supersoluble finite groups. Some know results are extended.

About the Authors

A.-M. Liu
Hainan University
China

School of Mathematics and Statistics

Hainan; Haikou



S. Wang
Hainan University; Tianjin University
China

School of Mathematics and Statistics; School of Mathematics

Hainan; Haikou; Tianjin



V. G. Safonov
Institute of Mathematics of the National Academy of Sciences of Belarus
Belarus

Minsk



A. N. Skiba
Institute of Mathematics of the National Academy of Sciences of Belarus; Francisk Skorina Gomel State University
Belarus

Minsk; Gomel



References

1. Hall P. On the system normalizers of a soluble group. Proc. London Math. Soc., 1938, vol. 43, pp. 507–528.

2. Doerk K., Hawkes T. Finite Soluble Groups. Berlin; New York, Walter de Gruyter, 1992.

3. Ezquerro L. M. A contribution to the theory of finite supersolvable groups. Rend. Sem. Math. Univ. Padova, 1993, vol. 89, pp. 161–170.

4. Tang X., Guo W. On partial CAP∗-subgroups of finite groups. J. Algebra and Its Application, 2017, vol. 16, no. 1, art. 1750009.

5. Guo W., Skiba A. N., Yang N. A generalized CAP-subgroup of a finite group. Science China. Mathematics, 2015, vol. 58, no. 10, pp. 1–12.

6. Qian G., Zeng Yu. On partial CAP-subgroups of finite groups. J. Algebra, 2020, vol. 546, pp. 553–565.

7. Li X., Lei D. The semi p-cover-avoidance properties of p-sylowizers in finite groups. Comm. Algebra, 2021, vol. 49, no. 11, pp. 4588–4599.

8. Wang Y., Miao L., Liu W. On some second maximal subgroups of non-solvable groups. Hacettepe Journal of Mathematics and Statistics, 2023, vol. 52, no. 2, pp. 367–373.

9. Skiba A. N. On sublattices of the subgroup lattice defined by formation Fitting sets. J. Algebra, 2020, vol. 550, pp. 69–85.

10. Ballester-Bolinches A., Beidleman J. C., Heineken H. Groups in which Sylow subgroups and subnormal subgroups permute // Special issue in honor of Reinhold Baer (1902–1979). Illinois J. Math., 2003, vol. 47, no. 1–2, pp. 63–69.

11. Ballester-Bolinches A., Esteban-Romero R., Asaad M. Products of Finite Groups. Berlin; New York, Walter de Gruyter, 2010.

12. Kegel O. H. Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z., 1962, vol. 78, pp. 205–221.

13. Skiba A. N. On weakly s-permutable subgroups of finite groups. J. Algebra, 2007, vol. 315, pp. 192–209.

14. Guo W., Skiba A. N. Finite groups with given s-embedded and n-embedded subgroups. J. Algebra, 2009, vol. 321, pp. 2843–2860.

15. Agrawal R. K. Finite groups whose subnormal subgroups permute with all Sylow subgroups. Proc. Amer. Math. Soc., 1975, vol. 47, pp. 77–83.

16. Chi Z., Skiba A. N. On a lattice characterisation of finite soluble PST-group. Bull. Austral. Math. Soc., 2020, vol. 101, no. 2, pp. 247–254.

17. Guo J., Guo W., Safonova I. N., Skiba A. N. G-covering subgroup systems for the classes of finite soluble PST-groups. Comm. Algebra, 2021, vol. 49, no. 9, pp. 3872–3880.

18. Wang Z., Liu A.-M., Safonov V. G., Skiba A. N. A characterization of soluble PST-groups // Bull. Austral. Math. Soc., published online, 2024, pp. 1–8. doi: 10.1017/S0004972724000157

19. Schmidt R. Subgroup lattices of groups. Berlin; New York, Walter de Gruyter, 1994.

20. Guo X., Shum K. P. Cover-avoidance properties and the structure of finite groups. J. Pure and Applied Algebra, 2003, vol. 181, pp. 297–308.

21. Huppert B. Endliche Gruppen I. Berlin; Heidelberg; New York, Springer-Verlag, 1967.

22. Safonov V. G., Skiba A. N. Finite groups with systems of generalized normal subgroups, Preprint (2024).

23. Agrawal R. K. Generalized center and hypercenter of a finite group. Proc. Amer. Math. Soc., 1976, vol. 58, no. 1, pp. 13–21.

24. Weinstein M. Between Nilpotent and Solvable. Polygonal Publishing House, 1982.

25. Srinivasan S. Two sufficient conditions for supersolvability of finite groups. Israel J. Math., 1980, vol. 35, pp. 210–214.

26. Buckley J. Finite groups whose minimal subgroups are normal. Math. Z., 1970, vol. 15, pp. 15–17.

27. Aivazidis S., Safonova I. N., Skiba A. N. Subnormality and residuals for saturated formations: A generalization of Schenkman’s theorem. J. Group Theory, 2021, vol. 24, no. 4, pp. 807–818.

28. Schenkman E. On the tower theorem for finite groups. Pac. J. Math., 1955, vol. 5, pp. 995–998.


Review

For citations:


Liu A., Wang S., Safonov V.G., Skiba A.N. Lattice characterizations of soluble and supersoluble finite groups. Proceedings of the Institute of Mathematics of the NAS of Belarus. 2024;32(1):17-24.

Views: 113


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-5093 (Print)