Lattice characterizations of soluble and supersoluble finite groups
Abstract
Let $G$ be a finite group and ${\cal L}_{sn}(G)$ be the lattice of all subnormal subgroups of $G$. Let $A$ and $N$ be subgroups of $G$ and $G\in {\cal L}$ be a sublattice of ${\cal L}_{sn}(G)$, that is, $A\cap B$, $\langle A, B \rangle \in {\cal L}$ for all $A, B \in {\cal L} \subseteq {\cal L}_{sn}(G)$. Then: $A^{{\cal L}}$ is the $\cal L$-closure of $A$ in $G$, that is, the intersection of all subgroups in $ {\cal L}$ containing $A$ and $A_{{\cal L}}$ is the $\cal L$-core of $A$ in $G$, that is, the subgroup of $A$ generated by all subgroups of $A$ belonging $\cal L$. We say that $A$ is an $N$-${\cal L}$-subgroup of $G$ if either $A\in {\cal L}$ or $A_{{\cal L}} < A < A^{\cal L}$ and $N$ avoids every composition factor $H/K$ of $G$ between $A_{{\cal L}}$ and $ A^{\cal L}$, that is, $N\cap H=N\cap K$. Using this concept, we give new characterizations of soluble and supersoluble finite groups. Some know results are extended.
Keywords
About the Authors
A.-M. LiuChina
School of Mathematics and Statistics
Hainan; Haikou
S. Wang
China
School of Mathematics and Statistics; School of Mathematics
Hainan; Haikou; Tianjin
V. G. Safonov
Belarus
Minsk
A. N. Skiba
Belarus
Minsk; Gomel
References
1. Hall P. On the system normalizers of a soluble group. Proc. London Math. Soc., 1938, vol. 43, pp. 507–528.
2. Doerk K., Hawkes T. Finite Soluble Groups. Berlin; New York, Walter de Gruyter, 1992.
3. Ezquerro L. M. A contribution to the theory of finite supersolvable groups. Rend. Sem. Math. Univ. Padova, 1993, vol. 89, pp. 161–170.
4. Tang X., Guo W. On partial CAP∗-subgroups of finite groups. J. Algebra and Its Application, 2017, vol. 16, no. 1, art. 1750009.
5. Guo W., Skiba A. N., Yang N. A generalized CAP-subgroup of a finite group. Science China. Mathematics, 2015, vol. 58, no. 10, pp. 1–12.
6. Qian G., Zeng Yu. On partial CAP-subgroups of finite groups. J. Algebra, 2020, vol. 546, pp. 553–565.
7. Li X., Lei D. The semi p-cover-avoidance properties of p-sylowizers in finite groups. Comm. Algebra, 2021, vol. 49, no. 11, pp. 4588–4599.
8. Wang Y., Miao L., Liu W. On some second maximal subgroups of non-solvable groups. Hacettepe Journal of Mathematics and Statistics, 2023, vol. 52, no. 2, pp. 367–373.
9. Skiba A. N. On sublattices of the subgroup lattice defined by formation Fitting sets. J. Algebra, 2020, vol. 550, pp. 69–85.
10. Ballester-Bolinches A., Beidleman J. C., Heineken H. Groups in which Sylow subgroups and subnormal subgroups permute // Special issue in honor of Reinhold Baer (1902–1979). Illinois J. Math., 2003, vol. 47, no. 1–2, pp. 63–69.
11. Ballester-Bolinches A., Esteban-Romero R., Asaad M. Products of Finite Groups. Berlin; New York, Walter de Gruyter, 2010.
12. Kegel O. H. Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z., 1962, vol. 78, pp. 205–221.
13. Skiba A. N. On weakly s-permutable subgroups of finite groups. J. Algebra, 2007, vol. 315, pp. 192–209.
14. Guo W., Skiba A. N. Finite groups with given s-embedded and n-embedded subgroups. J. Algebra, 2009, vol. 321, pp. 2843–2860.
15. Agrawal R. K. Finite groups whose subnormal subgroups permute with all Sylow subgroups. Proc. Amer. Math. Soc., 1975, vol. 47, pp. 77–83.
16. Chi Z., Skiba A. N. On a lattice characterisation of finite soluble PST-group. Bull. Austral. Math. Soc., 2020, vol. 101, no. 2, pp. 247–254.
17. Guo J., Guo W., Safonova I. N., Skiba A. N. G-covering subgroup systems for the classes of finite soluble PST-groups. Comm. Algebra, 2021, vol. 49, no. 9, pp. 3872–3880.
18. Wang Z., Liu A.-M., Safonov V. G., Skiba A. N. A characterization of soluble PST-groups // Bull. Austral. Math. Soc., published online, 2024, pp. 1–8. doi: 10.1017/S0004972724000157
19. Schmidt R. Subgroup lattices of groups. Berlin; New York, Walter de Gruyter, 1994.
20. Guo X., Shum K. P. Cover-avoidance properties and the structure of finite groups. J. Pure and Applied Algebra, 2003, vol. 181, pp. 297–308.
21. Huppert B. Endliche Gruppen I. Berlin; Heidelberg; New York, Springer-Verlag, 1967.
22. Safonov V. G., Skiba A. N. Finite groups with systems of generalized normal subgroups, Preprint (2024).
23. Agrawal R. K. Generalized center and hypercenter of a finite group. Proc. Amer. Math. Soc., 1976, vol. 58, no. 1, pp. 13–21.
24. Weinstein M. Between Nilpotent and Solvable. Polygonal Publishing House, 1982.
25. Srinivasan S. Two sufficient conditions for supersolvability of finite groups. Israel J. Math., 1980, vol. 35, pp. 210–214.
26. Buckley J. Finite groups whose minimal subgroups are normal. Math. Z., 1970, vol. 15, pp. 15–17.
27. Aivazidis S., Safonova I. N., Skiba A. N. Subnormality and residuals for saturated formations: A generalization of Schenkman’s theorem. J. Group Theory, 2021, vol. 24, no. 4, pp. 807–818.
28. Schenkman E. On the tower theorem for finite groups. Pac. J. Math., 1955, vol. 5, pp. 995–998.
Review
For citations:
Liu A., Wang S., Safonov V.G., Skiba A.N. Lattice characterizations of soluble and supersoluble finite groups. Proceedings of the Institute of Mathematics of the NAS of Belarus. 2024;32(1):17-24.