1. Hall P. On the system normalizers of a soluble group. Proc. London Math. Soc., 1938, vol. 43, pp. 507-528.
2. Doerk K., Hawkes T. Finite Soluble Groups. Berlin; New York, Walter de Gruyter, 1992.
3. Ezquerro L. M. A contribution to the theory of finite supersolvable groups. Rend. Sem. Math. Univ. Padova, 1993, vol. 89, pp. 161-170.
4. Tang X., Guo W. On partial CAP∗-subgroups of finite groups. J. Algebra and Its Application, 2017, vol. 16, no. 1, art. 1750009.
5. Guo W., Skiba A. N., Yang N. A generalized CAP-subgroup of a finite group. Science China. Mathematics, 2015, vol. 58, no. 10, pp. 1-12.
6. Qian G., Zeng Yu. On partial CAP-subgroups of finite groups. J. Algebra, 2020, vol. 546, pp. 553-565.
7. Li X., Lei D. The semi p-cover-avoidance properties of p-sylowizers in finite groups. Comm. Algebra, 2021, vol. 49, no. 11, pp. 4588-4599.
8. Wang Y., Miao L., Liu W. On some second maximal subgroups of non-solvable groups. Hacettepe Journal of Mathematics and Statistics, 2023, vol. 52, no. 2, pp. 367-373.
9. Skiba A. N. On sublattices of the subgroup lattice defined by formation Fitting sets. J. Algebra, 2020, vol. 550, pp. 69-85.
10. Ballester-Bolinches A., Beidleman J. C., Heineken H. Groups in which Sylow subgroups and subnormal subgroups permute // Special issue in honor of Reinhold Baer (1902-1979). Illinois J. Math., 2003, vol. 47, no. 1-2, pp. 63-69.
11. Ballester-Bolinches A., Esteban-Romero R., Asaad M. Products of Finite Groups. Berlin; New York, Walter de Gruyter, 2010.
12. Kegel O. H. Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z., 1962, vol. 78, pp. 205-221.
13. Skiba A. N. On weakly s-permutable subgroups of finite groups. J. Algebra, 2007, vol. 315, pp. 192-209.
14. Guo W., Skiba A. N. Finite groups with given s-embedded and n-embedded subgroups. J. Algebra, 2009, vol. 321, pp. 2843-2860.
15. Agrawal R. K. Finite groups whose subnormal subgroups permute with all Sylow subgroups. Proc. Amer. Math. Soc., 1975, vol. 47, pp. 77-83.
16. Chi Z., Skiba A. N. On a lattice characterisation of finite soluble PST-group. Bull. Austral. Math. Soc., 2020, vol. 101, no. 2, pp. 247-254.
17. Guo J., Guo W., Safonova I. N., Skiba A. N. G-covering subgroup systems for the classes of finite soluble PST-groups. Comm. Algebra, 2021, vol. 49, no. 9, pp. 3872-3880.
18. Wang Z., Liu A.-M., Safonov V. G., Skiba A. N. A characterization of soluble PST-groups // Bull. Austral. Math. Soc., published online, 2024, pp. 1-8. https://doi.org/10.1017/S0004972724000157
19. Schmidt R. Subgroup lattices of groups. Berlin; New York, Walter de Gruyter, 1994.
20. Guo X., Shum K. P. Cover-avoidance properties and the structure of finite groups. J. Pure and Applied Algebra, 2003, vol. 181, pp. 297-308.
21. Huppert B. Endliche Gruppen I. Berlin; Heidelberg; New York, Springer-Verlag, 1967.
22. Safonov V. G., Skiba A. N. Finite groups with systems of generalized normal subgroups, Preprint (2024).
23. Agrawal R. K. Generalized center and hypercenter of a finite group. Proc. Amer. Math. Soc., 1976, vol. 58, no. 1, pp. 13-21.
24. Weinstein M. Between Nilpotent and Solvable. Polygonal Publishing House, 1982.
25. Srinivasan S. Two sufficient conditions for supersolvability of finite groups. Israel J. Math., 1980, vol. 35, pp. 210-214.
26. Buckley J. Finite groups whose minimal subgroups are normal. Math. Z., 1970, vol. 15, pp. 15-17.
27. Aivazidis S., Safonova I. N., Skiba A. N. Subnormality and residuals for saturated formations: A generalization of Schenkman’s theorem. J. Group Theory, 2021, vol. 24, no. 4, pp. 807-818.
28. Schenkman E. On the tower theorem for finite groups. Pac. J. Math., 1955, vol. 5, pp. 995-998.