Preview

Proceedings of the Institute of Mathematics of the NAS of Belarus

Advanced search

Generalization of Gelfond’s lemma on small values of integer polynomials to the multidimensional case

Abstract

   The paper establishes a relationship between the values of two integer polynomials without common roots on disjoint intervals of fixed length with the main characteristics of the polynomials – degree and height. The proved theorem can be considered as a two-dimensional generalization of Gelfond’s lemma from the theory of transcendental numbers. The theorem can be used to estimate from above the Hausdorff dimension of a set of vectors that are approximated by conjugate algebraic numbers in a given order.

About the Authors

N. I. Kalosha
Institute of Mathematics of the National Academy of Sciences of Belarus
Belarus

Minsk



Zh. I. Panteleeva
Institute of Mathematics of the National Academy of Sciences of Belarus
Belarus

Minsk



References

1. Dirichlet L. G. P. Verallgemeinerung eines Satzes aus der Lehre von den Kettenbr¨uchen nebst einigen Anwendungen auf die Theorie der Zahlen. Werke I, 1842, pp. 633–638.

2. Khintchine A. Einige S¨atze ¨uber Kettenbr¨uche, mit Anwendungen auf die Theorie der Diophantischen Approximationen. Mathematische Annalen, 1924, vol. 92, pp. 115–125.

3. Mahler K. ¨Uber das Maß der Menge aller S-Zahlen. Math. Ann., 1932, vol. 106, pp. 131–139.

4. Sprindˇzuk V. G. On a Conjecture of Mahler. Soviet Math., 1964, vol. 1, pp. 183–187.

5. Sprindˇzuk V. G. A Proof of Mahler’s Conjecture on the Measure of the Set of S-numbers. Izv. Akad. Nauk SSSR Ser. Mat., 1965, vol. 29, pp. 379–436 (in Russian).

6. Sprindˇzuk V. G. Mahler’s Problem in Metric Number Theory. Providence, R.I.: American Mathematical Society, 1969, 204 p.

7. Bernik V. I. On the Exact Order of Approximating Zero by Values of Integral Polynomials. Acta Arith., 1989, vol. 53, no. 1, pp. 17–28 (in Russian).

8. Beresnevich V. V. On Approximation of Real Numbers by Real Algebraic Numbers. Acta Arith., 1999, vol. 50, no. 2, pp. 97–112.

9. Ptashnik B. I. Ill-posed Boundary-value Problems for Partial Differential Equations. Kyiv, Naukova Dumka, 1984, 264 p. (in Russian).

10. Arnold, V. I. Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics. Russian Mathematical Surveys, 1963, vol. 18, issue 6, pp. 85–191.

11. Beresnevich V., Velani S. Number Theory Meets Wireless Communications: An Introduction for Dummies Like Us. Beresnevich, V., Burr, A., Nazer, B., Velani, S. Number Theory Meets Wireless Communications. Springer, 2020, pp. 1–67. doi: 10.1007/978-3-030-61303-7

12. Hausdorff F. Die M¨achtigkeit der Borelschen Mengen. Mathematische Annalen, 1916, vol. 77, no. 3, pp. 430–437.

13. Baker A., Schmidt W. M. Diophantine Approximation and Hausdorff dimension. Proceedings of the London Mathematical Society, 1970, no. 21, pp. 1–11.

14. Bernik V. I. Use of Hausdorff Dimension in the Theory of Diophantine Approximations. Acta Arith., 1983, vol. 42, no. 3, pp. 219–253 (in Russian).

15. Gelfond A. O. Transcendental and Algebraic Numbers. New York, Dover Publications Inc., 1960, 190 p.

16. Bernik V. I., Kalosha N. I. Approximation of zero by values of integer polynomials in the space R×C×Qp. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series, 2004, no. 1, pp. 121–123 (in Russian).

17. Bernik V. I., Vasilyev D. V., Kalosha N. I., Panteleeva Zh. I. Metric Theory of Diophantine Approximation and Asymptotic Estimates for the Number of Polynomials with Given Discriminants Divisible by a Large Power of a Prime Number. Doklady of the National Academy of Sciences of Belarus, 2023, vol. 67, no. 4, pp. 271–278 (in Russian). doi: 10.29235/1561-8323-2023-67-4-271-278

18. Bernik V. I. A Metric Theorem on the Simultaneous Approximation of a Zero by the Values Of Integral Polynomials. Mathematics of the USSR–Izvestiya, 1981, vol. 16, no. 1, pp. 21–40.

19. Budarina N., Bernik V. I., Dickinson D. A Divergent Khintchine Theorem in the Real, Complex and p-adic Fields. Lithuanian Mathematical Journal, 2008, vol. 48, no. 2, pp. 1–16. doi: 10.1007/s10986-008-9005-9

20. Budarina N., Dickinson D. Diophantine Approximation on Non-Degenerate Curves with Non-Monotonic Error Function. Bulletin London Math. Soc., 2009, vol. 41, no. 1, pp. 137–146. doi: 10.1112/blms/bdn116

21. Budarina N., Bernik V. I., Dickinson D. Simultaneous Diophantine Approximation in the Real,

22. Complex and p-adic Fields. Math. Proc. Cambridge Philos. Soc., 2010, vol. 149, no. 2, pp. 193–216. doi: 10.1017/S0305004110000162

23. Budarina N., Dickinson D. Simultaneous Diophantine Approximation in Two Metrics and the Distance between Conjugate Algebraic Numbers in C × Qp. Indagationes Mathematicae, 2012, vol. 23, pp. 32–41. doi: 10.1016/j.indag.2011.09.012

24. Beresnevich V., Bernik V., Budarina N. Systems of Small Linear Forms and Diophantine Approximation on Manifolds. 2017. [Electronic resource]. Available at: https://arxiv.org/abs/1707.00371 (accessed 16. 07. 2024).


Review

For citations:


Kalosha N.I., Panteleeva Zh.I. Generalization of Gelfond’s lemma on small values of integer polynomials to the multidimensional case. Proceedings of the Institute of Mathematics of the NAS of Belarus. 2024;32(1):10-16. (In Russ.)

Views: 48


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-5093 (Print)