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Аннотация. Пусть G – группа и множество простых чисел τ(G) = ∪π(G : M) для любой
максимальной подгруппы M из G. Для непустой нильпотентной формации X доказано,
что группа G имеет нильпотентныйX-корадикал тогда и только тогда, когдаX-корадикал
p-силовского нормализатора субнормален в G для любого p из τ(G).

A NOTE ON FINITE GROUPS WITH SUBNORMAL RESIDUALS OF SOME SYLOW
NORMALIZERS

A. F. Vasil’ev1, T. I. Vasil’eva2, A. G. Koranchuk1

1F. Scorina Gomel State University, Gomel, Belarus
2Belarusian State University of Transport, Gomel, Belarus

e-mail: formation56@mail.ru, tivasilyeva@mail.ru, melchenkonastya@mail.ru

Received: 22.11.2025 Revised: 22.11.2025 Accepted: 15.12.2025
Keywords: finite group, p-
Sylow normalizer, subnormal
subgroup, formation, residual,
supersolvable group.

Abstract. Let G be a group and the set of primes τ(G) =∪π(G : M) for any maximal subgroup
M of G. For a non-empty nilpotent formation X, it is proved that a group G has a nilpotent
X-residual if and only if the X-residual of the p-Sylow normalizer is subnormal in G for every
p from τ(G).

1. Введение

В заметке под словом группа понимается конечная группа. Пусть p – простое число. Для
краткости будем называть p-силовским нормализатором нормализатор силовской p-подгруппы
группы и силовским нормализатором нормализатор силовской подгруппы группы. В 1986 г. в [1]
была установлена нильпотентность группы, все силовские нормализаторы которой нильпотентны.
В 1999 г. А. Баллестер-Болинше и Л. А. Шеметков [2] доказали, что группа G нильпотентна тогда и
только тогда, когда p-силовский нормализатор группы G является p-нильпотентным для любого
p ∈ π(G). Здесь π(G) – множество всех простых делителей порядка группы G.

В работах [1–5] изучались насыщенные формации F, содержащие группы, все силовские
нормализаторы которых являются F-группами. Однако большинство классических формаций
не относится к таким формациям. В частности, в симметрической группе степени 4 все силовские
нормализаторы сверхразрешимы, но сама группа не является сверхразрешимой.

В дальнейшем N – формация всех нильпотентных групп, A – формация всех абелевых групп.
Для формации X через GX обозначается X-корадикал группы G, т. е. наименьшая нормальная
подгруппа группы G, для которой G/GX ∈ X; GN – нильпотентный корадикал G.
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В работе [6] были найдены необходимые и достаточные условия, при которых группа со
сверхразрешимыми (метанильпотентными, имеющими нильпотентный коммутант) силовскими
нормализаторами сверхразрешима (соответственно, метанильпотентна, имеет нильпотентный
коммутант). В теореме A [6] было установлено, что для непустой формации X, состоящей из
нильпотентных групп, необходимыми и достаточными условиями принадлежности группы G
формации NX являются разрешимость p-силовского нормализатора и субнормальность в G его
X-корадикала для любого p ∈ π(G). В теореме B [6] было доказано, что для наследственной
насыщенной формации F такой, что N ⊆ F ⊆ U, тогда и только тогда группа G ∈ F, когда p-
силовский нормализатор принадлежит F и его нильпотентный корадикал субнормален в G для
любого p ∈ π(G). Применяя отмеченный выше результат А. Баллестера-Болинше и Л. А. Шеметкова,
в работе [7] было установлено, что в достаточных условиях теоремы A разрешимость силовских
нормализаторов можно отбросить.

В [8] для группы G через τ(G) обозначено множество всех простых чисел p таких, что в G
найдется максимальная подгруппа M, для которой p делит |G : M|, т. е. τ(G) = ∪π(G : M) для любой
максимальной подгруппы M из G. Множество τ(G) не всегда совпадает с множеством π(G), как,
например, для группы G = PSL(2,7), в то же время если G – разрешимая группа, то τ(G) = π(G) [8].
Однако из τ(G) = π(G) не всегда следует разрешимость группы G. В качестве примера выступает
знакопеременная группа A5 степени 5, для которой τ(A5) = {2,3,5} = π(A5).

В [8, теорема 1.2] было установлено, что приведенный выше результат А. Баллестера-Болинше
и Л. А. Шеметкова верен для любого p ∈ τ(G). Это используется в настоящей заметке при
доказательстве следующих результатов.

Теорема 1.1. Пусть X – непустая формация и X ⊆ N. Тогда следующие утверждения
эквивалентны.

(1) Группа G ∈NX.
(2) Любая подгруппа группы G, содержащаяся в GX, является субнормальной в G.
(3) HX субнормален в группе G для любой подгруппы H из G.
(4) X-корадикал p-силовского нормализатора субнормален в группе G для любого p ∈ τ(G).
Теорема 1.2. Пусть X – непустая формация, F – наследственная насыщенная формация

такая, чтоX⊆N⊆F⊆NX. ГруппаG∈Fтогда итолькотогда, когда p-силовский нормализатор
группы G принадлежит F иX-корадикал p-силовского нормализатора субнормален в G для любого
p ∈ τ(G).

Приведем несколько следствий. Для X = N и X = A из теоремы 1.1 получаются такие
результаты соответственно.

Следствие 1.3. Следующие утверждения эквивалентны.
(1) Группа G метанильпотентна.
(2) Любая подгруппа, содержащаяся в нильпотентном корадикале группы G, является

субнормальной в G.
(3) Нильпотентный корадикал любой подгруппы группы G субнормален в G.
(4) Нильпотентный корадикал p-силовского нормализатора группы G субнормален в G для

любого p ∈ τ(G).
Следствие 1.4. Следующие утверждения эквивалентны.
(1) Группа G имеет нильпотентный коммутант.
(2) Любая подгруппа группы G, содержащаяся в G′, является субнормальной в G.
(3) Коммутант любой подгруппы группы G субнормален в G.
(4)Коммутант p-силовского нормализатора группыG субнормален вG для любого p∈ τ(G).
Так как пересечение наследственных насыщенных формаций является наследственной

насыщенной формацией, из теорем 1.1 и 1.2 вытекает
Следствие 1.5. ПустьX – непустая формация, F – наследственная насыщенная формация и

X⊆N⊆F. ГруппаG принадлежитF∩NXтогда итолькотогда, когда p-силовский нормализатор
группы G принадлежит F иX-корадикал p-силовского нормализатора субнормален в G для любого
p ∈ τ(G).
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Следствие 1.6. Пусть F – наследственная насыщенная формация и N ⊆ F. Группа G
принадлежит F и имеет нильпотентный корадикал тогда и только тогда, когда p-силовский
нормализатор группыG принадлежитF и нильпотентныйкорадикал p-силовского нормализатора
субнормален в G для любого p ∈ τ(G).

Следствие 1.7. Пусть F – наследственная насыщенная формация и N ⊆ F. Группа G
принадлежит F и имеет нильпотентный коммутант тогда и только тогда, когда p-силовский
нормализатор группы G принадлежит F и коммутант p-силовского нормализатора субнормален
в G для любого p ∈ τ(G).

2. Предварительные сведения

В обозначениях и определениях мы придерживаемся монографий [9; 10].
Теорема 2.1 [8, теорема 1.2]. Группа G нильпотентна тогда и только тогда, когда для любо-

го p ∈ τ(G) нормализатор каждой силовской p-подгруппы группы G является p-нильпотентным.
Лемма 2.2 [10, лемма A.8.6(a)]. Пусть G – группа и π – множество простых чисел. Если

K – субнормальная подгруппа группы G и K – π-группа, то K ⩽ Oπ(G).
Лемма 2.3 [9, теорема 2.4]. Любаяформация, состоящая из нильпотентных групп, является

наследственной формацией.
Лемма 2.4 [9, лемма 1.2]. Пусть F – непустая формация, K – нормальная подгруппа

группы G. Тогда справедливы следующие утверждения:
(1) (G/K)F = GFK/K;
(2) если G = HK для подгруппы H из G , то HFK = GFK;
(3) если G = HK и K ⩽ GF, то HFK = GF.
Приведем известные свойства класса групп с нильпотентным F-корадикалом (см., например,

[9, c. 36; 10, IV.3, IV.4]).
Лемма 2.5. Пусть F – непустая формация. Тогда NF= (G | G/N ∈ F для некоторой N �G

и N ∈N) =N◦F= (G | GF ∈N) – насыщенная формация. Если F является наследственной, то и
NF является наследственной.

Лемма 2.6. Пусть F – непустая формация и группа G ∈NF.
(1) Любая подгруппа из G, содержащаяся в GF, является субнормальной в G.
(2) Если F – непустая наследственная формация, то HF – субнормальная подгруппа в G

для любой подгруппы H из G.
Доказательство. В нильпотентной группе любая подгруппа является субнормальной. По-

этому утверждение (1) следует из нильпотентности GF и нормальности GF в G.
(2) Для наследственной формации F и любой подгруппы H из G имеем HF ⩽ GF. По

утверждению (1) HF – субнормальная подгруппа в G.
Лемма 2.7. Пусть F – непустая формация, N – нормальная подгруппа группы G. Если

F-корадикал p-силовского нормализатора группы G субнормален в G для любого p ∈ τ(G), то
F-корадикал q-силовского нормализатора группы G/N субнормален в G/N для любого q ∈ τ(G/N).

Доказательство. Пусть q ∈ τ(G/N) и Q/N – силовская q-подгруппа из G/N. Тогда Q/N =
= GqN/N для некоторой силовской q-подгруппы Gq из G. По [10, теорема A.6.4(а)] NG/N(Q/N) =

= NG(Gq)N/N. По лемме 2.4 имеем NG/N(Q/N)F = (NG(Gq)N/N)F = NG(Gq)
FN/N. Так как q ∈

∈ τ(G/N) ⊆ τ(G), NG(Gq)
F субнормален в G. Из свойств субнормальных подгрупп следует, что

NG/N(Q/N)F – субнормальная подгруппа в G/N.

3. Доказательства теорем 1.1 и 1.2

Установим справедливость теоремы 1.1.
Доказательство. По лемме 2.3 X – наследственная формация. Ввиду леммы 2.6 имеем

(1)⇒ (2)⇒ (3). Очевидно, что из (3) следует (4).
Докажем (4)⇒ (1). Пусть G – группа наименьшего порядка, для которой NG(Gp)

X субнорма-
лен в G для любого p ∈ τ(G), а G ̸∈NX.
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I.G – простая группа. Из субнормальностиNG(Gp)
X вG для p∈ τ(G) следует, чтоNG(Gp)

X = 1.
Тогда NG(Gp) ∈ X⊆N и по теореме 2.1 получаем противоречие G ∈N⊆NX.

II.G не является простой группой. ПустьN – минимальная нормальная подгруппа группыG. Из
леммы 2.7 следует, что утверждение (4) выполняется для G/N. По выбору G заключаем, что G/N ∈
∈NX. Так какNX – наследственная насыщенная формация, имеем Φ(G) = 1 и N – единственная
минимальная нормальная подгруппа группы G. В группе G существует максимальная подгруппа M
с CoreG(M) = 1 и G = NM. Рассмотрим два случая.

1. G – разрешимая группа. Тогда N – абелева p-группа для некоторого простого p. По
[10, теорема А.15.6] N =CG(N) = F(G), M∩N = 1 и Op(M) = 1. Из G /∈N следует, что |π(G)|⩾ 2.

Покажем, что F(M) является p′-холловой подгруппой группы G. Из M ∼= G/N ∈NX и G ̸∈NX
следует, что 1 ̸= MX ∈N. Поэтому MX ⩽ F(M). Если p ∈ π(F(M)), то силовская p-подгруппа из
F(M) нормальна в M, а следовательно, содержится в Op(M). Из Op(M) = 1 заключаем, что p /∈
/∈ π(F(M)), т. е. F(M) – p′-группа. Из M/F(M) ∼= M/MX/F(M)/MX ∈ X ⊆ N следует, что M
имеет нормальную p′-холлову подгруппу, которую обозначим через H. Отметим, что H является
p′-холловой подгруппой в G.

Возьмем любое q ∈ π(H) и силовскую q-подгруппу Hq из H. Тогда Hq является силовской
q-подгруппой в G. Из q ∈ π(G) = τ(G) следует, что NG(Hq)

X – субнормальная подгруппа в G. Ввиду
того, что Hq ∩NG(Hq)

X�NG(Hq)
X, подгруппа Hq ∩NG(Hq)

X субнормальна в G.
По лемме 2.2 Hq ∩NG(Hq)

X ⩽ Oq(G). Из q ̸= p и Oq(G) = 1 следует, что NG(Hq)
X – q′-группа.

Обозначим S = NG(Hq)
X. Если NG(Hq) = HqS, то S является нормальной q′-холловой подгруп-

пой в NG(Hq). Допустим, что NG(Hq) ̸= HqS. Отметим, что NG(Hq)/S ∈ X⊆N. Тогда NG(Hq)/S =
= HqS/S×L1/S× ·· ·×Ln/S, где Li/S – силовская ri-подгруппа в NG(Gq)/S и ri ̸= q, i = 1, . . . ,n.
Отсюда следует, что L1 · · ·Ln нормальна в NG(Gq) и является q′-группой.

Так как NG(Hq) имеет нормальную q′-холлову подгруппу, NH(Hq) = NG(Hq)∩H имеет нор-
мальную q′-холлову подгруппу. Это означает, что NH(Hq) является q-нильпотентной подгруппой
для любого q ∈ π(H) = τ(H). По теореме 2.1 группа H нильпотентна. Следовательно, H = F(M).

Значит, M ⩽ NG(Hq). Из максимальности M в G и CoreG(M) = 1 заключаем, что NG(Hq) = M.
Тогда NG(Hq)

X = MX – нильпотентная группа и субнормальна в G. По лемме 2.2 MX ⩽ Oπ(H)(G). Так
как N – единственная минимальная нормальная подгруппа группы G и N – p-группа, Oπ(H)(G) = 1.
Получили противоречие с MX ̸= 1.

2. G не является разрешимой. Тогда |π(G)| ⩾ 3. Из разрешимости G/N следует, что N
не является абелевой группой.

Возьмем любое q ∈ τ(G) и силовскую q-подгруппу Gq из G. Тогда NG(Gq) ̸= G.
Допустим, что NG(Gq)

X ̸= 1. Обозначим R = Gq ∩NG(Gq)
X. Тогда R�NG(Gq)

X. Из субнор-
мальности NG(Gq)

X в G следует субнормальность R в G. По лемме 2.2 R ⩽ Oq(G). Ввиду того,
что N – единственная минимальная нормальная подгруппа группы G и N неабелева, заключаем
Oq(G) = 1. Тогда R = 1 и NG(Gq)

X – q′-группа. Из NG(Gq)/NG(Gq)
X ∈ X⊆N следует, что NG(Gq)

имеет нормальную q′-холлову группу, т. е. NG(Gq) q-нильпотентен.
Если NG(Gq)

X = 1, то NG(Gq) нильпотентен.
По теореме 2.1 получаем противоречие G ∈N⊆NX, которое завершает доказательство.
Докажем теорему 1.2.
Доказательство. Необходимость. Пусть G ∈ F. Для любого p ∈ τ(G) из наследственности F

следует, что NG(Gp) ∈ F. По лемме 2.6(2) NG(Gp)
X – субнормальная подгруппа в G.

Достаточность. Предположим, что утверждение неверно. Пусть G – группа наименьшего
порядка такая, что NG(Gp) ∈ F, NG(Gp)

X – субнормальная подгруппа в G для любого p ∈ τ(G), а
G /∈ F. По теореме 1.1 группа G ∈NX, а значит, разрешима.

Пусть N – минимальная нормальная подгруппа из G. Из N⊆ F следует, что G не является
циклической группой, порядок которой есть простое число. Значит, N – абелева p-группа для
некоторого простого p. Для любого q ∈ τ(G/N) и силовской q-подгруппы Q/N из G/N найдется
силовская q-подгруппа Gq из G такая, что Q/N = GqN/N. Так как q ∈ τ(G/N)⊆ τ(G), по условию
NG(Gq) ∈ F. Откуда NG/N(Q/N) = NG(Gq)N/N ∼= NG(Gq)/NG(Gq)∩N ∈ F. Ввиду леммы 2.7 для
G/N все условия теоремы выполнены. По выбору G получаем, что G/N ∈ F.
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Так какF – насыщеннаяформация, заключаем, чтоN – единственная минимальная нормальная
подгруппа из G и Φ(G) = 1. Тогда G = NM для некоторой максимальной в G подгруппы M. Так как
G разрешима и CoreG(M) = 1, по [10, теорема A.15.6] N =CG(N) = F(G), M∩N = 1 и Op(M) = 1.
Ввиду нильпотентности GX имеем GX ⩽ F(G). Если GX = 1, то G ∈ X ⊆ F. Это противоречит
выбору G. Значит, GX = N. Тогда G/N ∼= M ∈ X. Если p ∈ π(M), то в M силовская p-подгруппа
является нормальной и содержится в Op(M) = 1. Это противоречие показывает, что p /∈ π(M).
Тогда N – силовская p-подгруппа в G. Так как G разрешима, p ∈ π(G) = τ(G), по выбору G имеем
G = NG(N) ∈ F. Полученное противоречие завершает доказательство теоремы.

4. Заключение. Связь с известными результатами
Теоремы 1.1 и 1.2 для разных формаций X и F позволяют получать как новые, так и известные

результаты. Теорема 1.1 убирает в достаточных условиях теоремы А из [6] разрешимость силовского
нормализатора и уменьшает число силовских p-подгрупп, рассматривая их только для p ∈ τ(G).
Так как τ(G) ⊆ π(G), из теоремы 1.1 получаются следующие результаты.

Следствие 4.1 [6, теорема A]. Пусть X – непустая формация и X ⊆N. Группа G ∈NX
тогда и только тогда, когда p-силовский нормализатор разрешим и X-корадикал p-силовского
нормализатора субнормален в G для любого p ∈ π(G).

Следствие 4.2 [7, теорема 1]. Пусть X – непустая формация и X ⊆ N. Группа G ∈ NX
тогда и только тогда, когда X-корадикал p-силовского нормализатора субнормален в G для
любого p ∈ π(G).

Ввиду того, что τ(G) ⊆ π(G), из теоремы 1.1 вытекает теорема 2 из [11].
Положив X=N, соответственно X= A, из теоремы 1.2 следуют два таких результата.
Следствие 4.3. Пусть F – наследственная насыщенная формация и N⊆ F⊆N2. Группа

G ∈ F тогда и только тогда, когда p-силовский нормализатор принадлежит F и нильпотентный
корадикал p-силовского нормализатора субнормален в G для любого p ∈ τ(G).

Следствие 4.4. Пусть F – наследственная насыщенная формация иN⊆ F⊆NA. Группа
G ∈ F тогда и только тогда, когда p-силовский нормализатор принадлежит F и коммутант
p-силовского нормализатора субнормален в G для любого p ∈ τ(G).

Обозначим через D формацию всех дисперсивных по Оре групп. Так как D является
наследственной насыщенной формацией, из следствия 1.5 вытекает

Следствие 4.5. ПустьX – непустая формация, F – наследственная насыщенная формация и
X⊆N⊆ F⊆D. Группа G ∈ F∩NX тогда и только тогда, когда когда p-силовский нормализатор
принадлежит F иX-корадикал p-силовского нормализатора субнормален в G для любого p ∈ τ(G).

Из принадлежности D всех силовских нормализаторов из G не всегда следует, что G ∈D [7].
Следствие 4.6. Пусть X – непустая формация и X ⊆ N. Группа G ∈ D∩NX тогда и

только тогда, когда p-силовский нормализатор дисперсивен по Оре и X-корадикал p-силовского
нормализатора субнормален в G для любого p ∈ τ(G).

Так как N ⊆ U ⊆ NA ⊆ N2 для формации U всех сверхразрешимых групп, теорема 1.2
является развитием следующего результата.

Следствие 4.7 [6, теорема B]. Пусть F – наследственная насыщенная формация иN⊆ F⊆
⊆ U. Группа G ∈ F тогда и только тогда, когда p-силовский нормализатор принадлежит F и
нильпотентный корадикал p-силовского нормализатора субнормален в G для любого p ∈ π(G).

Если F = U, то из теоремы 1.2 получается
Следствие 4.8. Если X – непустая формация и X⊆N, то группа G сверхразрешима тогда

и только тогда, когда p-силовский нормализатор сверхразрешим и X-корадикал p-силовского
нормализатора субнормален в G для любого p ∈ τ(G).

Отсюда при X = N и X = A соответственно вытекает
Следствие 4.9. Группа G сверхразрешима тогда и только тогда, когда p-силовский норма-

лизатор сверхразрешим и нильпотентный корадикал (коммутант) p-силовского нормализатора
субнормален в G для любого p ∈ τ(G).

Исследования первого и второго авторов выполнены при поддержке Министерства образова-
ния Республики Беларусь (грант № 20211750 «Конвергенция-2025»), исследования третьего автора
выполнены при поддержке БРФФИ (проект Ф23РНФМ-63).
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5. Kazarin L., Martínez-Pastor A., Pérez-Ramos M. D. On Sylow normalizers of finite groups.
J. Algebra Appl., 2014, vol. 13, iss. 3, art. 1350116–1–20.

6. Vasilyeva T. I., Koranchuk A. G. Finite groups with subnormal residuals of Sylow normalizers.
Siberian Mathematical Journal, 2022, vol. 63, iss. 4, pp. 670–676.

7. Monakhov V. S. On nilpotent residuals of Sylow normalizers of a finite group. Siberian
Mathematical Journal, 2025, vol. 66, iss. 4, pp. 986–990.

8. Lu J., Meng W. Finite groups with certain normalizers of Sylow subgroups. J. Algebra Appl.,
2019, vol. 18, iss. 6, art. 1950101 (4 p.).

9. Shemetkov L. A. Formations of finite groups. Moscow, Nauka, 1987. 272 p. (in Russian).
10. Doerk K., Hawkes T. Finite soluble groups. Berlin, New York, Walter De Gruyter, 1992. 898 p.
11. Monakhov V. S. Finite groups with dispersive Sylow normalizers. Mathematical Notes, 2025,

vol. 118, iss. 5, pp. 716–718 (in Russian).



Национальная академия наук Беларуси
Труды Института математики НАН Беларуси. 2025. Том 33. № 2. С. 13–20

УДК 512.552 EDN: CRDMSF

МНОГОЧЛЕНЫ НАД КОЛЬЦАМИ С ДЕЛЕНИЕМ

А. Г. Гутор, С. В. Тихонов

Белорусский государственный университет, Минск, Беларусь
e-mail: goutor7@gmail.com, tikhonovsv@bsu.by

Поступила: 26.05.2025 Исправлена: 15.09.2025 Принята: 15.12.2025
Ключевые слова: кольцо с де-
лением, корень (правый) мно-
гочлена, алгебра обобщенных
кватернионов, класс сопря-
женности элемента, сфериче-
ский корень.

Аннотация. В работе рассматриваются свойства многочленов с коэффициентами
в кольцах с делением. Получена теорема о разложении многочлена с коэффициентами
в произвольном кольце с делением. Показано, что если нецентральный элемент не
является корнем многочлена над произвольным кольцом с делением, то в классе
сопряженности этого элемента бесконечно много элементов, не являющихся корнями
этого многочлена. Также в работе получены оценки для количества различных классов
сопряженности сферических корней для некоторых типов многочленов над алгебрами
кватернионов.
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Abstract. We consider properties of polynomials with coefficients in division rings. A theorem
on the decomposition of a polynomial with coefficients in an arbitrary division ring is obtained.
It is shown that if a non-central element is not a root of a polynomial over an arbitrary division
ring, then the conjugacy class of this element contains infinitely many elements that are
not roots of this polynomial. The paper also contains estimates for the number of different
conjugacy classes of spherical roots for some types of polynomials over quaternion algebras.

1. Введение и предварительные результаты

Пусть R – некоммутативное ассоциативное кольцо с делением, R∗ – его мультипликативная
группа. R[x] обозначает кольцо многочленов от переменной x с коэффициентами в R, считаем,
что переменная x коммутирует с элементами кольца R. Таким образом, всякий многочлен из
R[x] имеет вид

P(x) = anxn +an−1xn−1 + · · ·+a1x+a0, a0, . . . ,an ∈ R. (1)

Сложение и умножение многочленов из R[x] определяется естественным образом. Степень
многочлена вида (1) также определяется привычным образом и равна n, если an ̸= 0. В кольце
R[x] имеет место теорема о делении справа многочленов с остатком, при этом для многочленов
P(x),S(x) ∈ R[x] определен их наибольший общий правый делитель НОПД(P(x),S(x)) (см. [1]).

Основные свойства многочленов над кольцами с делением описаны в [2, Ch. 5, §16] (см.
также [3; 4]).

В [5] доказана следующая
Теорема 1.1. Пусть Q – алгебра кватернионов с делением над полем K. Тогда всякий

многочлен P(x) ∈ Q[x] может быть представлен единственным образом в виде произведения
P(x) = cG(x)H(x), где c ∈ Q∗ – старший коэффициент многочлена P(x), H(x) – унитарный
многочлен с коэффициентами в K и G(x) ∈ Q[x] – унитарный многочлен, не делящийся справа ни
на какой неконстантный многочлен из K[x]. Более того, если Q[x] рассмотреть как свободный
модуль ранга 4 над K[x] со стандартным базисом 1, i, j,k, то H(x) – это наибольший общий
делитель (в K[x]) координат многочлена P(x) в этом базисе.
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Одной из целей данной статьи является обобщение этой теоремы на случай любых колец
с делением (см. теорему 2.4 ниже).

Для a ∈ R определим P(a) как элемент

P(a) = anan +an−1an−1 + · · ·+a1a+a0.

Назовем элемент a ∈ R (правым) корнем многочлена P(x), если P(a) = 0. Известно, что a ∈ R
является корнем многочлена P(x) тогда и только тогда, когда x− a является правым делителем
P(x) в R[x] ([2, предложение 16.2], т. е. P(x) = H(x)(x−a) для некоторого многочлена H(x) из R[x].
Заметим, что из равенстваP(x) =H(x)S(x)∈R[x] не следует равенствоP(a) =H(a)S(a). В частности,
если a – корень многочлена H(x), то a может не быть корнем многочлена P(x).

Класс сопряженности элемента a ∈ R, который будем обозначать через [a], состоит из всех
элементов вида qaq−1, где q – произвольный ненулевой элемент из R. Кольцо R распадается на
непересекающиеся классы сопряженности. Через R(c) будем обозначать множество всех элементов
из R, коммутирующих с элементом c ∈ R. R(c) является подкольцом с делением в R.

В случае многочленов над полями всякий многочлен степени n имеет не более n корней.
В случае многочленов с коэффициентами в кольцах с делением ситуация другая, многочлен
степени n может иметь бесконечно много корней. Теорема Гордона–Моцкина [2, теорема 16.4]
говорит, что многочлен степени n из R[x] может иметь корни не более чем в n классах сопряженности
кольца R. Кроме того, если P(x) ∈ R[x] имеет два различных корня в классе сопряженности, то
P(x) имеет бесконечно много корней в этом классе (см. [2, теорема 16.11 и 4, предложение 3]).
В случае алгебры кватернионов Q получается, что если P(x) ∈ Q[x] имеет два различных корня
в классе сопряженности, то всякий элемент из этого класса является корнем многочлена P(x). Это
означает, что у многочленов над алгебрами кватернионов с делением существуют только два типа
корней: изолированный и сферический. Корень q многочлена P(x) называется сферическим, если q
не принадлежит центру алгебры и любой элемент d ∈ [q] также является корнем многочлена P(x).
Корень q называется изолированным, если класс сопряженности [q] содержит только один корень
многочлена P(x). Однако в случае, когда минимальный многочлен класса сопряженности имеет
степень больше чем два, ситуация принципиально другая. В [6] для любого класса сопряженности
с минимальным многочленом степени> 2 построен квадратичный многочлен, имеющий бесконечно
много корней в этом классе, при этом в данном классе сопряженности имеется бесконечно
много элементов, не являющихся корнями такого многочлена. В данной статье мы показываем,
что если нецентральный элемент c не является корнем многочлена над произвольным кольцом
с делением, то в классе [c] бесконечно много элементов, не являющихся корнями этого многочлена
(см. теорему 2.5 ниже). Также в статье получены оценки для количества различных классов
сопряженности сферических корней для многочленов над алгебрами кватернионов.

2. Многочлены над произвольными кольцами с делением

Пусть R0 – подкольцо c делением кольца R, {ci}i∈I – базис правого векторного пространства R
над R0. Тогда всякий многочлен P(x) ∈ R[x] единственным образом можно представить в виде

P(x) = ∑
i∈I

cibi(x), (2)

где bi(x) ∈ R0[x] почти все равны нулю. Многочлены bi(x) получаются следующим образом. Рас-
смотрим многочлен P(x) вида (1). Разложим каждый коэффициент многочлена ai, i = 1, ...,n, по
базису {ci}i∈I . Тогда

P(x) =

(
∑
i∈I

cian,i

)
xn +

(
∑
i∈I

cian−1,i

)
xn−1 + · · ·+

(
∑
i∈I

cia1,i

)
x+

(
∑
i∈I

cia0,i

)
=

= ∑
i∈I

ci(an,ixn +an−1,ixn−1 + ...+a1,ix+a0,i),

где ak,i ∈ R0,k = 0, ...,n, i ∈ I.
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Таким образом, bi(x) = an,ixn + an−1,ixn−1 + ...+ a1,ix+ a0,i в разложении (2). Отметим, что
почти все эти многочлены равны 0. В обозначениях выше имеет место следующая теорема.

Теорема 2.1. 1. Многочлен h(x) ∈ R0[x] является правым делителем многочлена P(x) ∈ R[x]
тогда и только тогда, когда h(x) является общим правым делителем многочленов bi(x), i ∈ I.

2. Многочлен h(x) ∈ R0[x] является правым делителем наибольшей степени из R0[x] много-
члена P(x) ∈ R[x] тогда и только тогда, когда h(x) = НОПД(bi(x), i ∈ I).

3. Элемент α ∈ R0 является корнем многочлена P(x) ∈ R[x] тогда и только тогда, когда α –
общий корень многочленов bi(x), i ∈ I.

4. Если многочлен h(x) ∈ R0[x] является правым делителем наибольшей степени из R0[x]
многочлена P(x) ∈ R[x], то любой корень из R0 многочлена P(x) является корнем многочлена h(x).

Доказательство. 1. Если h(x) делит справа каждый многочлен bi(x), то h(x) делит спра-
ва и P(x).

Пусть теперь P(x) = G(x)h(x) для некоторого многочлена G(x) ∈ R[x]. Для многочлена G(x)
существует разложение вида (2):

G(x) = ∑
i∈I

cidi(x),

где di(x) из R0[x]. Тогда

P(x) =

(
∑
i∈I

cidi(x)

)
h(x) = ∑

i∈I
cidi(x)h(x).

Таким образом, bi(x) = di(x)h(x) для всех i ∈ I. Следовательно, h(x) является общим делителем
многочленов bi(x), i ∈ I.

2. Следует из 1.
3. Следует из 1, так как α – корень многочлена P(x) тогда и только тогда, когда x−α –

правый делитель многочлена P(x).
4. Следует из 2 и 3. Действительно, если α ∈ R0 – корень многочлена P(x), то x−α является

общим правым делителем многочленов bi(x), i ∈ I. Тогда x−α является правым делителем их
наибольшего правого общего делителя. □

Замечание 2.2. Если в условиях предыдущей теоремы рассмотреть алгебру с делением,
то все корни многочлена P(x) можно искать как корни многочленов из подполей алгебры
(например, корень a лежит в подполе F(a)). Таким образом, задача поиска корней многочлена
с коэффициентами в некоторой алгебре сводится к задаче поиска корней в подполях.

Замечание 2.3. Покажем, что утверждение, обратное к пункту 4 из теоремы 2.1, неверно,
т. е. если любой корень из R0 многочлена P(x) будет корнем и многочлена h(x) ∈ R0[x], делящего
справа P(x), то не обязательно h(x) – многочлен наибольшей степени из R0[x], делящий справа
P(x). Например, пусть P(x) = (x2+1)x ∈H[x], гдеH – алгебра гамильтоновых кватернионов. Тогда
любой корень многочлена P(x) из R является корнем многочлена h(x) = x. Но h(x) не является
многочленом наибольшей степени из R[x], делящим справа P(x).

В качестве следствия в обозначениях теоремы 2.1 получаем
Теорема 2.4. Всякий многочлен P(x) ∈ R[x] может быть однозначно представлен в виде

P(x) = cG(x)H(x),

где c ∈ R∗ – старший коэффициент многочлена P(x); H(x) – унитарный многочлен с коэффи-
циентами в подкольце с делением R0; G(x) ∈ R[x] – унитарный многочлен, не имеющий правых
неконстантных делителей из R0[x]. Более того, H(x) является наибольшим общим правым
делителем многочленов bi(x), i ∈ I.

Теорема 2.5. Пусть R – кольцо с делением, P(x) ∈ R[x]. Предположим, что c не является
центральным элементом иP(c) ̸= 0. Тогда в классе сопряженности [c] бесконечно много элементов,
не являющихся корнями многочлена P(x).

Доказательство. Теорема Херстейна ([2, теорема 13.26]) говорит, что множество [c] является
бесконечным. Таким образом, если P(x) либо не имеет корней в [c], либо имеет конечное число
корней в [c], то в классе сопряженности [c] бесконечно много элементов, не являющихся корнями
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многочлена P(x). Предположим, что P(x) имеет бесконечно много корней в [c]. Из [4, предложение 2]
следует, что множество всех y ∈ R∗ c условием P(ycy−1) = 0 совпадает с множеством

V := {y ∈ R∗|
n

∑
i=0

aiyci = 0}.

Тогда V – бесконечное множество, поскольку P(x) имеет бесконечно много корней в классе
сопряженности [c]. Заметим, что V ∪{0} является правым векторным пространством над кольцом
с делением R(c). Так как c не является корнем многочлена P(x), то 1 /∈V . Тогда 1+y /∈V для любого
y ∈V , следовательно, (1+ y)c(1+ y)−1 не является корнем многочлена P(x) для всякого y ∈V .

Пусть y1,y2 ∈ V , y1 ̸= y2. Покажем, что

(1+ y1)c(1+ y1)
−1 ̸= (1+ y2)c(1+ y2)

−1.

Действительно, если (1+ y1)c(1+ y1)
−1 = (1+ y2)c(1+ y2)

−1, то

(1+ y2)
−1(1+ y1)c = c(1+ y2)

−1(1+ y1).

Следовательно, z = (1+ y2)
−1(1+ y1) ∈ R(c) и 1+ y1 = (1+ y2)z. Тогда

1 = (y2z− y1)(1− z)−1.

Что противоречит тому, что 1 /∈ V .
Таким образом, получаем бесконечно много различных элементов вида (1+ y)c(1+ y)−1,

принадлежащих [c] и не являющихся корнями многочлена P(x). □

3. Сферические корни многочленов над алгебрами обобщенных кватернионов

Пусть Q – алгебра обобщенных кватернионов с делением над полем F . Нам потребуется
следующая

Лемма 3.1 [2, лемма 16.17]. Пусть Q является алгеброй обобщенных кватернионов с деле-
нием над центром F , и пусть B – класс сопряженности алгебры Q с минимальным многочленом
λ(x) над F . Если P(x) ∈ Q[x] имеет два корня в B, тогда P(x) ∈ Q[x]λ(x) и P(x) обращается в 0 на
любом элементе из B.

Напомним, что корень q многочлена P(x) называется сферическим, если q не принадлежит
центру алгебры и любой элемент d ∈ [q] также является корнем многочлена P(x). В качестве
следствия леммы 3.1 получаем

Лемма 3.2. Если многочлен P(x) вида (1) с коэффициентами в Q имеет сферические корни
c1, . . . ,cm (m ⩽ n), лежащие в различных классах сопряженности, то P(x) делится на произведение
минимальных многочленов этих корней.

Доказательство. Докажем индукцией по числу классов сферических корней. Пусть fi(x) –
минимальный многочлен элемента ci, 1 ⩽ i ⩽ m. Из леммы 3.1 следует, что P(x) делится на f1(x).
Предположим, что утверждение верно для k корней. Тогда

P(x) = P1(x) fk(x) . . . f1(x)

для некоторого P1(x) ∈ Q[x].
Докажем утверждение для k+1 корней. Так как fk(x) . . . f1(x) ∈ F [x], то

P(b) = P1(b) f1(b) . . . fk(b)

для любого b ∈ Q. Любой элемент из класса [ck+1] является корнем многочлена P(x), но не является
корнем многочлена fk(x) . . . f1(x), поскольку c1, . . . ,ck+1 лежат в различных классах сопряженности.
Тогда ck+1 является сферическим корнем многочлена P1(x). Из леммы 3.1 следует, что P1(x) =
= P2(x) fk+1(x) для некоторого многочлена P2(x) ∈ Q[x]. Откуда

P(x) = P2(x) fk+1(x) fk(x) . . . f1(x). □

Далее получим оценку для количества различных классов сферических корней в зависимости
от степени многочлена.
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Теорема 3.3. Многочлен

P(x) = xn +an−1xn−1 + · · ·+a1x+a0

с коэффициентами в алгебре обобщенных кватернионов Q над центром F имеет не более n/2
различных классов сопряженности сферических корней. Если степень многочлена P(x) четная
и есть n/2 различных классов сопряженности сферических корней, то все коэффициенты
многочлена лежат в центре. Если же степень n нечетная и есть (n−1)/2 различных классов
сопряженности сферических корней, то все коэффициенты лежат в одном подполе алгебры Q.

Доказательство. Пусть степень многочлена P(x) четная. По лемме 3.2 многочлен P(x)
делится на произведение минимальных многочленов своих сферических корней. Поскольку степень
каждого такого минимального многочлена равна 2, максимальное количество множителей в таком
произведении равно n/2. Поэтомуи различных классов сопряженности сферических корней неможет
быть больше, чем n/2. Если же различных классов сопряженности сферических корней ровно n/2,
то P(x) равняется произведению многочленов из F [x], а значит коэффициенты P(x) лежат в F .

Пусть теперь степень многочлена P(x) нечетная. Аналогично, по лемме 3.2 получаем, что коли-
чество квадратных множителей (минимальных многочленов) многочлена P(x), а значит и различных
классов сопряженности сферических корней, не превосходит (n−1)/2. Если предположить, что
различных классов сопряженности сферических корней ровно (n−1)/2, получим, что P(x) имеет
вид P(x) = (x− a) f (x), где f (x) ∈ F [x] – произведение минимальных многочленов сферических
корней многочлена P(x), a ∈ Q. Тогда коэффициенты многочлена P(x) лежат в подполе F(a). □

Для многочленов третьей степени получаем простое достаточное условие отсутствия сфе-
рических корней.

Следствие 3.4. Если коэффициенты многочлена P(x) = x3 +ax2 +bx+ c ∈ Q[x] не лежат
в одном подполе алгебры Q, то у многочлена P(x) не может быть сферических корней.

Доказательство.Пусть многочлен P(x) имеет сферический корень. Тогда, согласно лемме 3.1,
он имеет видP(x) = (x−a)λ(x), где λ(x) – многочлен второй степени надF (минимальный многочлен
этого сферического корня). Отсюда следует, что P(x) ∈ F(a)[x], т. е. все коэффициенты многочлена
P(x) лежат в подполе F(a). □

4. Сферические корни многочленов из алгебры гамильтоновых кватернионов

Известно (см. [2, теорема 16.14]), что всякий неконстантный многочлен с коэффициентами
в алгебре гамильтоновых кватернионов H имеет корень в H. Кроме того, корень является либо
изолированным, либо сферическим. В этом разделе применим результаты предыдущих разделов для
анализа существования сферических корней некоторых типов многочленов с коэффициентами в H.

Лемма4.1. Если x1 – сферический кореньмногочленаP(x)∈H[x], то в каждоммаксимальном
подполе алгебры H лежит корень многочлена P(x) из класса сопряженности [x1].

Доказательство. Элемент x1 лежит в максимальном подполеR(x1) алгебрыH. Все максималь-
ные подполя алгебры H изоморфны полю комплексных чисел C. Тогда по теореме Сколема–Нетер
[7, § 12.6] все максимальные подполя сопряжены, т. е., если K – максимальное подполе, то K =
= gR(x1)g−1 для некоторого g ∈ H,g ̸= 0. Тогда gx1g−1 – корень многочлена P(x) из класса [x1],
лежащий в K. □

Замечание 4.2. Если многочлен P(x) ∈H[x] не имеет корней в некотором максимальном
подполе K ⊂H, то ввиду леммы 4.1 этот многочлен не имеет сферических корней. Аналогичный
подход для анализа существования сферических корней многочленов можно использовать в случае
алгебр кватернионов с делением, в которых имеется лишь конечное число классов изоморфности
максимальных подполей. Например, в случае кватернионных алгебр над локальными полями.

В общем случае нахождение корней многочленов с коэффициентами в алгебре гамильто-
новых кватернионов является сложной задачей (см., например, [8–12]), однако для многочленов
специального вида можно легко получить оценку для числа классов сферических корней.

Теорема 4.3. Рассмотрим такой многочлен

P(x) = xn +an−1xn−1 + ...+akxk + ...+amxm + ...+a1x+a0 ∈H[x],
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что все его коэффициенты, кроме, возможно, двух ak и am, лежат в R (возможен случай m = 0).
Тогда

1. Если один из коэффициентов ak или am из R, а второй – нет, то многочлен P(x) не имеет
сферических корней;

2. Если оба коэффициента ak и am не из R, но лежат в одном подполе, то многочлен P(x)
имеет не более (k−m)/2 различных классов сферических корней (в частности, если k = m+1,
то P(x) не имеет сферических корней);

3. Если оба коэффициента ak и am не лежат в одном подполе, то многочлен P(x) не имеет
сферических корней.

Доказательство. 1. Пусть am /∈ R. Найдем корни многочлена P(x), лежащие в максимальном
подполе K, K ̸= R(am). В качестве базиса алгебры H над полем K возьмем 1 и am. Тогда

P(x) = 1(xn +an−1xn−1 + ...+akxk + ...+am−1xm−1 +am+1xm+1 + ...+a1x+a0)+amxm =

= 1b1(x)+amb2(x),

где b1(x) и b2(x) из R[x]⊂ K[x]. Поскольку b2(x) = xm либо не имеет корней, если m = 0, либо имеет
единственный корень, равный 0, если m ̸= 0, то и многочлен P(x), согласно теореме 2.1, в поле K
не имеет других корней, кроме, возможно, 0. Следовательно, по лемме 4.1 в этом случае у P(x)
нет сферических корней. Аналогичное рассуждение, если ak /∈ R.

2. Найдем корни многочлена P(x) в максимальном подполе K ̸= R(am). В качестве базиса H
над K можно взять 1 и am. Так как ak ∈ R(am), то ak = u+ vam, где u,v ∈ R. Тогда при разложении
многочлена P(x) по базису 1 и am получаем

b1(x) = xn +an−1xn−1 + ...+ak+1xk+1 +uxk +ak−1xk−1 + ...+am+1xm+1 +am−1xm−1 + ...+a1x+a0,

b2(x) = xm + vxk. Имеем, b2(x) = xm + vxk = xm(1+ vxk−m). Таким образом, корни многочлена P(x)
в поле K – это либо 0, либо корни многочлена xk−m +1/v. Если у многочлена xk−m +1/v есть корень
в R, то этот корень не является сферическим корнем многочлена P(x). Поскольку xk−m +1/v ∈R[x],
то для всякого корня a этого многочлена, не лежащего в R, сопряженный кватернион a также
является корнем. Поскольку a и a принадлежат одному классу сопряженности, то корней у данного
многочлена, лежащих в разных классах сопряженности, не более (k−m)/2. Таким образом, P(x)
имеет не более (k−m)/2 различных классов сферических корней.

3. Будем искать корни многочлена P(x) в поле R(am). Возьмем базис 1 и ak алгебры H над
полемR(am). ТогдаP(x) = 1b1(x)+akb2(x), где b2(x) = xk и b1(x) – некоторый многочлен изR(am)[x].
Поскольку b2(x) имеет только корень 0, то в поле R(am) у P(x) не может быть других корней, кроме,
возможно, 0. Тогда согласно лемме 4.1 у P(x) нет сферических корней в этом случае. □

Далее рассмотрим случаймногочленов третьей степени. Отметим, что длямногочленов второй
степени явные формулы для нахождения корней в случае алгебры гамильтоновых кватернионов
получены в [9].

Следствие 4.4. Многочлен

P(x) = x3 +ax2 +bx+ c ∈H[x]

в зависимости от коэффициентов имеет
1. Не более одного класса сферических корней, если либо а) a,b,c ∈ R, либо б) a,c /∈ R,b ∈

∈ R,a ∈ R(c), либо в) a,b,c /∈ R,a,c ∈ R(b);
2. Только изолированные корни в остальных случаях.
Доказательство. 1. Оценка для количества классов сферических корней получается из

теоремы 3.3.
2. Если не выполнены условия на коэффициенты многочлена из первого пункта, то возможны

следующие случаи:
а) один коэффициент не лежит в поле R, а остальные коэффициенты принадлежат R;
б) a ∈ R, b,c /∈ R, b ∈ R(c);
в) c ∈ R, a,b /∈ R, a ∈ R(b);
г) коэффициенты многочлена не лежат в одном подполе алгебры H.
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В случае а) отсутствие сферических корней следует из пункта 1 теоремы 4.3. В случае б) и в)
отсутствие сферических корней следует из пункта 2 теоремы 4.3. Наконец, отсутствие сферических
корней в случае г) получается из следствия 3.4. □

Пример 4.5. Рассмотрим несколько примеров кубических многочленов с коэффициентами,
удовлетворяющими условиям из пункта 1 следствия 4.4.

Многочлен x(x2 −1) не имеет сферических корней, а многочлен x(x2 +1) имеет сферический
корень i.

У многочлена
x3 − ix2 − x+ i = (x− i)(x2 −1)

нет сферических корней, а у многочлена

x3 − ix2 + x− i = (x− i)(x2 +1)

i является сферическим корнем.
Многочлен

x3 +(2− i)x2 +(1−2i)x− i = (x− i)(x2 +2x+1) = (x− i)(x+1)2

не имеет сферических корней, так как многочлен (x+1)2 имеет корни в R, а у многочлена

x3 +(1− i)x2 +(1− i)x− i = (x− i)(x2 + x+1)

есть сферический корень – это корень многочлена x2 + x+1.
Таким образом, в случае выполнимости условий из пункта 1 следствия 4.4 требуется более

тонкое рассуждение для ответа на вопрос о существовании сферического корня у кубического
многочлена.

Работа выполнена в рамках НИР «Разработка алгебро-геометрических и представленческих
методов исследования конечнопорожденных групп, конечномерных алгебр и квадратичных форм»,
государственной программы научных исследований «Конвергенция–2025», № ГР 20212390.
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10. Janovská D., Opfer G. A note on the computation of all zeros of simple quaternionic polynomials.
SIAM J. Numer. Anal., 2010, vol. 48, no. 1, pp. 244–256.
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Аннотация. Модулярное разделение секрета в группе SL2(Z) было предложено Ян-
чевским, Матвеевым и Говорушко. В настоящей работе построена в явном виде вся
фундаментальная область при действии левыми сдвигами главной конгруэнц-подгруппы
на группе SL2(Z), что представляет дополнительные возможности для построения схем,
так как эта область является пространством хранимых секретов схемы разделения
секрета.
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Abstract. Modular secret sharing in the group SL2(Z) was recently proposed by Yanchevskiy,
Matveev, and Govorushko. In this paper we have constructed in explicit form the entire
fundamental domain under the action of left shifts of the principal congruence subgroup on
the group SL2(Z), which presents additional possibilities for constructing schemes, since the
domain is the space of stored secrets of the secret sharing scheme.

Модулярное разделение секрета в группе SL2(Z) было недавно предложено в работе [1].
Специальная линейная группа SL2(Z) – это матрицы над кольцом целых чисел размера 2× 2
с единичным определителем. В качестве пространства ключей и хранимого ключа используется
фундаментальная область при действии левыми сдвигами главной конгруэнц-подгруппы на группе
SL2(Z). Однако построить всю фундаментальную область нам не удалось. Построена лишь часть,
пригодная для реализации алгоритма разделения секрета.

Попытки построить всю фундаментальную область предпринимались и ранее [2], вне связи
с разделением секрета, т. е. эта задача интересна и чисто с алгебраической точки зрения. Уместно
будет напомнить, что в книге [3, §7.1, c. 438–439] отмечается нетривиальный характер задачи
подъема решений уравнения по некоторой системе модулей до целочисленного решения. С нашей
точки зрения задача подъема решений – это в точности алгоритм восстановления секрета. Вместе
с тем в работах [1; 4] показано, что знание фундаментальной области значительно облегчает
восстановление секрета.

В настоящей работе нами построена в явном виде вся фундаментальная область при действии
левыми сдвигами главной конгруэнц-подгруппы на группе SL2(Z), что представляет дополнительные
возможности для разделения секрета в этой группе.

Пусть m ̸= 1 – целое положительное число. Напомним определения конгруэнц-подгрупп
в группе SL2(Z):

Γ0(m) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

a b
0 d

)
(mod m)

}
,
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Γ(m) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod m)

}
.

Здесь и далее сравнимость матриц по модулю m означает их поэлементную сравнимость. Известно,
что Γ0(m) и Γ(m) действительно подгруппы и справедливы включения

Γ(m)⊂ Γ0(m)⊂ SL2(Z).

Подгруппа Γ(m) называется главной конгруэнц-подгруппой по модулю m.
Главная конгруэнц-подгруппа Γ(m) действует левыми сдвигами на группах Γ0(m) и SL2(Z).

Система представителей орбит называется фундаментальной областью. Имеем Γ(m)◁ SL2(Z) [5,
§ 2.1]. Две матрицы A и A′ принадлежат одной орбите, если AΓ(m) = A′Γ(m). Это равенство удобно
трактовать иначе.

Лемма 1.1 [1]. Условие AΓ(m) = A′Γ(m) эквивалентно условию A ≡ A′(mod m).
В свою очередь группа Γ0(m) действует левыми сдвигами на группе SL2(Z).
Лемма 1.2. Для матриц

A =

(
a b
c d

)
, A′ =

(
a′ b′

c′ d′

)
∈ SL2(Z)

условие AΓ0(m) = A′Γ0(m) эквивалентно условию ac′ ≡ a′c (mod m).
Доказательство. Наше условие означает

A−1A′ =

(
d −b
−c a

)(
a′ b′

c′ d′

)
∈ Γ0(m),

что равносильно сравнению ac′ ≡ a′c (mod m).
Лемма 1.3. Пусть число m составное и m = aa1 – некоторое его разложение на нетривиаль-

ные множители. Для любого целого числа c, 0 < c ⩽ a1, (c,a,a1) = 1, существует единственное
целое число c1 ⩽ m

(a,a1)
такое, что (c1,a) = 1 и c1 ≡ c (mod a1).

Доказательство. По китайской теореме об остатках существует единственное целое число
c1 ⩽ m

(a,a1)
, для которого c1 ≡ c (mod a1) и c1 ≡ 1 (mod p) для любого простого числа p такого, что

p | a и p ∤ a1. Возьмем теперь любое простое число p со свойствами p | a и p | a1. Так как (c,a,a1) = 1,
то p ∤ c. Поскольку c1 ≡ c (mod p), то p ∤ c1. Отсюда следует, что (c1,a) = 1 и c1 является искомым.
Предложение доказано.

Следствие 1.4. Если m = pk, где p простое, то c1 = c.
Рассмотрим произвольный составной модуль m. Для любой пары (a,c), где a – нетривиальный

делитель числа m, m = aa1, 0 < c ⩽ a1, (c,a,a1) = 1, определим матрицу

M(a,c) =
(

a b
c1 d

)
∈ SL2(Z),

где c1 такое же, как в лемме 1.3. Такие матрицы существуют (хотя и определены неоднозначно).
Действительно, поскольку (a,c1) = 1, то можно найти целочисленное разложение az+ c1w = 1
НОДа. Положив d := z и b :=−w, получаем искомую матрицу. Для каждой пары (a,c) фиксируем
одну такую матрицу.

Лемма 1.5. Если (a,c) ̸= (a′,c′), то M(a,c)Γ0(m) ̸= M(a′,c′)Γ0(m).
Доказательство. Будем доказывать от противного. По лемме 1.2 из M(a,c)Γ0(m) =

= M(a,c′)Γ0(m) следует, что ac′1 ≡ ac1 (mod m), а значит, c′1 ≡ c1 (mod a1). По построению
чисел c1 и c′1, c′ ≡ c (mod a1), откуда получаем c′ = c, поскольку 0 < c′,c ⩽ a1.

Пусть теперь M(a,c)Γ0(m) = M(a′,c′)Γ0(m) при a ̸= a′. Тогда ac′1 ≡ a′c1 (mod m). Без ограни-
чения общности можем считать, что a ∤ a′. Из предыдущего сравнения получаем, что ac′1 = a′c1+mk
для некоторого k ∈ Z. Значит, a | a′c1. Поскольку (a,c1) = 1, то a | a′. Полученное противоречие
доказывает лемму.

Положим

M =

(
0 −1
1 0

)
, N(c) =

(
1 0
c 1

)
, 0 ⩽ c < m.
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Для произвольного m ̸= 1 определим множество

M= {M,N(c), 0 ⩽ c < m, M(a,c), m = aa1, a,a1 ̸= 1, 0 < c ⩽ a1, (c,a,a1) = 1}.

Заметим, что если m простое, то

M= {M,N(c), 0 ⩽ c < m}.

Теорема 1.6. Пусть m – некоторый целочисленный модуль. Тогда множествоM составляет
фундаментальную область группы SL2(Z) относительно подгруппы Γ0(m).

Доказательство. Сначала покажем, что смежные классы для всех этих матриц различны.
Будем доказывать от противного. Воспользуемся леммой 1.2. Если MΓ0(m) = N(c)Γ0(m), то

0≡ 1 (mod m) и мы получаем противоречие. ИзMΓ0(m) =M(a,c)Γ0(m) следует, что 0≡ a (mod m),
и снова приходим к противоречию. Из N(c)Γ0(m) = N(c′)Γ0(m) вытекает c ≡ c′ (mod m), а значит,
c = c′. Если N(c)Γ0(m) = M(a′,c′)Γ0(m), то c′1 ≡ a′c (mod m), что влечет a′ | c′1, но в то же время
(c′1,a

′) = 1, получаем противоречие. Наконец, по лемме 1.5 изM(a,c)Γ0(m) =M(a′,c′)Γ0(m) следует,
что (a,c) = (a′,c′).

Установим теперь, что любая матрица

A′ =

(
a′ b′

c′ d′

)
∈ SL2(Z)

лежит в смежном классе для одной из этих матриц.
1) Действительно, если a′ ≡ 0 (mod m), то по лемме 1.2, A′Γ0(m) = MΓ0(m).
2) Пусть (a′,m) = 1. Тогда существует целочисленное разложение НОДа a′t+my= 1. Положим

c = c′t (mod m). Тогда c < m, a′c ≡ a′c′t ≡ c′(1−my) ≡ c′ (mod m) и по лемме 1.2, A′Γ0(m) =
= N(c)Γ0(m).

3) В остальных случаях положим a := (a′,m)> 1. Тогда существуют целые числа t и y, для
которых a′t +my = a. Отсюда следует, что a′

a t +a1y = 1, а значит, (t,a1) = 1.
Заметим, что в данном случае b′ ̸= 0, так как иначе |A′|= a′d′ ̸= 1. Если d′ = 0, то из |A′|= 1

следует, что c′ = 1, b′ =−1, либо c′ =−1, b′ = 1. В обоих случаях (a′,c′) = 1. Если же d′ ̸= 0, то
(a′,c′) = 1, поскольку |A′| = a′d′− b′c′ = 1. Значит, во всех случаях (a′,c′) = 1, откуда вытекает
(a,c′) = 1.

Определим целое число c из равенства c := c′t mod a1. Пусть p | c, a и a1 для некоторого
простого p. Тогда p | c′t, а значит p | c′ либо p | t. В обоих случаях получаем противоречие. Если p | c′,
то противоречие с (a,c′) = 1, поскольку p | a. Если p | t, то противоречие с (a1, t) = 1, поскольку p | a1.
Следовательно, (c,a,a1) = 1 и для такой пары (a,c) можно построить матрицу M(a,c) ∈ SL2(Z).

Поскольку c1 = c′t +a1k, k ∈ Z, то

c1a′ = c′(a′t)+mk
a′

a
= c′(a−my)+mk

a′

a
= c′a+m(k

a′

a
− yc′).

Из леммы 1.2 вытекает, что M(a,c)Γ0(m) = A′Γ0(m).
Замечание 1.7. Известно, что

[SL2(Z) : Γ0(m)] = m∏
p|m

(
1+

1
p

)
. (1)

В [5, предложение 2.1.1] этот индекс найден как частное индексов [SL2(Z) : Γ(m)]/[Γ0(m) : Γ(m)].
Из теоремы 1.6 следует еще одно, непосредственное, доказательство этого факта.

Доказательство. Если m = pk, k ⩾ 1, то по теореме 1.6 и следствию 1.4

[SL2(Z) : Γ0(pk)] = |M|= 1+ pk +
k−1

∑
i=1

(pk−i − pk−i−1) = pk + pk−1

и мы получили искомое.
Пусть теперь число m имеет следующее каноническое разложение на простые множители:

m = pe1
1 . . . per

r .
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Оно индуцирует естественное отображение множеств смежных классов

ψ : SL2(Z)\Γ0(m)→ SL2(Z)\Γ0(pe1
1 )× . . .×SL2(Z)\Γ0(per

r ),

задаваемое формулой AΓ0(m) 7→ (AΓ0(pe1
1 ), . . . ,AΓ0(per

r )).
Отображение ψ является биекцией. Действительно, рассмотрим две матрицы

A =

(
a b
c d

)
, A′ =

(
a′ b′

c′ d′

)
∈ SL2(Z).

Если AΓ0(pei
i ) = A′Γ0(pei

i ) для любого i,1 ⩽ i ⩽ r, то по лемме 1.2 ac′ ≡ a′c (mod pei
i ). Применяя

китайскую теорему об остатках, получаем, что ac′ ≡ a′c (mod m). Следовательно, AΓ0(m) = A′Γ0(m)
и отображение ψ инъективно.

Докажем сюръективность ψ. Пусть

(A1Γ0(pe1
1 ), . . . ,ArΓ0(per

r )) ∈ SL2(Z)\Γ0(pe1
1 )× . . .×SL2(Z)\Γ0(per

r ).

Применяя китайскую теорему об остатках, можно найти матрицу A′ такую, что A′Γ0(pei
i ) =

= AiΓ0(pei
i ) для всех i. Заметим, что A′ не обязательно принадлежит группе SL2(Z), однако из

китайской теоремы об остатках следует, что detA′ ≡ 1(mod m). Поскольку отображение f : SL2(Z)→
→ SL2(Z/mZ) сюрьективно [5, §2.1], существует матрица A ∈ SL2(Z) такая, что AΓ0(m) = A′Γ0(m).
Тогда AΓ0(m) является искомым прообразом.

Значит,

[SL2(Z) : Γ0(m)] = [SL2(Z) : Γ0(pe1
1 )] · . . . · [SL2(Z) : Γ0(per

r )],

откуда получаем формулу (1).
Укажем теперь представителей смежных классов группы SL2(Z) по подгруппе Γ(m). Пусть

φ(m) – количество натуральных чисел < m и взаимно простых с ним (функция Эйлера). Тогда

φ(m) = m∏
p|m

(
1− 1

p

)
.

Обозначим все такие числа через εi ∈ Z, 1 ⩽ i ⩽ φ(m). Тогда для любого εi существует число
ε′i ∈ Z такое, что

εiε
′
i = 1+mki

и ε′i, ki однозначно определяются выбором εi. Введем матрицы

Bi, j =

(
εi + jm ki + jε′i

m ε′i

)
,

где i = 1, . . . ,φ(m), j = 0, . . . ,m− 1,

Ci, j,l =

(
εi + jm ki + jε′i

m+(εi + jm)l ε′i +(ki + jε′i)l

)
,

где i = 1, . . . , φ(m), j, l = 0, . . . , m− 1, и

Di, j =

(
−m −ε′i
εi + jm ki + jε′i

)
,

где i = 1, . . . , φ(m), j = 0, . . . , m− 1.
Положим

B= {Bi, j | i = 1, . . . ,φ(m), j = 0, . . . ,m−1},
C= {Ci, j,l | i = 1, . . . ,φ(m), j, l = 0, . . . ,m−1},
D= {Di, j | i = 1, . . . ,φ(m), j = 0, . . . ,m−1}.

Лемма 1.8. Пусть m – произвольный модуль.
(i) B⊂ Γ0(m), C и D⊂ SL2(Z).
(ii) Матрицы Ci, j,l и Di, j попарно несравнимы по модулю m.
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(iii)Множество B составляет фундаментальную область группы Γ0(m) относительно
подгруппы Γ(m).

Доказательство. (i) Определитель матрицы Ci, j,l равен

(εi + jm)(ε′i +(ki + jε′i)l)− (m+(εi + jm)l)(ki + jε′i) =

= (εi + jm)(ε′i +(ki + jε′i)l − l(ki + jε′i))−m(ki + jε′i) =

= (εi + jm)ε′i −m(ki + jε′i) = εiε
′
i −mki = 1.

Поскольку Bi, j =Ci, j,0, отсюда получаем, что |Bi, j|= 1. Очевидно, Bi, j ∈ Γ0(m). Также очевидно, что
|Di, j|= |Ci, j,0|= 1.

(ii) Докажем от противного, что матрицы Ci, j,l попарно несравнимы при различных i, j, l.
Действительно, если i1 ̸= i2, то

εi1 + j1m ≡ εi2 + j2m(mod m)⇔ εi1 ≡ εi2(mod m).

Если i1 = i2 = i, но j1 ̸= j2, то

ki + j1ε′i ≡ ki + j2ε′i(mod m)⇔ j1ε′i ≡ j2ε′i(mod m)⇔ j1 ≡ j2(mod m).

Если i1 = i2 = i, j1 = j2 = j, но l1 ̸= l2, то

m+(εi + jm)l1 ≡ m+(εi + jm)l2(mod m)⇔

⇔ εil1 ≡ εil2(mod m)⇔ l1 ≡ l2(mod m).

Во всех случаях приходим к противоречию. Аналогично получаем, что матрицы Di, j попарно
несравнимы при различных i, j. Докажем теперь, что Ci1, j1,l1 ̸= Di2, j2 при любых i1, i2, j1, j2, l1.
Действительно, εi1 + j1m ̸=−m, поскольку m ∤ εi1 .

(iii) Это доказано в [1].
Теорема 1.9. Если m = p, то множество C∪D составляет всю фундаментальную область

группы SL2(Z) относительно подгруппы Γ(p).
Доказательство. Действительно, согласно [5, предложение 2.1.1]

[SL2(Z) : Γ(p)] = p(p2 −1),

а это в точности число всех матриц Di, j и Ci, j,l .
Тем самым для простого модуля получены представители фундаментальной области в виде,

удобном для реализации в схеме разделения секрета.
Теорема 1.10. Пусть m – некоторый целочисленный модуль. Тогда матрицы AB для A ∈M

и B ∈B составляют фундаментальную область группы SL2(Z) по подгруппе Γ(m).
Доказательство. Утвержение следует из теоремы 1.6 и леммы 1.8 (iii).
Пример 1.11. Приведем в явном виде пример фундаментальной области для m = 6. Согласно

предложению 2.1.1 из [5]

[Γ0(6) : Γ(6)] = 12, [SL2(Z) : Γ0(6)] = 12.

Имеем

B=

{(
1+6 j j

6 1

)
,

(
5+6 j 4+5 j

6 5

)
, j = 0, . . . ,5

}
;

M=

{(
0 −1
1 0

)
,

(
1 0
c 1

)
, c = 0, . . . ,5,

(
2 1
1 1

)
,

(
2 1
3 2

)
,

(
2 1
5 3

)
,

(
3 2
1 1

)
,

(
3 1
2 1

)}
.

Тогда по теореме 1.10 фундаментальная область состоит из произведений матриц из этих множеств.
На основе найденной фундаментальной области можно построить схему разделения секрета

с большим пространством хранимых ключей, чем в работе [1]. Для этого удобно использовать
матрицы C, имеющие хорошую параметризацию. Они занимают большую часть фундаментальной
области группы SL2(Z) относительно подгруппы Γ(m) поскольку их количество равно m2φ(m),



26 Г. В. Матвеев, А. А. Осиновская

а при этом [5, предложение 2.1.1]

[SL2(Z) : Γ(m)] = m2φ(m)∏
p|m

(
1+

1
p

)
.

С помощью этих матриц построим в группе SL2(Z) аналог модулярной пороговой схемы
разделения секрета по Миньотту [6]. Пусть у нас имеется k участников и разрешенным является
всякое подмножество, если число участников в нем не меньше, чем t.

Выберем систему m1 < m2 < .. . < mk попарно взаимно простых модулей, для которой
выполнено условие Миньотта

M1 = mk−t+2mk−t+3 . . .mk < m1m2 . . .mt = M2.

Одновременно требуется, чтобы разность M2 −M1 была по возможности большой.
В качестве открытых ключей берутся главные конгруэнц-подгруппы Γ(m1), . . . ,Γ(mk), где

модули m1, . . . ,mk те же, что и в пороговой модулярной схеме Миньотта.
Секретом является матрица S = Ci, j,l ∈ C, где m = m1 . . .mk, i = 1, . . . ,φ(m), причем M1 <

< εi < M2, M1 < j, l < M2.
Частичными секретами участников являются поэлементные вычеты этой матрицы по мо-

дулям m1, . . . ,mk. Например, частичным секретом первого участника будет образ матрицы S при
каноническом эпиморфизме

SL2(Z)→ SL2(Z)/Γ(m1)∼= SL2(Z/m1Z),

что является аналогом обычного частичного секрета в схеме Миньотта.
Теорема 1.12. Секрет S однозначно восстанавливается по частичным секретам подмно-

жества участников A, где |A|⩾ t.
Доказательство. Модуль m находится автоматически.
Поскольку нам известны εi + jm ≡ εi(mod mr), r ∈ A, по китайской теореме об остатках

находим εi(mod ∏
r∈A

mr). Найденное решение в силу выбора εi будет одним и тем же по модулям

∏
r∈A

mr и m, так как εi < ∏
r∈A

mr ⩽ M2.

Решив сравнение εiε
′
i ≡ 1 (mod m), находим ε′i. Напомним, что все модули m1, . . . ,mk известны

участникам.
Число ki однозначно восстанавливается по формуле ki =

εiε
′
i−1
m .

Нам известны ki + jε′i (mod mr), r ∈ A, Используя китайскую теорему об остатках, находим
ki + jε′i(mod ∏

r∈A
mr). Поскольку (ε′i,m) = 1, то значение j по модулю ∏

r∈A
mr восстанавливается

однозначно. Так как j < M2, отсюда получаем j.
Аналогично из m+(εi + jm)l ≡ εil (mod mr), r ∈ A, находим εil (mod ∏

r∈A
mr). Используя тот

факт, что (εi,m) = 1 и l < M2, получаем l.
Таким образом, матрица S восстановлена корректно.
Работа выполнена при финансовой поддержке БРФФИ, договор № Ф25-012.
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Аннотация. Для π-разрешимых не π-замкнутых неприводимых комплексных линейных
групп G степени n с π-холловой T I-подгруппой H нечетного порядка, большего 3,
найдены условия, при которых n делится на |H| или на такую степень f > 1 некоторого
простого числа, что f ≡ 1(mod |H|).
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Abstract. For finite π -solvable non-π-closed irreducible complex linear groups of degree n
with an π -Hall T I-subgroup H of odd order greater than 3 conditions are found under which
n is divisible by |H| or by a power f > 1 of some prime number such that f ≡ 1(mod |H|).

1. Введение

Пусть G – конечная группа, A – такая группа ее автоморфизмов, что (|A|, |G|) = 1. Тогда A
называется группой копростых автоморфизмов группыG. ЕслиCG(a)=CG(A) для каждого элемента
a ∈ A#, то A называется сильноцентрализуемой группой копростых автоморфизмов группы G.

Заметим, что для |A|= p – простое число, условие сильноцентрализуемости выполняется.
Для случая, когда группа A имеет нечетный порядок в [1] сформулирована гипотеза о том, что
для неприводимых комплексных линейных групп Γ = AG произвольной степени n справедливо
утверждение, что n делится на такую степень f > 1 простого числа, что f ≡−1 или 1(mod |A|).

В [2] эта гипотеза была доказана при условии, что силовская 2-подгруппа группы G абелева.
В [3] она решена положительно без дополнительного условия. При |A| = p она же совпадает
с проблемой, сформулированной Айзексом [4] и доказанной Ньютоном [5].

Из теоремы 4.1 [6] вытекает, что степень n = 2p−2 не p-замкнутой неприводимой линейной
группы G является степенью 2. А из теоремы 2 [7] следует, что ее силовская 2-подгруппа G2
не может быть абелевой. Рассмотрим неприводимые линейные группы G степени n, у которых
силовская q-подгруппа Gq является абелевой, если степень f = qα ⩽ nq, α ∈ N, и f ≡−1(mod |A|).

Пусть π(n∗) – множество таких простых делителей числа n, хотя бы одна степень f > 1
которых делит n и для нее выполняется условие: f ≡−1(mod |A|). Предположим, что подгруппа A
нечетного порядка, большего 3, и для q ∈ π(n∗) силовская q-подгруппа Gq группы G абелева.

В теореме 1.2 для группы Γ и числа n сформулировано и доказано более сильное утверждение,
чем в [2], [3] и [5].

С помощью теоремы 1.2 доказываются теорема 1.3 и теорема 1.4. Теорема 1.3 также усиливает
соответствующий результат из [2], [3] и [5]. Теорема 1.4 для разрешимых групп ранее была доказана
Романовским [8].
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Условие 1.1. Скажем, что для Γ, A, G, C, χ и n выполнено условие 1.1, если Γ = AG, G◁Γ,
(|A|, |G|) = 1, A – группа нечетного порядка, большего 3, которая не является нормальной в группе Γ,
CG(a) = CG(A) = C для каждого элемента a ∈ A#, для каждого q ∈ π(n∗) подгруппа Gq абелева
и группа G имеет точный неприводимый комплексный характер χ степени n, который является
a-инвариантным хотя бы для одного элемента a ∈ A#.

Теорема 1.2. Если для группы Γ, A, G, C, χ и n выполнено условие 1.1, то n делится на
такую степень f > 1 некоторого простого числа, что f ≡ 1(mod |A|).

Теорема 1.3. Пусть π-разрешимая не π-замкнутая группа G с π-холловой T I-подгруппой H
нечетного порядка, большего 3, имеет точный неприводимый комплексный характер степени n.
Если для каждого q ∈ π(n∗) подгруппа Gq абелева, то n делится на |H| или на такую степень
f > 1 некоторого простого числа, что f ≡ 1(mod |H|).

Теорема 1.4. Пусть p-разрешимая не p-замкнутая группа G для простого числа p > 3
имеет точный неприводимый комплексный характер степени n. Если для каждого q ∈ π(n∗)
подгруппа Gq абелева, то n делится на p или на такую степень f > 1 некоторого простого числа,
что f ≡ 1(mod p).

2. Некоторые обозначения и предварительные результаты
N – множество натуральных чисел; если n ∈ N и q – простое натуральное число, то n = nqnq′ ;

если ψ – характер некоторой группы X , то Irr(ψ) обозначает множество всех неприводимых
компонент характера ψ; π = π(A); если X ⊆ Γ, то π′ = π(X) \ π; Xπ′ – холлова π′-подгруппа
группы X . Если X ◁Γ и φ – неприводимый характер подгруппы X , то условие, что φ g-инвариантен
для некоторого элемента g ∈ Γ \X , запишем для краткости в виде IΓ(φ) ̸= X . Все остальные
обозначения и определения обычны и их можно найти, например, в [9] или [10]. Всюду под
характером группы будем понимать комплексный характер, а под группой – конечную группу.

Пусть Γ = AB – группа, для которой подгруппа B◁Γ, (|A|, |B|) = 1, т. е. A – группа копростых
автоморфизмов группы B и |A| нечетен. Тогда она удовлетворяет условию теоремы 13.1 [10]. Со-
гласно этой теореме существует взаимно-однозначное соответствие π(B,A) : IrrA(B)−→Irr(CB(A))
между множеством всех A-инвариантных неприводимых характеров группы B и множеством всех
неприводимых характеров подгруппы CB(A), которое обладает рядом свойств, зависящих, в част-
ности, от свойств подгруппы A. Пусть φ ∈ IrrA(B). Тогда по лемме 13.3 [10] существует такой
единственный неприводимый характер φ̂ группы Γ, что φ̂B = φ и A ⊆ ker(detφ̂). Он называется
каноническим продолжением характера φ на группу Γ. В дальнейшем под φ̂ будем понимать
именно такой характер.

Приведем ряд вспомогательных лемм.
Лемма 2.1 [3, лемма 2.7]. Пусть A – группа копростых автоморфизмов группы B. Тогда

B = [B,A]CB(A).
Лемма 2.2 [11, лемма 11]. Пусть A – сильноцентрализуемая группа копростых автомор-

физмов группы B. Предположим, что для некоторой A-инвариантной подгруппы B1 ⊆ B число
|B : B1| не делится на такую степень f > 1 простого числа, что f ≡ 1(mod|A|). Тогда B = B1CB(A).

Лемма 2.3 [3, лемма 2.9]. Пусть Γ = AB – группа, где B◁Γ, (|A|, |B|) = 1, A – разрешима и
CB(a) =CB(A) для каждого элемента a ∈ A#. Если φ ∈ Irr(B) и IΓ(φ) ̸= B, то φ ∈ IrrA(B).

Лемма 2.4. Пусть Γ = AB – группа, где B ◁Γ, (|A|, |B|) = 1 и CB(a) = CB(A) для каждого
элемента a ∈ A#. Тогда A – T I-подгруппа в Γ и, если φ ∈ Irr(B) и IΓ(φ) ̸= B, то группа Γ имеет
такой неприводимый характер φ̂ π′-степени, что φ̂B =φ. Группа Γ = AOπ′(Γ).

Доказательство. По лемме 2.6 [3] A – T I-подгруппа в Γ. По лемме 2.3 φ ∈ IrrA(B). Поэтому
существует каноническое продолжение φ̂ характера φ на Γ. Ясно, что степень этого характера –
π′-число. Последняя фраза леммы очевидна.

Лемма 2.5 [3, лемма 2.8]. Пусть Γ = AB – группа, где B◁Γ, (|A|, |B|) = 1 и CB(a) =CB(A)
для каждого элемента a ∈ A#. Если K ◁Γ такая подгруппа, что AK/K не является нормальной
в Γ/K, то A∩K = 1, а если AK/K ◁ Γ/K, то B = Kπ′CB(A).

В дальнейшем при рассмотрении случаев, когда факторгруппа AK/K не является нормаль-
ной в Γ/K для некоторой нормальной подгруппы K в Γ, мы будем учитывать, что A∩K = 1 и,
следовательно, |AK/K| = |A/A∩K| = |A|.
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Лемма 2.6 [3, лемма 2.5]. Пусть t ⩾ 5 – натуральное число, p – простое число и m – любое
положительное число кратное t. Тогда для каждого целого положительного числа n существует
такой простой делитель s числа Φn(pm), что s > n+1 и s ≡ 1(mod t).

3. Основная часть

3.1. Доказательство теоремы 1.2

Так как по условию 1.1 характер χ является a-инвариантным для некоторого a ∈ A#, то
IΓ(χ) ̸= G. Поскольку χ ∈ IrrA(G) по лемме 2.3, то по лемме 2.4 группа Γ имеет такой неприводимый
характер χ̂, что (χ̂)G = χ. Ясно, что χ̂(1) = n.

Доказательство теоремы проведем индукцией по порядку группы Γ. Пусть Γ – группа
наименьшего порядка, для которой выполняется условие 1.1, но в то же время n не делится на
такую степень f > 1 простого числа, что f ≡ 1(mod |A|). Заметим, что если некоторая силовская
подгруппа группы Γ абелева, то такими являются любые ее подгруппа и факторгруппа. В случае
применения индукции, это обстоятельство будем учитывать.

Лемма 3.1. Характер χ̂ точный.
Доказательство. Предположим, что ker χ̂ ̸= 1. Поскольку характер (χ̂)G = χ точный по

условию 1.1, то ker χ̂⊆ A. Так как A – T I-подгруппа в Γ по лемме 2.4, то A◁ Γ. Это противоречит
условию 1.1.

Лемма 3.2. Oπ
′
(Γ) = Γ.

Доказательство. Предположим противное, т. е. S =Oπ
′
(Γ) ̸=Γ. По факторизационной лемме

Чунихина [12, лемма 2.2.1]

Γ = NΓ(A)S. (1)

По теореме Клиффорда

(χ̂)S = e ∑
x∈T
ψx, (2)

где ψ ∈ Irr(S); e – число, делящее χ̂(1) и T – полное множество представителей всех смежных
классов группы Γ по подгруппе I = IΓ(ψ). Поскольку n = e|T |ψ(1), то ψ(1) делит n.

Допустим, что
A = Akerψ/kerψ◁S/kerψ= S.

Тогда Akerψ◁S и, следовательно, (Akerψ)t ◁St для всех t ∈ T . Следовательно,

∩t∈T (Akerψ)t ◁St = S.

Отсюда получаем, что
∩t∈T At(kerψ)t ◁S.

Поскольку, согласно выражению (1), можем считать, что t ∈ NΓ(A), то

∩t∈T A(kerψ)t ◁S.

Так как ∩t∈T (kerψ)t = ker(χ̂)S = 1, то A◁S. Видим, что A◁Γ. Мы получили противоречие с выбором
группы Γ.

Пусть теперь A ̸ ◁ S.
Покажем, что для S, A, Sπ′ ,CSπ′

(A),ψSπ′
иψSπ′

(1) выполняется условие 1.1. Здесьψ – точный
неприводимый характер факторгруппы S в смысле леммы 2.22 [10]. Очевидно, Sπ′ ◁S.

Покажем, что CSπ′
(a) =CSπ′

(A) для всех a ∈ A#. Пусть s ∈CSπ′
(a1) для некоторого неединич-

ного элемента a1 из A. Тогда a1 ∈ A∩ (A)s. Поскольку из леммы 2.4 вытекает, что A в группе S и,
следовательно, A в факторгруппе S является T I-подгруппой, то A = (A)s, т. е. s ∈ NS(A). Отсюда
видим, что s ∈ CSπ′

(A). Следовательно, CSπ′
(a) ⊆ CSπ′

(A) для всех a ∈ (A)#. Поскольку обратное
включение очевидно, то желаемое равенство установлено.

Так как A ̸ ◁ S, то к группе S и ее нормальной подгруппе K = kerψ можем применить лемму 2.5.
По ней A∩K = 1. Значит, A ≃ A.
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Поскольку ψ(1) делит n, то ψ(1) – π′-число. Тогда видим, что ψSπ′
∈ IrrA(Sπ′).

Итак, для S, A, Sπ′ , CSπ′
(A), ψSπ′

и ψSπ′
(1) выполняется условие 1.1. Так как |S|< |Γ|, то по

индукции ψ(1) делится на такую степень f > 1 некоторого простого числа, что f ≡ 1(mod |A|).
Поскольку A ≃ A, то, отсюда и того, что ψ(1) делит n, замечаем, что и n делится на такую степень
f > 1 некоторого простого числа, что f ≡ 1(mod |A|). Полученное противоречие с минимальностью
группы Γ указывает на то, что наше предположение о том, что S = Oπ

′
(Γ) ̸= Γ ошибочно. Стало

быть, Oπ
′
(Γ) = Γ.

Лемма 3.3. Если L – максимальная нормальная в G A-инвариантная подгруппа, то L ⊆C.
Доказательство. Мы можем положить, что L ̸= 1. По теореме Клиффорда

(χ̂)L = e ∑
x∈T
ψx,

где ψ ∈ Irr(L), e и T соответствуют обозначениям в выражении (2). По теореме 6.11 [10] χ̂= ψΓ
1

для такого характера ψ1 ∈ Irr(I), что (ψ1)L = eψ. Поскольку χ̂(1) = |Γ : I|ψ1(1) и χ̂(1) = χ(1) = n
является π′-числом, то и ψ1(1) также π′-число. Мы можем также считать, что A ⊆ I.

Предположим поначалу, что I ̸= Γ. Так как |Γ : I| делит n, то из предположения, что |Γ : I|
делится на такую степень f > 1 простого числа, что f ≡ 1(mod |A|) вытекает, что и n делится на
такую же степень с таким же свойством. В этом случае теорема верна и мы получим противоречие
с выбором группы Γ. Следовательно, мы полагаем, что |Γ : I| не делится на такую степень. По
лемме 2.2

G = Iπ′C. (3)

Пусть, как и ранее, A = Akerψ1/kerψ1 и I = I/kerψ1. Нетрудно видеть, что характер (ψ1)Iπ′

неприводим, т. е. (ψ1)Iπ′ ∈ IrrA(Iπ′). Тогда (ψ1)Iπ′
∈ IrrA(Iπ′). Здесь ψ1 – точный неприводимый

характер факторгруппы I в смысле леммы 2.22 [10].
Предположим также, что A ̸ ◁ I. Как и ранее устанавливаем, что для I, A, Iπ′ , CIπ′

(A), (ψ1)Iπ′
и

(ψ1)Iπ′
(1) выполняется условие 1.1.
Так как |I| < |Γ|, то, согласно минимальности группы Γ, мы получаем, что ψ1(1) делится

на такую степень f > 1 некоторого простого числа, что f ≡ 1(mod |A|). Поскольку ψ1(1) делит
χ̂(1) = n и |A| = |A|, что следует из леммы 2.5, то видим, что f делит n и f ≡ 1(mod |A|). Мы
получили противоречие с минимальностью группы Γ.

Рассмотрим теперь случай, когда A ◁ I. Поскольку kerψ1 ◁ I, то по лемме 2.5 Iπ′ =
= (kerψ1)π′CIπ′ (A). Откуда, с учетом формулы (3), получаем, что G = (kerψ1)π′C. Поэтому g = kc
для всех элементов g ∈ G и для соответствующих им элементов k ∈ kerψ1 и c ∈C. Поэтому

[g,a] = [k,a] ∈ (kerψ1)π′

для всех g ∈ G и для всех a ∈ A. Значит, [G,A] ⊆ (kerψ1)π′ . Поскольку по предположению I ̸= Γ,
т. е. (kerψ1)π′ ̸= G, то [G,A] ̸= G. Это означает, что A[G,A] ̸= Γ. Так как из леммы 2.1 вытекает, что
A[G,A]◁Γ, то мы получили противоречие с леммой 3.2.

Пусть теперь I = Γ. Тогда χ̂L = eψ.
Если A◁AL, то L ⊆C и лемма верна.
Поэтому A ̸ ◁ AL. Легко заметить, что для AL, A, L, CL(A), ψ и ψ(1) выполняется условие 1.1.

Так как |AL|< |Γ|, то по индукции ψ̂(1) делится на такую степень f некоторого простого числа,
что f ≡ 1(mod |A|). Тогда и n делится на такую степень f > 1 некоторого простого числа, что
f ≡ 1(mod |A|). Мы вновь получили противоречие с минимальностью группы Γ.

Лемма 3.4. L ⊆ Z(Γ) для подгруппы L из леммы 3.3 и G = G/L – главный фактор группы Γ.
Доказательство. По лемме 3.3 L ⊆ C, т. е. A ⊆ CΓ(L). Так как CΓ(L) ◁Γ, то из леммы 3.2

следует, что CΓ(L) = Γ. Значит, L ⊆ Z(Γ). Поскольку L является максимальной нормальной в G
A-инвариантной подгруппой, то G является главным фактором группы Γ.

Лемма 3.5. Группа G – неразрешима.
Доказательство. По лемме 3.4 G – либо элементарная абелева q-группа для некоторого

простого числа q, т. е. разрешима, либо является прямым произведением простых неабелевых
групп.
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Допустим она разрешима. Из леммы 3.4 вытекает, что, Γ = AGq ×Gq′ , где Gq′ ⊆ Z(Γ). Так как
n – π′-число, то по теореме 6.15 [10] n является степенью простого числа q, т. е. n = qα.

Еслиα= 0, то n= 1. Тогда группаΓ циклическая. Значит,A◁ Γ. Это противоречит условию 1.1.
Следовательно, α> 0. Легко видеть, что характер χ̂AGq неприводим и неприводим характер

χ̂Gq , ибо он имеет π′-степень. Тогда подгруппа Gq не является абелевой.
Допустим, что qα1 ≡ −1(mod |A|) для некоторого числа α1 ⩽ α. Тогда по условию 1.1

подгруппа Gq абелева. Противоречие. Отсюда и из теоремы 1 [13] следует, что qα1 ≡ 1(mod |A|) для
некоторого числа α1 ⩽ α.

Лемма 3.6. Группа G – неабелева простая группа.
Доказательство. По лемме 3.3 L ⊆ C, т. е. A ⊆ CΓ(L). Так как CΓ(L) ◁Γ, то из леммы 3.2

следует, что CΓ(L) = Γ. Значит, L ⊆ Z(Γ). Поскольку L является максимальной нормальной
подгруппой в Γ, то G является главным фактором группы Γ. Согласно теореме 1 [13] мы можем
предположить, что G неразрешима.

Предположим, что G не является простой группой. Тогда G – прямое произведение |A| копий,
изоморфных некоторой простой неабелевой группе. Значит, G – центральное произведение |A|
изоморфных групп. Из леммы 3 [5] следует, что n = m|A| для некоторого натурального числа m.
Тогда p|A| делит n для некоторого простого числа p, делящего n. Поскольку по теореме Эйлера
из теории чисел pφ(|A|) ≡ 1(mod |A|), где φ(|A|) – количество натуральных чисел меньших |A| и
взаимнопростых с |A|, и pφ(|A|) делит n, то мы получили противоречие с минимальностью Γ. Поэтому
группа G простая.

Пусть Γ = Γ/L и так как A = AL/L ≃ A/A∩L = A, то можем записать, что Γ = AG.
Из леммы 3.6 и из леммы 5 [5] вытекает, что G – простая группа типа Ли над некоторым

конечным полем F . Пусть q = pm – число элементов этого поля. Так как мы можем рассматривать A
как группу автоморфизмов поля F по лемме 5 [5], то делаем вывод, что |A| делит m.

По условию |A|⩾ 5. Поэтому m ⩾ 5. Применим лемму 6 [5]. Предположим, что q делит n. Тогда
p|A| делит n. Ранее мы убедились, что в этом случае мы приходим к противоречию с минимальностью
группы Γ. Значит, как следует из леммы 6 [5], существуют такие целые числа d и k, что dn
делится на Φk(q).

Положив t = |A|, из леммы 2.6 получаем, что dn делится на такое простое число s, что
s ≡ 1(mod |A|) и s > k + 1.

Если G группа не типа Al(q) или 2Al(q) для некоторого положительного числа l, то d не
делится на любое простое число, большее чем 5. Так как |A| ⩾ 5, что отмечено выше, то s > 5
и, значит, s делит n.

Пусть теперь G группа типа Al(q) или 2Al(q). Тогда d не делится на любое простое число,
большее чем l +1, и мы можем взять число k, большее или равное l. В этом случае s > l +1 и мы
вновь имеем, что s делит n. Это последнее противоречие доказывает теорему 1.2.

3.2. Доказательство теоремы 1.3
Используем индукцию по порядку группы G. Пусть G – группа минимального порядка среди

всех групп, для которых условие теоремы выполняется, а заключение нет. Представлению группы G
как неприводимой линейной группы степени n отвечает точный неприводимый характер χ.

Лемма 3.7. H не содержится в такой собственной нормальной подгруппе M группы G, что
M имеет нормальное π-дополнение.

Доказательство. Обозначим M = Oπ
′
(Γ) и повторим доказательство леммы 3.2.

Поскольку группа G – π-разрешима и подгруппа H – T I-множество, то справедлива
Лемма 3.8. Oπ′(G) ̸= 1.
Лемма 3.9. G = HOπ′(G).
Доказательство. Рассмотрим подгруппу Oπ′,π(G). По определению

Oπ′,π(G)/Oπ′(G) = Oπ(G/Oπ′(G)).

Так как группа G/Oπ′(G) – π-разрешима и согласно теореме 6.3.1 [9] Oπ′(G/Oπ′(G)) = 1, то

Oπ(G/Oπ′(G)) ̸= 1.
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Поскольку HOπ′(G)/Oπ′(G) – холлова π-подгруппа с тривиальным пересечением в G/Oπ′(G), то

Oπ′,π(G) = HOπ′(G).

Осталось лишь заметить, что Oπ′,π(G)◁G, и применить лемму 3.7.
Так как по лемме 3.9 G = HOπ′(G) и COπ′ ((G)(h) = COπ′ (G)(H) для всех h ∈ H#, то для G,

H, Oπ′(G), COπ′ (G)(h), точного неприводимого характера χOπ′ (G) и n выполнено условие 1.1. По
теореме 1.2 n делится на такую степень f > 1 некоторого простого числа, что f ≡ 1(mod |H|).
Получили противоречие с минимальностью группы G. Это последнее противоречие доказывает
теорему 1.3.

3.3. Доказательство теоремы 1.4
Пусть χ данный в условии теоремы точный неприводимый характер группы G степени n.

Доказательство теоремы проведем индукцией по порядку группы G. Пусть G – группа наименьшего
порядка, для которой выполняются условия теоремы 1.4, но в то же время n не делится на p и не
делится на такую степень f > 1 простого числа, что f ≡ 1(mod p).

Как в лемме 3.2 мы убеждаемся в том, что S = Op′(G) = G.
Далее. Поскольку группа G является p-разрешимой, то либо Op(G) ̸= 1, либо Op′(G) ̸= 1.
Допустим поначалу, что Op(G) ̸= 1. Пусть M – такая максимальная нормальная подгруппа

в G, что Op(G)⊆ N ◁G и M/N – главный фактор группы G. Заметим, что факторгруппа G/M также
является главным фактором группы G. Поэтому G/M – p-группа либо p′-группа.

Поскольку S = G, то G/M – p-группа. Тогда Mp′ = Gp′ и |G/M| = pα, α ∈ N. Чуть ранее
мы отметили, что χ(1) не делится на простое число p. Тогда характер χM неприводим. Поэтому
неприводим и характер χM1 , где M1 такая подгруппа, что M ⊆ M1 ◁G и |G : M1| = p.

И, если подгруппа M1 не p-замкнута, то по индукции n делится на p или на такую степень
f > 1 некоторого простого числа, что f ≡ 1(mod p). Это противоречит выбору группы G.

Поэтому подгруппа M1 p-замкнута. Очевидно, Op(M1) = Op(G) и |Gp|= p, Gp = Gp/Op(G).
Мы можем положить, что M1 = M. Мы также видим, что M = Mp′Op(G) и Mp′ = Gp′ , т. е. M =
= Gp′Op(G).

Напомним, что Op(G) ̸= 1. По теореме Клиффорда к характеру χOp(G) применима формула (2).
В ее обозначениях по теореме 6.17 [10] существует такой неприводимый характер ψ1 подгруппы I,
что (ψ1)Op(G) = eψ для некоторого неприводимого характера ψ группы Op(G) и χ= (ψ1)

G. Отсюда
видим, что χ(1) = ψ1(1)|G : I|, и что ψ1(1) и |G : I| не делятся на p и на такую степень f > 1
простого числа, что f ≡ 1(mod p). Следовательно, ψ(1) = 1 и, значит, подгруппа Op(G) абелева.
Мы также можем утверждать, что Gp ⊆ I, т. е. Gp = Ip.

Предположим вначале, что I ̸= G.
Пусть Gp kerψ1/kerψ1 ̸ ◁ I/kerψ1. Легко видеть, что группа I/kerψ1 и ее точный неприводи-

мый характерψ1 в смысле леммы 2.22 [10] удовлетворяют условиям теоремы 1.4. Тогда по индукции
ψ1(1) делится на p или на такую степень f > 1 простого числа, что f ≡ 1(mod p), что не так.

Поэтому Gp kerψ1/kerψ1 ◁ I/kerψ1 и, значит, Gp kerψ1 ◁ I.
Рассмотрим факторгруппу

G = G/Op(G) = GpM, M = M/Op(G).

Мы видим, что группа Gp имеет порядок p, M ◁G и является p′-группой, и поэтому Gp является
сильноцентрализуемой группой копростых автоморфизмов группы M. А поскольку G = MI, то
также мы видим, что

G = MI, I = I/Op(G),

и что

|G : I|= |G : I|=
|M||I|
|M∩I|

|I|
= |M : M∩ Ip′ |.

По лемме 2.2

M = Ip′CM(Gp).
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Пусть

M = ⟨mOp(G), |m ∈ M⟩, Gp = ⟨nOp(G), |n ∈ Gp⟩.

Тогда

CM(Gp) = ⟨m ∈ M|[m,n] ∈ Op(G),n ∈ Gp⟩

и, значит,

G = ICM(Gp).

Поскольку [CM(Gp),Gp] ⊆ Op(G) ⊆ Gp, то CM(Gp) ⊆ NG(Gp) и, следовательно,

G = ING(Gp).

Так как Gp kerψ1 ◁ I, то по факторизационной лемме Чунихина I = NI(Gp)kerψ1. Поскольку
NI(Gp) ⊆ NG(Gp), то

G = NG(Gp)kerψ1.

Поскольку Gp ̸ ◁ G, то kerψ1 ̸= 1.
Допустим, что (kerψ1)p = Gp ∩ kerψ1 = 1. Тогда kerψ1 ⊆ CG(Op(G)). Заметим, что

CG(Op(G)) ◁ G.
Предположим, что CG(Op(G)) = G. Тогда Op(G)⊆ Z(G) и, следовательно, подгруппа I = G,

что не так по предположению.
Поэтому CG(Op(G)) ̸= G. Отсюда и из последней выделенной формулы вытекает, что

GpCG(Op(G)) ◁G. Однако ранее мы отметили, что S = Op′(G) = G.
Следовательно, (kerψ1)p = Gp∩kerψ1 ̸= 1. Так как (kerψ1)p ◁Gp, то Z = (kerψ1)p∩Z(Gp) ̸=

̸= 1 и поскольку T ⊆ NG(Gp) и Z(Gp) ◁NG(Gp), то Zt ⊆ Z(Gp) ⊆ I для всех t ∈ T . Здесь T из
формулы (2). Поэтому для 1 ̸= z ∈ Z получаем, что

χ(z) = (ψ1)
G(z) = ∑

t∈T
(ψ1)

0(tzt−1) = ∑
t∈T
ψ1(tzt−1) = |T |ψ1(z) = |T |ψ1(1) = χ(1),

ибо z ∈ kerψ1. Здесь (ψ1)
0(x) = ψ1(x), если x ∈ I и (ψ1)

0(x) = 0, если x ̸∈ I. Мы получили про-
тиворечие с точностью характера χ.

Рассмотрим теперь случай, когда I = G. Поскольку по выбору группы G число n не делится
на p, то χOp(G) = χ(1)λ для линейного неприводимого характера λ подгруппы Op(G). Тогда Op(G)⊆
⊆ Z(G). Значит, M = Mp′ ×Op(G) и, так как Mp′ = Gp′ , то видим, что G = GpGp′ , где Gp′ ◁G и
|Gp : Op(G)| = p. Замечаем, что характер χ и группа G удовлетворяют условиям леммы 2 [7].
По этой лемме группа G имеет неприводимый характер χ′ степени n и kerχ′ = Op(G). Рассмотрим
факторгруппу G = G/Op(G). Она и ее точный неприводимый характер χ′ в смысле леммы 2.22
[10] удовлетворяют условиям теоремы 1.4. Поскольку |G| < |G|, то по индукции χ′(1) делится
на p или на такую степень f > 1 простого числа, что f ≡ 1(mod p). Поскольку χ′(1) = n, то мы
получили противоречие с выбором группы G.

Осталось рассмотреть случай, когда Op(G) = 1. По теореме 6.3.2 [9] CG(Op′(G))⊆ Op′(G).
Допустим, что Op,p′(G) ̸= G. По теореме Клиффорда все неприводимые компоненты характера
χOp,p′ (G) имеют одинаковую степень, делящую n. Если группа Op,p′(G) не p-замкнута, то мы придем
к тому, что n делится на p или на такую степень f > 1 простого числа, что f ≡ 1(mod p). Поскольку
это противоречит выбору группы G, то делаем вывод, что группа Op,p′(G) является p-замкнутой.
Это противоречит тому, что Op(G) = 1.

Делаем вывод, что Op,p′(G) = G и |G : Op′(G)|= p. Мы видим, что группа G = GpOp′(G), Gp,
Op′(G), COp′ (G)(Gp), χOp′ (G) и n удовлетворяют условию 1.1. По теореме 1.2 n делится на такую
степень f > 1 простого числа, что f ≡ 1(mod p).

Теорема 1.4 доказана.
Работа поддержана Институтом математики НАН Беларуси в рамках государственной про-

граммы «Конвергенция–2025».
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Abstract. Let F and H be some τ-closed σ-local formations of finite groups. By F/τσH∩F we
denote the lattice of all τ-closed σ-local formations X such that H∩F⊆ X⊆ F. The length
of the lattice F/τσH∩F is called the Hτ

σ-defect, and for H = (1) it is the formation of all
identity groups, lτσ-length of F. The general properties of the Hτ

σ-defect of τ-closed σ-local
formations are studied, and a description of the structural structure of reducible τ-closed
σ-local formations with Hτ

σ-defect ⩽ 2 and lτσ-length ⩽ 3 is obtained.
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Аннотация. Пусть F и H – некоторые τ-замкнутые σ-локальные формации конечных
групп. Через F/τσH∩F обозначают решетку всех τ-замкнутых σ-локальных формаций
X таких, что H∩F ⊆ X ⊆ F. Длину решетки F/τσH∩F называют Hτ

σ-дефектом, а
при H = (1) – формация всех единичных групп, lτσ-длиной формации F. Изучены
общие свойства Hτ

σ-дефекта τ-замкнутых σ-локальных формаций, получено описание
структурного строения приводимых τ-замкнутых σ-локальных формаций, имеющих
Hτ
σ-дефект ⩽ 2 и lτσ-длину ⩽ 3.

1. Introduction

All groups under consideration are finite.We adhere to the terminology and notation adopted in [1–4].
The study and classification of formationswith given restrictions on the lattices of their subformations

is one of the most interesting and meaningful problems in the theory of formations of finite groups.
In 1986, A. N. Skiba [5] proved that the lattice of all formations, as well as the lattice of all local

formations, are modular. This result made it possible to apply the methods and constructions of general
lattice theory to the study of the structural structure of formations of finite groups. The study of the
structural structure of a local formation F based on the properties of its well-studied subformation was
first carried out by A. N. Skiba and E. A. Targonskii [6]. This approach was based on their concept of the
H-defect of a local formation. In the paper [6], the basic properties of the H-defect of a local formation
were studied, and a classification of local formations of nilpotent defect ⩽ 2 was obtained. Subsequently,
this method was widely used in studying the structural structure of not only local formations, but also
formations of other types, such as τ-closed multiply and totally local formations, partially saturated
and partially composition formations, etc. Moreover, H was considered not only as the formation of all
nilpotent groups, but also other fairly well-known classes (the class of all π-decomposable, π-nilpotent,
metanilpotent, soluble, supersoluble groups, etc.).

In this paper, we study the structural structure of τ-closed σ-local formations based on the ideas
and results of [2; 6]. Following [2; 6], we introduce the concept of the Hτσ-defect of a τ-closed σ-local
formation, as well as the lτσ-length of a τ-closed σ-local formation, study the basic properties of the
Hτσ-defect of a formation, and investigate the structural structure of τ-closed σ-local formations of finite
Hτσ-defect and lτσ-length.
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The following main results are obtained in the paper: a description of minimal τ-closed σ-local not
H-formations for an arbitrary τ-closed σ-local σ-nilpotent formation H, i. e. irreducible τ-closed σ-local
formations of Hτσ-defect 1 is given; the existence of Hτσ-critical formations for every τ-closed σ-local
formation F ̸⊆ H is proved; a characterization of τ-closed σ-local formations of Hτσ-defect 1 is obtained;
a description of the structure of τ-closed σ-local formations of Hτσ-defect ⩽ 2 and lτσ-length ⩽ 3 is given.

We prove the main results of the paper in Sections 3–7 and also consider some of the most
interesting consequences of the obtained results.

2. Basic definitions and some auxiliary results

The basic concepts of the theory of σ-properties of groups, as well as general properties of τ-closed
σ-local formations and their lattices are presented in the papers [1; 4; 7–23].

Let σ be some partition of the set of all primes P, i. e. σ = {σi | i ∈ I}, where P =
⋃

i∈I σi and
σi ∩σ j =∅ for all i ̸= j, G be a group, and F be a class of groups. Then σ(G) = {σi | σi

⋂
π(G) ̸=∅}

and σ(F) =
⋃

G∈Fσ(G).
The group G is called [1]: σ-primary if G is a σi-group for some i; σ-nilpotent if every chief

factor H/K from G is σ-central in G, that is, the semidirect product (H/K)⋊(G/CG(H/K)) is σ-primary;
σ-soluble if G = 1 or G ̸= 1 and each chief factor from G is σ-primary.

The symbolSσ denotes the class of all σ-soluble groups andNσ denotes the class of all σ-nilpotent
groups. For any σi ∈ σ the symbol Gσi denotes the class of all σi-groups.

Recall that a class of groups F is called a formation if: 1) G/N ∈ Fwhen G ∈ F, and 2) G/N∩K ∈ F
when G/N ∈ F and G/K ∈ F.

Every function f of the form f : σ→{formations of groups} is called a formation σ-function [4].
For any formation σ-function f the class LFσ( f ) defined as follows:

LFσ( f ) = (G | G = 1 or G ̸= 1 and G/Oσ′i,σi(G) ∈ f (σi) for all σi ∈ σ(G)).

If for some formation σ-function f we have F = LFσ( f ), then the class F is called σ-local, and f
called σ-local definition of F.

Let τ(G) be a set of subgroups of G such that G ∈ τ(G). Then τ is called a subgroup functor [2] if for
every epimorphismφ :A→ B and any groupsH ∈ τ(A) and T ∈ τ(B)we haveHφ ∈ τ(B) and Tφ

−1 ∈ τ(A).
The subgroup functor τ is called [2]: trivial, if for any group G we have τ(G) = {G}; identity, if for

any group G we have τ(G) = s(G) is the collection of all subgroups of G.
A formation F is called τ-closed, if τ(G)⊆ F for any group G ∈ F. In particular, a formation is

called: hereditary, if it is τ-closed, where τ= s is a identity subgroup functor; normally hereditary, if its
is τ-closed, where τ(G) = sn(G) is the collection of all normal subgroups of G for any group G.

The collection of all τ-closed σ-local formations denote by lτσ. Formations from lτσ we call
lτσ-formations. In particular, if τ is a trivial subgroup functor [2], that is τ(G) = {G} for all G, the symbol
τ we omits and denotes by lσ the collection of all σ-local formations.

If f is a formation σ-function, then the symbol Supp( f ) denotes the support of f , that is, the set of
all σi such that f (σi) ̸=∅. A formation σ-function f is called: τ-valued, if f (σi) is τ-closed formation for
each σi ∈ Supp( f ); integrated if f (σi)⊆ LFσ( f ) for all i; full if f (σi) =Gσi f (σi) for all i. If F is a full
integrated formation σ-function and F= LFσ(F), then F is called the canonical σ-local definition of F.

We also use ∩ j∈J f j to denote a formation σ-function h such that h(σi) = ∩ j∈J f j(σi), in particular,
h(σi) = ( f1 ∩ f2)(σi) = f1(σi)∩ f2(σi), for all i.

Let { f j | j ∈ J} be a set of all τ-valued σ-local definitions of F. Then we say that f = ∩ j∈J f j

is the smallest τ-valued σ-local definition of F.
For any set of groups X the symbol lτσformX denotes a τ-closed σ-local formation generated by X,

that is, lτσformX is the intersection of all τ-closed σ-local formations containing X. If F= lτσformG for
some group G, then F is called a one-generated τ-closed σ-local formation.

Let {F j | j ∈ J} be some collection of τ-closed σ-local formations. Then we put ∨τσ(F j | j ∈ J) =
= lτσform (∪ j∈JF j). In particular, for any two lτσ-formations M and H we set M∨ τσH= lτσform (M∪H).

For an arbitrary set of groups X and any σi ∈ σ, the symbol X(σi) [9, p. 962] denotes the class of
groups defined as follows: X(σi) = (G/Oσ′i,σi(G) | G ∈ X), if σi ∈ σ(X), X(σi) =∅, if σi /∈ σ(X).
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Following [24; 25], by a minimal τ-closed σ-local not H-formation or an Hτσ-critical formation
we mean a τ-closed σ-local formation F ̸⊆ H, all of whose proper τ-closed σ-local subformations are
contained in the class of groups H.

Recall [2, p. 12] that a non-empty set of formations θ is called a complete lattice of formations if
the intersection of any set of formations from θ again belongs to θ, and the set θ contains a formation
M such that H ⊆M for all H ∈ θ. Any formation from θ is called a θ-formation.

For any two θ-formations M and H, where M ⊆ H, we denote by H/θM [2, p. 168] the lattice
of θ-formations X such that M ⊆ X ⊆ H. In particular, H/τσM denotes the lattice of τ-closed σ-local
formations X such that M ⊆ X ⊆ H.

Let θ be some complete modular lattice of formations. For any two θ-formations F andM [2, p. 192],
where M ⊆ F, |F : M|θ denote the length of the lattice F/θM of θ-formations contained between M
and F. Let F and H be arbitrary θ-formations. Then the Hθ-defect of the formation F is the lattice length
F/θH∩F (finite or infinite) and is denoted by |F : H∩F|θ.

Let 0θ be the zero of the lattice θ, F ∈ θ. Then the θ-length [2, p. 212] of the formation F is the
cardinal number |F : 0θ|θ. In particular, the length of the formation F is the number l(F) = |F : ∅|; the
length of the local formation F is the number l1(F) = |F : (1)|l.

Following [2, p. 192] an Hτσ-defect of a τ-closed σ-local formation F, we will call the lattice length
F/τσH∩F and denote it by |F : H∩F|τσ. Similarly, following [2, p. 212], an lτσ-length of a τ-closed σ-local
formation F is the number lτσ(F) = |F : (1)|τσ.

Let us also recall the concept of direct decomposition of a formation (see [2, p. 171]). Let {F j | j ∈ J}
be some nonempty set of subclasses of F j ⊆ F such that F j1∩F j2 = (1) for any j1 ̸= j2 in J. If, in addition,
every group G ∈ F has the form G = A j1 × . . .×A jt , where A j1 ∈ F j1 , . . . ,A jt ∈ F jt for some j1, . . . , jt ∈ J,
then we write that F = ⊕ j∈JF j (in particular, F = F1 ⊕ . . .⊕Ft , if J = {1, . . . , t}).

A subformationM of a formation F is called complemented [2, p. 170] in F if F= form(M∪H) and
M∩H= (1) for some subformationH ofF. In this case, the subformationH is called complement ofM inF.

To prove the main result of the paper, we need the following known facts from formation theory.
A special case of Theorem 1.15 [16] is the following lemma.
Lemma 2.1 [16, Theorem 1.15]. The set lτσ of all τ-closed σ-local formations forms an algebraic

modular lattice of formations.
Lemma 2.2 [26, Chapter II, §8, Theorem 16]. Let L be a lattice of finite length. Then the following

conditions are equivalent:
(i) the modular law holds in L;
(ii) L is upper and lower semimodular;
(iii) L satisfies the Jordan-Dedekind chain condition and h[x]+h[y] = h[x∨ y]+h[x∧ y].
Lemma 2.3 [17, Lemma 2.1]. Let Π be a nonempty subset of σ. Then GΠ of all Π-groups and the

class NΠ of all σ-nilpotent Π-groups are σ-local formations and the following statements hold.
(1) GΠ = LFσ(g), where g is the canonical σ-local definition of the formation GΠ. Moreover,

g(σi) =GΠ for all σi ∈ Π and g(σi) =∅ for all σi ∈ Π′;
(2) NΠ = LFσ(n) = LFσ(N), where n and N are, respectively, the smallest and canonical σ-local

definitions of the formation NΠ. Moreover, n(σi) = (1) for all σi ∈ Π and n(σi) = ∅ for all σi ∈ Π′,
N(σi) =Gσi for all σi ∈ Π and N(σi) =∅ for all σi ∈ Π′.

Lemma 2.4 [21, Theorem]. Let F be a nonempty formation. Then the following statements are
equivalent:

(i) F is τ-closed n-multiply σ-local (n ⩾ 1);
(ii) GσiF

τ
σn−1

(σi)⊆ F for all σi ∈ σ(F);
(iii) F= form(∪σi∈σ(F)GσiF

τ
σn−1

(σi)).
Lemma 2.5 [15, p. 2372]. Let F=⊕ j∈JF j, where {F j | j ∈ J} is the set of formations such that

σ(Fa)∩σ(Fb) =∅ for any a,b ∈ J, a ̸= b. If and only if the formation F is n-multiply σ-local (n ⩾ 1), F j

is n-multiply σ-local formation for all j.
Lemma 2.6 [26, Ch. II, §7, Theorem 12]. If a,b,c are elements of the modular lattice M, then if

either of the two equalities a∧ (b∨ c) = (a∧b)∨ (a∧c) or a∨ (b∧ c) = (a∨b)∧ (a∨c) holds, the triple
{a,b,c} is distributive.
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Lemma 2.7 is a special case of Lemma 2.6 [9].
Lemma 2.7 [9, Lemma 2.6]. Let F= lτσform(X) = LFσ( f ) – τ-closed σ-local formation generated

by X and Π = σ(X). Let m be a formation σ-function such that m(σi) = τform(X(σi)) for all σi ∈ Π and
m(σi) =∅ for all σi ∈ Π′. Then:

(1) Π = σ(F);
(2) m is a τ-valued σ-local definition of F; and
(3) m(σi)⊆ f (σi)∩F for all i.
The following lemma is a special case of Lemma 3.1 [16].
Lemma 2.8 [16, Lemma 3.1]. Let F j = LFσ( f j) for all j ∈ J, where f j is the τ-valued σ-local

definition of F j, F= ∩ j∈JF j, and f = ∩ j∈J f j. Then:
(1) σ(F) = ∩ j∈Jσ(F j) = Supp( f );
(2) F= LFσ( f ) is a τ-closed σ-local formation, where f is a τ-valued formation σ-function.
Furthermore, if f j is an integrated τ-valued formation σ-function for all j ∈ J, then f is also an

integrated τ-valued formation σ-function.
Lemma 2.9 [23, Theorem]. Let H be a σ-local formation of classical type and h be its canonical σ-

local definition. ThenF is aminimal τ-closedσ-local non-H-formation if and only ifF= lτσformG, where G
is a monolithic τ-minimal non-H-group with monolith P = GH, and one of the following conditions holds:

1) G = P is a simple σi-group such that σi /∈ σ(H) and τ(G) = {1,G};
2) P is a non-σ-primary group and G is a τ-minimal non-h(σi)-group with P = Gh(σi) for all

σi ∈ σ(P);
3) G = P⋊K, where P = CG(P) is a p-group, p ∈ σi, and K is either a monolithic τ-minimal

non-h(σi)-group with monolith Q = Kh(σi) ̸⊆ Φ(K), where σi /∈ σ(Q), or a minimal non-h(σi)-group of
one of the following types: a) the quaternion group of order 8, if 2 /∈ σi; b) an extraspecial group of
order q3 of prime odd exponent q /∈ σi; c) a cyclic q-group, q /∈ σi.

Lemma 2.10 [9, Lemma 2.1]. Let f and h be formation σ-functions and let Π = Supp( f ). Let us
assume that F= LFσ( f ) = LFσ(h). Then:

(1) Π = σ(F);
(2) F= (∩σi∈ΠGσ′iGσi f (σi))∩GΠ. Therefore, F is a saturated formation;
(3) If every group in F is σ-soluble, then F= (∩σi∈ΠSσ′i

Gσi f (σi))∩SΠ;
(4) If σi ∈ Π, then Gσi( f (σi)∩F) =Gσi(h(σi)∩F)⊆ F;
(5) F= LFσ(F), where F is the unique formation σ-function such that F(σi) =GσiF(σi)⊆ F for

all σi ∈ Π and F(σi) =∅ for all σi ∈ Π′. Furthermore, F(σi) =Gσi( f (σi)∩F) for all i.
Lemma 2.11 is a special case of Corollary 3.1 [14].
Lemma 2.11 [14, Corollary 3.1]. Let f j be the smallest τ-valued σ-local definition of F j, j = 1,2.

Then F1 ⊆ F2 if and only if f1 ⩽ f2.
Lemma 2.12 [1, Lemma 18.8]. If a group G has only one minimal normal subgroup and Op(G) = 1

(p is some prime number), then there exists a faithful irreducible FpG-module, where Fp is a field of p
elements.

Lemma2.13 [16, Corollary 3.7]. For anyσ-localformationsM andH, there is a lattice isomorphism
M∨ τσH/τσM≃ H/τσH∩M.

Lemma 2.14 [2, Theorem 4.3.2]. Let M be a nonempty subformation of F. Then if H is the
complement ofM in F, then F= {A×B | A ∈M,B ∈ H}.

3. Hτσ-defect formation

Let H and F be τ-closed σ-local formations. Following [2, p. 192] an Hτσ-defect of F we will call
the lattice length F/τσH∩F and denote it by |F : H∩F|τσ.

By Lemma 2.1 the following two statements are special cases (for θ= lτσ) of Lemmas 5.2.8 and
5.2.7 [2], respectively.

Lemma 3.1. Let M, F, X, and H be τ-closed σ-local formations, and F=M∨ τσX. Then if m, r,
and t are, respectively, Hτσ-defects of the formationsM, X, and F, and m, r < ∞, then t ⩽ m+ r.
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Lemma 3.2. Let M, F, and H be τ-closed σ-local formations, and M⊆ F. Then |M : H∩M|τσ ⩽
⩽ |F : H∩F|τσ.

An element a of the lattice L is called neutral (otherwise distributive) [26, p. 96], if for any b, c ∈L

the triple a,b,c generates a distributive sublattice in the lattice L.
Lemma 3.3. LetM and F be τ-closed σ-local formations of finite Hτσ-defect, where H is the neutral

element of the lattice of τ-closed σ-local formations. Then for the Hτσ-defect of the formation M∨ τσF the
following equality holds:

|M∨ τσF : H∩ (M∨ τσF)|τσ = |M : H∩M|τσ+ |F : H∩F|τσ−|M∩F : H∩ (M∩F)|τσ.

Proof. Let M, F, and H be σ-local formations satisfying the condition of the lemma. Let X =
=M∨ τ

σF, L =M∩F, t = |X : H∩X|τσ, m = |M : H∩M|τσ, k = |F : H∩F|τσ and l = |L : H∩L|τσ. By
Lemma 3.1, we have t ⩽ m+ k.

Let now X1 := X∨ τσH,M1 :=M∨ τσH, F1 := F∨ τσH and L1 := L∨ τσH. By virtue of Lemmas 3.1
and 3.2, equality |X1 : H∩X1|τσ = t, |M1 : H∩M1|τσ = m, |F1 : H∩F1|τσ = k and |L1 : H∩L1|τσ = l.
Therefore, the lattice length X1/

τ
σ(X1 ∩H) = X∨ τσH/τσH is equal to t. Note also that the formationsM1

and F1 are elements of the lattice X∨ τσH/τσH≃ X/τσX∩H and an Hτσ-defect is a function of the lattice
height X/τσX∩H. Therefore, by Lemma 2.2 the following holds equality

|M1 ∨ τσF1 : H∩ (M1 ∨ τσF1)|τσ = |M1 : H∩M1|τσ+ |F1 : H∩F1|τσ−|M1 ∩F1 : H∩ (M1 ∩F1)|τσ. (∗)

BecauseM1∨τσF1 =(M∨τσH)∨τσ(F∨τσH)=X∨τσH, that |M1∨τσF1 :H∩(M1∨τσF1)|τσ= t.Furthermore,
by hypothesis, H is a neutral element of the lattice of τ-closed σ-local formations, thereforeM1 ∩F1 =
= (M∨ τ

σH)∩ (F∨ τ
σH) = (M∩F)∨ τ

σH = L∨ τ
σH = L1.

Finally, since |L1 : H∩L1|τσ = l = |M∩F : H∩ (M∩F)|τσ, then from (∗) we get

|M∨ τσF : H∩ (M∨ τσF)|τσ = |M : H∩M|τσ+ |F : H∩F|τσ−|M∩F : H∩ (M∩F)|τσ. □

Lemma 3.4. Let F,M, and H be τ-closed σ-local formations such that H⊆M. Then the Hτσ-defect
of F is finite if and only if the Hτσ-defect of the formation M∩F and Mτ

σ-defect formations F, in this case

|F : H∩F|τσ = |M∩F : H∩ (M∩F)|τσ+ |F : M∩F|τσ.

Proof. Necessity. Assume that the Hτσ-defect of F is finite and let |F : H∩F|τσ = n. Then, by
Lemma 3.2, the inequality |M∩F : H∩ (M∩F)|τσ ⩽ |F : H∩F|τσ. Therefore, the Hτσ-defectM∩F is also
finite. Let k = |M∩F : H∩ (M∩F)|τσ. By the definition of Hτσ-defect and by Lemma 2.1, the modularity
of the lattice lτσ, implies that there exist chains

H∩F= F0 ⊂ F1 ⊂ . . .⊂ Fn−1 ⊂ Fn = F,

H∩F= H∩ (M∩F) = L0 ⊂ L1 ⊂ . . .⊂ Lk−1 ⊂ Lk =M∩F

fromH∩F to F andM∩F respectively, which Fi is the maximal τ-closed σ-local subformation in Fi+1 and
L j is the maximal τ-closed σ-local subformation in L j+1 for all i = 0,1, . . . ,n−1 and j = 0,1, . . . ,k−1.
Since H∩F⊆M∩F⊆ F, then, by Lemma 2.1 from the modularity of the lattice lτσ It follows that there
exists a chainM∩F= X0 ⊂ X1 ⊂ . . .⊂ Xt−1 ⊂ Xt = F of length t = n− k such that Xi is the maximal
τ-closed σ-local subformation in Xi+1, i = 0,1, . . . , t −1. Therefore, the lattice F/τσM∩F has finite length
equal to t. Then t = |F : M∩F|τσ by the definition of the Mτ

σ-defect.
Sufficiency. Let k = |M∩F : H∩ (M∩F)|τσ and t = |F : M∩F|τσ. Then we have

M∩F= X0 ⊂ X1 ⊂ . . .⊂ Xt−1 ⊂ Xt = F,

H∩F= H∩ (M∩F) = L0 ⊂ L1 ⊂ . . .⊂ Lk−1 ⊂ Lk =M∩F,

where Xi and L j are the maximal τ-closed σ-local subformation in Xi+1 and L j+1, respectively, i =
= 0,1, . . . , t −1 and j = 0,1, . . . ,k − 1. Therefore, there exists a maximal chain of τ-closed σ-local
formations of length k+ t from H∩F to F. By Lemma 2.1, the latter implies that |F : H∩F|τσ = k+ t, i. e.

|F : H∩F|τσ = |M∩F : H∩ (M∩F)|τσ+ |F : M∩F|τσ. □

Lemma 3.5. Let H be a τ-closed σ-local formation such that (1) ̸= H⊂Nσ. Then H=Nσ(H).
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Proof. Let Π = σ(H) and GΠ be the class of all Π-groups. By Lemma 2.3(1), the formation GΠ

is σ-local. Moreover, since the formation GΠ is hereditary, it is τ-closed for any subgroup functor τ.
Therefore, the inclusion H⊆GΠ ∩Nσ =NΠ.

On the other hand, in view of Lemma 2.4(ii), we have Gσi ⊆GσiH
τ
σ0
(σi)⊆ H for all σi ∈ Π. Thus,

taking into account Lemma 2.5 we have NΠ =⊕σi∈ΠGσi ⊆ H. Thus, H=NΠ, where Π = σ(H).
Lemma 3.6. Every σ-nilpotent τ-closed σ-local formation is a neutral element of the lattice lτσ.

In particular, the formation Nσ of all σ-nilpotent groups is a neutral element of the lattice lτσ.
Proof. LetH,F, andM be some τ-closedσ-local formations, whereH isσ-nilpotent. ByLemmas 2.1

and 2.6, to prove the assertion of the lemma, it suffices to show that H∩ (F∨ τσM) = (H∩F)∨ τσ(H∩M).
If H= (1), then the statement is obvious. Let H ̸= (1) and Π1 = σ(H∩F) and Π2 = σ(H∩M).

Since (H∩F)∨ τσ(H∩M) = lτσform((H∩F)∪ (H∩M)), then by Lemma 2.7(1) we have

σ((H∩F)∨ τσ(H∩M)) = σ((H∩F)∪ (H∩M)) = σ(H∩F)∪σ(H∩M) = Π1 ∪Π2.

Since (H∩F)∨ τσ(H∩M)⊆ H∩ (F∨ τσM), then σ((H∩F)∨ τσ(H∩M))⊆ σ(H∩ (F∨ τσM)), i. e. Π1 ∪
∪Π2 ⊆ σ(H∩ (F∨ τσM)).

On the other hand, F∨ τσM= lτσform(F∪M) and again by Lemma 2.7(1) we have

σ(F∨ τσM) = σ(F∪M) = σ(F)∪σ(M).

By Lemma 2.8(2), the formation H∩ (F∨ τσM) is a τ-closed σ-local formation. Now, if σi ∈ σ(H∩
∩ (F∨ τσM)), then Gσi ⊆ H∩ (F∨ τσM) by Lemma 2.4(ii). Therefore,

σi ∈ σ(H)∩σ(F∨ τσM) = σ(H)∩ (σ(F)∪σ(M)).

Hence, Gσi ⊆ (H∩F)∪ (H∩M). Therefore,

σi ∈ σ(H∩F)∪σ(H∩M) = Π1 ∪Π2.

Thus, σ((H∩F)∨ τ
σ(H∩M)) = σ(H∩ (F∨ τ

σM)). Since in this case both formations (H∩F)∨
∨ τσ(H∩M) and H∩ (F∨ τσM) are σ-nilpotent τ-closed σ-local formations, then by Lemma 3.5 we have
(H∩F)∨ τσ(H∩M) =NΠ = H∩ (F∨ τσM), where Π = Π1 ∪Π2. Therefore, τ-closed σ-local formations
H, F, and M form a distributive triple in the lattice lτσ, and therefore H is the identity element of lτσ. In
particular, if H=Nσ, we obtain the second part of the lemma.

The next lemma is a direct consequence of Lemmas 3.3 and 3.6.
Lemma 3.7. LetM andF be τ-closedσ-local formations of finiteHτσ-defect, whereH is aσ-nilpotent

τ-closed σ-local formation. Then, for Hτσ-defect of the formationM∨ τσF, we have

|M∨ τσF : H∩ (M∨ τσF)|τσ = |M : H∩M|τσ+ |F : H∩F|τσ−|M∩F : H∩ (M∩F)|τσ.

In particular, if H=Nσ, then for the σ-nilpotent lτσ-defect of the formationM∨ τσF we have

|M∨ τσF : Nσ∩ (M∨ τσF)|τσ = |M : Nσ∩M|τσ+ |F : Nσ∩F|τσ−|M∩F : Nσ∩ (M∩F)|τσ.

4. lτσ-Formations of Hτσ-defect 1

Let F be a τ-closed σ-local formation. Following [2, p. 200], a formation F will be called an
irreducible τ-closedσ-local formation (or an lτσ-irreducible formation) ifF ̸= lτσform(∪i∈IXi) =∨τσ(Xi | i∈
∈ I), where {Xi | i ∈ I} is the set of all proper τ-closed σ-local subformations of F. If there exist such
proper τ-closed σ-local subformations X and H of F, such that F= X∨ τσH, then the formation F will
be called a reducible τ-closed σ-local (or an lτσ-reducible) formation.

Since every minimal τ-closed σ-local non-H-formation F is obviously an lτσ-irreducible formation
and its unique maximal τ-closed σ-local subformation is contained in H, the Hτσ-defect of the formation F
is equal to 1. Thus, every Hτσ-critical formation is an lτσ-irreducible formation of Hτσ-defect 1.

Theorem 4.1. Let F and H be τ-closed σ-local formations such that F ̸⊆ H⊆Nσ. If and only if F
is a minimal τ-closed σ-local non-H-formation, F= lτσformG and one of the following conditions holds:

(1) G is a simple σi-group such that σi /∈ σ(H) and τ(G) = {1,G};
(2) G is a simple non-σ-primary τ-minimal non-Gσi-group for any σi ∈ σ(G), σ(G)⊆ σ(H);
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(3) G = P⋊K, where P =CG(P) is an аbelian p-group for some p ∈ σi ∈ σ(H), and K is a simple
σ j-group ( j ̸= i) such that τ(K) = {1,K}.

Proof. Necessity. Let F be a minimal τ-closed σ-local non- H-formation. By Lemma 3.5, we
have H=NΠ, where Π = σ(H). By Lemma 2.3(2), we have NΠ = LFσ(n), where n is the least σ-local
definition of the formationNΠ and n(σi) = (1) for all σi ∈ Π, n(σi) =∅ for all σi ∈ Π′. Thus, H=NΠ is
a σ-local formation of classical type. Let h be the canonical σ-local definition of the formation H.

By Lemma 2.9, we have F = lτσformG, where G is a monolithic τ-minimal non-H-group with
monolith P = GH, and one of the following conditions holds:

1) G = P is a simple σi-group such that σi /∈ σ(H) and τ(G) = {1,G};
2) P is a non-σ-primary group and G is a τ-minimal non-h(σi)-group with P = Gh(σi) for all

σi ∈ σ(P);
3) G = P⋊K, where P = CG(P) is a p-group, p ∈ σi, and K is either a monolithic τ-minimal

non-h(σi)-group with monolith Q = Kh(σi) ̸⊆ Φ(K), where σi /∈ σ(Q), or a minimal non-h(σi)-group
of one of the following types: a) the quaternion group of order 8, if 2 /∈ σi; b) an extraspecial group of
order q3 of prime odd exponent q /∈ σi; c) a cyclic q-group, q /∈ σi.

If condition 1) holds for G, then, obviously, G satisfies condition (1) of the theorem.
Let condition 2) hold for G. It follows from Lemma 2.3(2) that h(σi) = Gσi for all σi ∈ Π and

h(σi) = ∅ for all σi ∈ Π′. We show that in this case G = P is a simple non-σ-primary τ-minimal
non-Gσi-group for any σi ∈ σ(G) and σ(G)⊆ σ(H).

Indeed, since P = Gh(σi) for all σi ∈ σ(P), we have h(σi) ̸= ∅. Therefore, σ(P) ⊆ σ(H) by
Lemma 2.10(5). On the other hand, since |σ(P)|> 1, then for σi,σ j ∈ σ(P), where i ̸= j, we have

G/P ∈ h(σi)∩h(σ j) =Gσi ∩Gσ j = (1).

Therefore, and since G is monolithic, we conclude that G = P is a simple non-σ-primary group such that
σ(G)⊆ σ(H). SinceGσi is a hereditary formation,Gσi is a τ-closed formation for any subgroup functor τ.
Therefore, by [2, Remark 2.2.12], the τ-minimality condition for G can be replaced by the τ-minimality
condition. This means that G is a τ-minimal non-Gσi-group for all σi ∈ σ(P). Consequently, G satisfies
condition (2) of the theorem.

Finally, let condition 3) hold forG. SinceQ=Kh(σi), thenσi ∈σ(H) andΦ(K) = 1 since h(σi) =Gσi

is a saturated formation.
Let us show that K is a simple σ j-group, j ̸= i. Indeed, since K ∈ H⊆Nσ, it follows that K = Q is

a simple σ-primary group due to the monolithicity and σ-nilpotency of K. Consequently, K is a σ j-group,
where j ̸= i. Moreover, since K is an τ-minimal non-Gσi-group, it follows that τ(K) = {1,K}. Therefore,
G satisfies condition (3) of the theorem.

Sufficiency. Let F be a formation satisfying the conditions of the theorem, h be the canonical
σ-local definition of the formation H. By Lemmas 3.5 and 2.3(2), we have H=Nσ(H) and h(σi) =Gσi for
all σi ∈ σ(H), h(σi) =∅ for all σi /∈ σ(H).

If condition (1) holds for F, then obviously, by the condition 1) Lemma 2.9, the formation F is a
minimal τ-closed σ-local non- H-formation.

Suppose that condition (2) holds for F. Since Gσi is a τ-closed formation, by [2, Remark 2.2.12] G
is an τ-minimal non-Gσi-group for any σi ∈ σ(G). Therefore, G satisfies condition 2) of Lemma 2.9, and
hence F is a minimal τ-closed σ-local non-H-formation.

Now let condition (3) hold for the formation F. We show that in this case, conditions 3) of Lemma 2.9
hold for F. Indeed, since h(σi) =Gσi and h(σ j) =Gσ j , it follows that K = Kh(σi) is a monolithic τ-minimal
non-h(σi)-group, σi /∈ σ(K). Moreover, Φ(K) = 1 and 1 = Kh(σ j) ⊆ K. Consequently, conditions 3) of
Lemma 2.9 are satisfied for the group G. Therefore, F= lτσformG is a minimal τ-closed σ-local non-H-
formation.

In the case where H = Nσ is the formation of all σ-nilpotent groups, Theorem 4.1 has the
following special case.

Theorem 4.2. If and only if F is a minimal τ-closed σ-local non-σ-nilpotent formation, then
F= lτσformG and one of the following conditions holds:

1) G is a simple non-σ-primary τ-minimal non-Gσi-group for any σi ∈ σ(G);
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2) G = P⋊K, where P =CG(P) is a p-group, p ∈ σi, and K is a simple σ j-group ( j ̸= i) such that
τ(K) = {1,K}.

In the case where τ is a trivial subgroup functor, we have
Corollary 4.3 [17, Corollary 2.9]. If and only if F is a minimal σ-local non-σ-nilpotent formation

when F= lσformG and one of the following conditions holds:
1) G is a simple non-σ-primary group;
2) G = P⋊K, where P =CG(P) is a p-group, p ∈ σi, and K is a simple σ j-group, j ̸= i.
In particular, if σ = σ1 = {{2},{3},{5}, . . .}, from Theorem 4.1 we obtain
Corollary 4.4. Let F and H be τ-closed local formations such that F ̸⊆ H⊆N. If and only if F is

a minimal τ-closed local non-H-formation when F= τlformG, where G is one of the following groups:
(1) a group of prime order p /∈ π(H);
(2) a simple non-abelian τ-minimal non-Np-group for any p ∈ π(G)⊆ π(H);
(3) a Schmidt group, π(G)⊆ π(H).
If τ is the trivial subgroup functor, then we have
Corollary 4.5. Let F and H be local formations such that F ̸⊆ H⊆N. If and only if F is a minimal

local non-H-formation, then F= lformG, where G is one of the following groups:
(1) a group of prime order p /∈ π(H);
(2) a simple non-abelian group, π(G)⊆ π(H);
(3) a Schmidt group, π(G)⊆ π(H).
Furthermore, if H = N is the formation of all nilpotent groups from Theorem 4.1 we obtain

the following well-known result.
Corollary 4.6 [2, Corollary 2.4.4]. If and only if F is a minimal τ-closed local non-nilpotent

formation when F= τlformG where G is either a simple non-abelian τ-minimal non- Np-group for any
p ∈ π(G), or a Schmidt group.

If τ is a trivial subgroup functor, then we have
Corollary 4.7 [1, Corollary 19.10]. If and only if F is a minimal local non-nilpotent formation,

then F= lformG and one of the following conditions holds:
(1) G is a Schmidt group;
(2) G is a simple non-abelian group.
The question of the existence of Hτσ-critical formations, in the case where H⊆Nσ, is decided by
Theorem 4.8. Let F and H be τ-closed σ-local formations such that F ̸⊆ H⊆Nσ Then F contains

at least one minimal τ-closed σ-local non-H-subformation.
Proof. Let F and H be τ-closed σ-local formations from the hypothesis of the theorem. If there

exists a σk such that σk ∈ σ(F)\σ(H), then by Lemma 2.10 we have Gσk ⊆ F and Gσk ̸⊆ H. Since Gσk is
a τ-closed σ-local formation, and its only proper σ-local subformation is (1)⊆ H, then Gσk is the desired
Hτσ is a critical formation from F.

In what follows, we will assume that σ(F)⊆ σ(H).
By Lemma 3.5, we haveH=Nσ(H). Let h be the canonical σ-local definition ofH. By Lemma 2.3(2),

we have h(σi) = Gσi for all σi ∈ σ(H) and h(σi) = ∅ for all σi /∈ σ(H). Since F ̸⊆ H, by Lemma 2.11
there exists at least one σi ∈ σ(F) such that f (σi) ̸⊆ h(σi) =Gσi . We choose a group Ki of minimal order
in f (σi)\Gσi . Since the formation Gσi is τ-closed, Ki is a monolithic τ-minimal non-Gσi-group with
monolith Qi = K

Gσi
i . Among all such groups Ki, we choose a group K j of smallest order. Let K := K j.

Then K is a monolithic τ-minimal non-Gσ j -group with monolith Q = KGσ j .
Assume that Q is not a σ-primary group and let σk ∈ σ(Q) \ {σ j}. Then Oσk,σ

′
k
(K) = 1 due

to the monolithicity of K. Since K ∈ F, then K ≃ K/Oσ j,σ′j
(K) ∈ f (σ j). It is clear that K /∈ Gσk =

= h(σk). Therefore, K ∈ f (σk) \ h(σk). If, in addition, K/Q /∈ h(σk), then K/Q ∈ f (σk) \ h(σk). The
latter contradicts the choice of the group K, since |K/Q| < |K|. Therefore, K/Q ∈ h(σk) =Gσk . Thus,
K/Q ∈Gσ j ∩Gσk = (1). Consequently, K is a simple non-σ-primary τ-minimal non-Gσ j -group.

Now let H ∈ τ(K) \ {K}. Then H ∈ f (σk), since K ∈ f (σk) and f (σk) is a τ-closed formation.
Suppose that H /∈ h(σk). Then since |H|< |K|, we obtain a contradiction with the choice of |K|. Thus,
K is a simple non-σ-primary τ-minimal non-Gσk-group for any σk ∈ σ(K). Thus, the group K satisfies
condition (2) of Theorem 4.1. Therefore, L= lτσformK is the desired Hτσ-critical formation from F.
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Now let Q be a σ-primary group, i. e., a σk-group for some k ̸= j. Then K ̸= Q, since σ(F) ⊆
⊆ σ(H). Moreover, Q = Oσk,σ

′
k
(K) = Oσk(K) since Q is a monolith of K and k ̸= j. Since K ∈ F, then

K/Q = K/Oσk,σ
′
k
(K) ∈ f (σk). Therefore, K/Q ∈ f (σk)∩Gσ j ̸=∅. Let A be a group of minimal order in

f (σk)∩Gσ j . Then A is a simple σ j-group and τ(A) = {1,A}.
Let p ∈ σk. Since Op(A) = 1, by Lemma 2.12 there exists a faithful irreducible FpA-module P,

where Fp is a field of p elements. Let G = P⋊A. Then P =CG(P) and the group G satisfies condition (3)
of Theorem 4.1. Consequently, L= lτσformG is the desired Hτσ-critical formation from F.

In particular, if τ is the trivial subgroup functor from Theorem 4.8, we obtain
Corollary 4.9 [22, Theorem 3.8]. Let F and H be σ-local formations such that F ̸⊆ H⊆Nσ. Then

F has at least one minimal σ-local non-H-subformation.
If H = Nσ is the formation of all σ-nilpotent groups, then we obtain the following important

special case of Theorem 4.8.
Theorem 4.10. Let F be a non-σ-nilpotent τ-closed σ-local formation. Then F has at least one

minimal τ-closed σ-local non-σ-nilpotent subformation.
If τ is a trivial subgroup functor, we obtain
Corollary 4.11 [22, Corollary 3.9]. Let F be a non-σ-nilpotent σ-local formation. Then F has at

least one minimal σ-local non-σ-nilpotent subformation.
Recall that if M and H are formations such that M ⊆ H. Then the formation M is called

a subformation of H or, alternatively, an H-subformation.
Theorem 4.12. Let F and H be lτσ-formations such that F ̸⊆H⊆Nσ. Then and only if the Hτσ-defect

of F is 1, when F=M∨ τσL, where M is a τ-closed σ-local subformation of H, L is a minimal τ-closed
σ-local non-H-formation, such that:

(1) every τ-closed H-subformation of F is contained inM∨ τσ(L∩H);
(2) every lτσ-formation X from F such that X ̸⊆ H, has the form L∨ τσ(X∩H).
Proof. Necessity. Let F be a τ-closed σ-local formation with Hτσ-defect 1. Since F ̸⊆ H, then by

Theorem 4.8 F contains some minimal τ-closed σ-local not H-formation L. By the hypothesis of the
theorem,M= F∩H is the maximal lτσ-subformation of F. Therefore, F=M∨ τσL.

Sufficiency. Let F=M∨ τσL, where L is a minimal τ-closed σ-local non-H-formation, andM is
an lτσ-formation of H. Then, by Lemma 3.3, Hτσ-defect of F is equal to 1.

We now show that statements (1) and (2) hold. Since L∩H is a maximal τ-closed σ-local
subformation of L, it follows from Lemmas 2.1 and 2.13 of the lattice isomorphism

F/τσ(M∨ τσ(L∩H)) = (M∨ τσ(L∩H)∨ τσL)/τσ(M∨ τσ(L∩H))≃

≃ L/τσ(L∩ ((L∩H)∨ τσM)) = L/τσ((L∩H)∨ τσ(L∩M)) = L/τσL∩H

we get that M∨ τσ(L∩H) is the maximal lτσ-subformation of F. Since F ̸⊆ H, then every H-subformation
of F is included in (L∩H)∨ τσM. Therefore, assertion (1) holds.

Let us now show that in F there are no minimal τ-closed σ-local non-H-formations different from L.
Suppose that this is false, and let L1 be the minimal τ-closed σ-local non-H-formation in F such that
L1 ̸= L. Since the Hτσ-defects of L and L1 are equal to 1 and L∩L1 ⊆ H, by Lemma 2.9 we have

|L∨ τσL1 : H∩ (L∨ τσL1)|τσ = |L : H∩L|τσ+ |L1 : H∩L1|τσ−|L∩L1 : H∩ (L∩L1)|τσ = 2.

The latter contradicts Lemma 3.2, since L∨ τ
σL1 ⊆ F. Thus, in the formation F there are no minimal

τ-closed σ-local non-H-formations distinct from L.
Now let X be an arbitrary lτσ-subformation of F such that X ̸⊆ H. Then, by what was proved above

and Theorem 4.8, we conclude that L ⊆ X. Since X has Hτσ-defect equal to 1, X∩H is the maximal
τ-closed σ-local subformation of X. Therefore, X= L∨ τσ(X∩H), i. e., assertion (2) holds.

In the case when H =Nσ, from Theorem 4.12 we obtain the following result.
Theorem 4.13. Let F be a τ-closed σ-local non-σ-nilpotent formation. If and only if the σ-nilpotent

lτσ-defect of a formation F is 1 when F=M∨ τσL, whereM is a σ-nilpotent τ-closed σ-local subformation
of F, L is a minimal τ-closed σ-local non-σ-nilpotent formation, and:

(1) every σ-nilpotent τ-closed subformation of F is included inM∨ τσ(L∩Nσ);
(2) every non-σ-nilpotent lτσ-subformation X of F has the form L∨ τσ(X∩Nσ).
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In the case where τ = s is the identity subgroup functor, Theorem 4.12 implies
Corollary 4.14. Let F be a hereditary σ-local non-σ-nilpotent formation. If and only if the σ-

nilpotent ls
σ-defect of F is 1 when F=M∨ s

σL, where M is a σ-nilpotent hereditary σ-local subformation
of F, L is a minimal hereditary σ-local non-σ-nilpotent formation, and:

(1) every σ-nilpotent hereditary subformation of F is included inM∨ s
σ(L∩Nσ);

(2) every non-σ-nilpotent ls
σ-subformation X of F has the form L∨ s

σ(X∩Nσ).
If τ(G) = sn(G) is the set of all normal subgroups of G for any group G, then we obtain
Corollary 4.15. Let F be a normally hereditary σ-local non- σ-nilpotent formation. If and only if

the σ-nilpotent lsn
σ -defect of F is 1 when F =M∨ sn

σ L, where M is a σ-nilpotent σ-local subformation
of F, L is a minimal normally hereditary σ-local non-σ-nilpotent formation, and:

(1) every σ-nilpotent lsn
σ -subformation of F is in theM∨ sn

σ (L∩Nσ);
(2) every non-σ-nilpotent lsn

σ -subformation of X of F has the form L∨ sn
σ (X∩Nσ).

In particular, if σ = σ1 = {{2},{3},{5}, . . .} from Theorem 4.12 we obtain
Corollary 4.16. Let F and H be τ-closed local formations such that F ̸⊆ H⊆N. If and only if the

Hτl -defect of the formation F is 1, when F=M∨ τl L, whereM is a τ-closed local subformation of H, L is
the minimal τ-closed local not H-formation, for In this case:

(1) every τ-closed H-subformation of F is contained inM∨ τl (L∩H);
(2) every τ-closed local subformation X of F such that X ̸⊆ H has the form L∨ τl (X∩H).
If τ is a trivial subgroup functor, then
Corollary 4.17. Let F and H be local formations such that F ̸⊆ H⊆N. If and only if the Hl-defect

of the formation F is 1, when F=M∨ lL, where M is a local subformation of H, L is the minimal local
not H is a formation, and:

(1) every H-subformation of F is contained inM∨ l(L∩H);
(2) every local subformation X of F such that X ̸⊆ H has the form L∨ l(X∩H).
Furthermore, if H =N is the formation of all nilpotent groups from Theorem 4.12, we obtain

the following well-known result.
Corollary 4.18 [1, Lemma 20.5]. Then precisely the nilpotent defect of a local formation F is

equal to 1 when F=M∨ lL, where M is a nilpotent local formation, L is a minimal local non-nilpotent
formation, and:

(1) every nilpotent subformation of F is contained inM∨ l(L∩N);
(2) every non-nilpotent local subformation X of F has the form L∨ l(X∩N).
Theorem 4.19. Let F and H be τ-closed σ-local formations such that F ̸⊆ H ⊆ Nσ. Then if

σ(F)⊆ σ(H), then the following conditions are equivalent:
(1) |F : H∩F|τσ = 1;
(2) in F each of its τ-closed σ-local non-H-subformation is complemented;
(3) in F each of its τ-closed σ-local subformationsM with |M : H∩M|τσ = 1 is complemented.
Proof. Let (1) hold and M is a τ-closed σ-local subformation of F. Then if M ̸⊆ H, then by

Theorem 4.12 we haveM= L∨ τσ(M∩H), where L is the minimal τ-closed σ-local not H-formation. Let
Π = σ(F), Π1 = σ(M) and Π2 = Π\Π1.We show thatNΠ2 is the complement ofM in F. It is clear that
NΠ2 ∩M= (1).We show that form(M∪NΠ2) = F.

By Theorem 4.12 we have F= L∨ τσM1, whereM1 ⊆ H. On the other hand,

M= L∨ τσ(M∩H) = L∨ τσNΠ1 ,

becauseM∩H⊆M∩Nσ =NΠ1 . Now in force Lemmas 2.14 and 2.5 we have

form(M∪NΠ2) =M⊕NΠ2 =M∨ τσNΠ2 = (L∨ τσNΠ1)∨ τσNΠ2 = L∨ τσNΠ = F.

Thus, the formation NΠ2 is the complement ofM in F.
Clearly, if assertion (2) holds, then assertion (3) holds, since any τ-closed σ-local subformation of

M with |M : H∩M|τσ = 1 is not an H-subformation of F.
Now let (3) hold. We will show that condition (1) is satisfied. By the hypothesis of the theorem,

F ̸⊆ H. Therefore, by Lemma 2.4, F has a minimal τ-closed σ-local non-H-formation L. Let M= H∩F
and F1 =M∨ τσL. By Theorem 4.12, we have |F1 : H∩F|τσ = 1.
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Therefore, by the hypothesis of the theorem, F contains a subformationM1 such thatM1∩F1 = (1)
and F = form(F1 ∪M1). Now applying Lemmas 2.14 and 2.5, we obtain that F = F1 ⊕M1 and the
formationM1 τ-closed and σ-local.

Suppose that M1 ̸= (1). Then if σi ∈ σ(M1), then σi ∈ σ(F) ⊆ σ(H) by the hypothesis of the
theorem. Therefore, by Lemma 2.4(ii), the inclusions hold

Gσi ⊆M1 ∩ (F∩H)⊆M1 ∩F1 = (1).

The resulting contradiction shows that M1 = (1). Therefore, F = F1 ⊕ M1 = F1. Therefore,
|F : H∩F|τσ = 1.

Remark 4.20. The condition σ(F)⊆ σ(H) in Theorem 4.19 cannot be omitted, since the presence
of a complement in F for each of its τ-closed σ-local non- H-subformations, as well as the presence of
a complement in F for each τ-closed σ-local subformation M of F with |M : H∩M|τσ = 1 does not imply
the equality |F : H∩F|τσ = 1. Indeed, let H = Gσi and F = H∨ τ

σGσ j ∨ τ
σGσk , where σ j,σk ∈ σ \ {σi},

j ̸= k. Then, by Lemmas 2.5 and 2.14 we have F= H⊕Gσ j ⊕Gσk . By Theorem 4.1 and Lemma 3.3 we
have |F : H∩F|τσ = 2. However, as is easy to see, every τ-closed σ-local non-H-subformation of F, as well
as every τ-closed σ-local subformation of F with Hτσ-defect 1, have complement in F.

However, the following holds:
Corollary 4.21. LetF be a τ-closedσ-local non-σ-nilpotent formation. Then the following conditions

are equivalent:
(1) |F : Nσ∩F|τσ = 1;
(2) in F each of its τ-closed σ-local non-σ-nilpotent subformations is complemented;
(3) in F each of its τ-closed σ-local subformationsM with |M : Nσ∩M|τσ = 1 is complemented.
In particular, if σ = σ1 = {{2},{3},{5}, . . .}, from Theorem 4.19 we have
Corollary 4.22. Let F and H be such local formations such that F ̸⊆ H⊆N. Then if π(F)⊆ π(H),

then the following conditions are equivalent:
(1) |F : H∩F|l = 1;
(2) in F each of its local non- H-subformations is complemented;
(3) in F each of its local subformationsM with |M : H∩M|l = 1 is complemented.
Moreover, if H=N, from Theorem 4.19 we obtain the following well-known result.
Corollary 4.23 [2, Corollary 5.2.12]. Let F be a non-nilpotent τ-closed local formation. Then the

following conditions are equivalent:
(1) |F : N∩F|τl = 1;
(2) In F every non-nilpotent τ-closed local subformation is τ-complemented;
(3) In F every τ-closed local subformationM with |M : N∩M|τl = 1 is τ-complemented.

5. Reducible lτσ-formations of bounded Hτσ-defect

The main result of this section is the following theorem, which describes reducible τ-closed
σ-local formations of finite Hτσ-defect.

Theorem 5.1. Let F and H be τ-closed σ-local formations such that F ̸⊆ H ⊆Nσ and let F be
lτσ-reducible. If and only if Hτσ-defect of formation F is equal to k, when F satisfies one of the following
conditions:

(1) F= L∨ τσM, where L is an irreducible τ-closed σ-local formation Hτσ-defect t, 1 ⩽ t ⩽ k−1,
and M is such a τ-closed σ-local formation Hτσ-defect k−1, such that L∩M is the maximal τ-closed
σ-local subformation of the formation L;

(2) F = L∨ τ
σM, where L is an irreducible τ-closed σ-local formation Hτσ-defect k, M is such

τ-closed σ-local formation such thatM⊆ H andM⊈ L.
Proof. Sufficiency. Let F satisfy condition (1). Since L∩M is the unique maximal τ-closed σ-local

subformation of L, it follows that |L∩M : H∩ (L∩M)|τσ = t −1. Therefore, by Lemma 3.3 we have

|F : H∩F|τσ = |L : H∩L|τσ+ |M : H∩M|τσ−|L∩M : H∩ (L∩M)|τσ = t + k−1− (t −1) = k.
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Now let the formation F satisfy condition (2). Then by Lemma 3.3 we get

|F : H∩F|τσ = |L : H∩L|τσ+ |M : H∩M|τσ−|L∩M : H∩ (L∩M)|τσ = k+0−0 = k.

Thus, we have |F : H∩F|τσ = k.
Necessity.We prove the necessity by induction on k. Let k = 1 and F be a τ-closed σ-local formation

with Hτσ-defect 1. Since F ̸⊆ H, then by Theorem 4.8 F contains some minimal τ-closed σ-local not
H is a subformation of L. Since the Hτσ-defect of F is 1, M = F∩H is the maximal τ-closed σ-local
subformation of F. Therefore, F= L∨ τσM and the formation F satisfies condition (2) of the theorem.

Let k > 1 and assume that the theorem holds for k−1. Let M denote the maximal τ-closed σ-local
subformation of F whose Hτσ-deficit is k−1.

Suppose that in F there exists an irreducible τ-closed σ-local subformation X such that X ̸⊆M
and 1 ⩽ |X : H∩X|τσ ⩽ k−1. Then F=M∨ τσX. Let t = |X : H∩X|τσ. If t = 1, then X∩H is the unique
maximal τ-closed σ-local subformation of X. SinceM is maximal, we haveM∩H= F∩H. Therefore,
X∩H=M∩H. Therefore, X∩M= X∩H and the formation F satisfies condition (1) of the theorem.

Now let 2 ⩽ t ⩽ k−1 and let any irreducible τ-closed σ-local subformation of F with Hτσ-defect
less than t be contained in M. Let X1 be a maximal τ-closed σ-local subformation of X such that
|X1 : H∩X1|τσ = t −1. If X1 is lτσ-irreducible, then by assumption X1 ⊆M. Therefore, X∩M= X1 and
F satisfies condition (1) of the theorem.

Let X1 be a reducible τ-closed σ-local formation. Since t − 1 < k − 1, then by the induction
hypothesis for the formation X1 the theorem is true. Therefore, the formation X1 satisfies one of the
following conditions:

(a) X1 = L1 ∨ τσM1, where L1 is an irreducible τ-closed σ-local formation and |L1 : H∩L1|τσ = s,
1 ⩽ s ⩽ k−2, and M1 is a τ-closed σ-local formation such that |M1 : H∩M1|τσ = k−2 and L1 ∩M1 is
the maximal τ-closed σ-local subformation of the formation L1;

(b) X1 = L1 ∨ τσM1, where M1 ⊆ H, and L1 is an irreducible τ-closed σ-local formation such that
|L1 : H∩L1|τσ = k−1 andM1 ̸⊆ L1.

Let (b) hold. Then, by assumption, L1 ⊆M.Moreover, sinceM∩H= F∩H, we haveM1 ⊆M
and X1 = L1 ∨ τσM1 ⊆M. Consequently, X∩M= X1 and the formation F satisfies condition (1) of the
theorem.

Now let (a) hold. If the formation M1 is lτσ-irreducible, then by assumption the formations M1 and
L1 must be contained in M. Therefore, X∩M= X1 and the formation F satisfies condition (1) of the
theorem.

If the formation lτσ-reducible, then by induction the theorem holds for it. Repeating the above
arguments forM1 and so on, after a finite number of steps (since the Hτσ-defect of the formations under
consideration is finite and strictly decreasing), we obtain that X∩M= X1. Therefore, the formation F
satisfies condition (1) of the theorem.

Now suppose that every irreducible τ-closed σ-local subformation of F with H-defect less than
k is contained in M. Since F is a reducible τ-closed σ-local formation, it follows that F\M contains
a group G such that L= lτσform(G) ̸= F. Then F=M∨ τσL. By Lemma 3.2 we have d = |L : H∩L|τσ ⩽ k.
Assume that d < k.

If L is lτσ-irreducible, then by assumption L ⊆ M, which is impossible. This means that L is
a reducible τ-closed σ-local formation. But then, by induction, the theorem holds for the formation L.
Given the assumption of irreducible τ-closed σ-local subformations with Hτσ-defect less than k, and the
fact that F∩H=M∩H, we again conclude that L⊆M. A contradiction. Therefore, d = k.

LetD be an irreducible τ-closed σ-local subformation ofM such thatD ̸⊆ L. By Lemma 3.2, we
have m = |D : H∩D|τσ ⩽ k. Since the formations L and D are contained in F, we have K= L∨ τσD⊆ F
and by Lemma 3.2 we have d = |K : H∩K|τσ ⩽ k.

On the other hand, by Lemma 3.5 we have the equality

d = k+m−b, where b = |L∩D : H∩ (L∩D)|τσ.

SinceD ̸⊆L, then b ⩽ m−1. Therefore, a ⩾ k+m−(m−1) = k+1. Contradiction. Thus, any irreducible
τ-closed σ-local subformation of M is contained in L. Therefore, if M is an irreducible τ-closed σ-local
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formation, thenM⊆ L. But then F= L∨ τσM= L, which contradicts the definition of the formation L.
Therefore, the formationM is lτσ-reducible.

Suppose that L∩H= F∩H. Since |M : H∩M|τσ = k−1, then by induction the theorem is true for
the formationM. Therefore, the formationM can be represented as (a) or (b). Given that every irreducible
τ-closed σ-local non- H-subformation of M is contained in L, we obtain that M⊆ L. A contradiction.
Thus, L∩H⊂ F∩H. SinceM∩H= F∩H, it follows thatM∩H ̸⊆ L∩H.

Let L be an irreducible τ-closed σ-local formation. Then, using the representation of the formation
M in the form (a) or (b) and taking into account that any irreducible τ-closed σ-local formation with
Hτσ-defect less than k is contained in L we obtain that F= L∨ τσ(M∩H). Thus, the formation F satisfies
condition (2) of the theorem.

Now let L be a reducible τ-closed σ-local formation. Then, since L ̸⊆ M, by Theorem 4.8, L
contains at least one Mτ

σ-critical formation X. Since any irreducible τ-closed σ-local formation with
Hτσ-defect less than k is contained in M and M∩H= F∩H, it follows that |X : H∩X|τσ = k. Note also
that any irreducible τ-closed σ-local formation in L with Hτσ-defect less than k is contained in X, since
otherwise the formation F would contain an lτσ-subformation with Hτσ-defect greater than k, which is
impossible in view of Lemma 3.1. Since the formation M is maximal, we have F = M∨ τ

σX. Since
M∩H ̸⊆ L∩H, thenM∩H ̸⊆ X∩H. Therefore, given the representation of the formationM in form (a)
or (b), we have F=M∨ τσX= X∨ τσ(M∩H).

Thus, the formation F satisfies condition (2) of the theorem.
In the case where H =Nσ, we obtain the following special case of Theorem 5.1.
Corollary 5.2. Let F be a reducible τ-closed σ-local formation. If and only if the σ-nilpotent

lτσ-defect of a formation F is equal to k when F satisfies one of the following conditions:
(1) F= L∨ τσM, where L is an irreducible τ-closed σ-local formation of σ-nilpotent lτσ-defect t,

1 ⩽ t ⩽ k−1, and M is such τ-closedσ-local formation of σ-nilpotent lτσ-defect k−1, such that L∩M is
the maximal τ-closed σ-local subformation of L;

(2) F= L∨ τσM, where L is an irreducible τ-closed σ-local formation of σ-nilpotent lτσ-defect k,
M is a τ-closed σ-local formation such thatM⊆ H andM⊈ L.

In particular, if σ = σ1 = {{2},{3},{5}, . . .} from Theorem 5.1 we obtain
Corollary 5.3. Let F andH be τ-closed local formations such that F ̸⊆H⊆N and let F be reducible.

If and only if the Hl-defect of a formation F is equal to k when F satisfies one of the following conditions:
(1) F= L∨ lM, where L is an irreducible τ-closed local formation of Hl-defect t, 1 ⩽ t ⩽ k−1,

and M is a τ-closed local formation Hl-defect k− 1 such that L∩M is the maximal τ-closed local
subformation of L;

(2) F= L∨ lM, where L is an irreducible τ-closed local formation of Hl-defect k,M is a τ-closed
local formation such thatM⊆ H andM⊈ L.

Moreover, if H = N is the formation of all nilpotent groups from Theorem 5.1, we obtain the
following well-known result.

Corollary 5.4 [27]. Let F be a reducible τ-closed local formation. If and only if the nilpotent
lτ-defect of a formation F is equal to k when F satisfies one of the following conditions:

(1) F= L∨ lM, where L is an irreducible τ-closed local formation of nilpotent lτ-defect t, 1 ⩽ t ⩽
⩽ k−1, and M is a τ-closed local formation of nilpotent lτ-defect k−1 such that L∩M is a maximal
τ-closed local subformation of L;

(2) F= L∨ lM, where L is an irreducible τ-closed local formation of nilpotent lτ-defect k,M is
a τ-closed local formation such thatM⊆ H andM⊈ L.

Let F – τ-closed σ-local formation. Following [2, p. 212], lτσ-length of F we define the number
lτσ(F) = |F : (1)|τσ.

In the case when H = (1), from Theorem 5.1 we obtain the following result.
Theorem 5.5. Let F be a reducible τ-closed σ-local formation. If and only if the lτσ-length of

a formation F is equal to k when F = L∨ τ
σM, where L is an irreducible τ-closed σ-local formation

lτσ-length t, 1 ⩽ t ⩽ k− 1, and M is a τ-closed σ-local formation lτσ-length k− 1, such that L∩M is
maximal τ-closed σ-local subformation of L.

If τ is a trivial subgroup functor, then from Theorem 5.5 we obtain
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Corollary 5.6. Let F be a reducible σ-local formation. If and only if the lσ-length of a formation F
is k when F= L∨ σM, where L is an irreducible σ-local formation of lσ-length t, 1 ⩽ t ⩽ k−1, andM
is a σ-local formation of lσ-length k−1, such that L∩M is a maximal σ-local subformation of L.

Let τ = s is the identity subgroup functor. Then Theorem 5.5 implies
Corollary 5.7. Let F be a reducible hereditary σ-local formation. If and only if the ls

σ-length of
a formation F is equal to k when F= L∨ s

σM, where L is an irreducible hereditary σ-local formation of
ls
σ-length t, 1 ⩽ t ⩽ k−1, and M is a hereditary σ-local formation of ls

σ-length k−1, such that L∩M is
a maximal hereditary σ-local subformation of the formation L.

In the case where τ = sn from Theorem 5.5 we have
Corollary 5.8. Let F be a reducible normally hereditary σ-local formation. If and only if the

lsn
σ -length of a formation F is equal to k when F= L∨ sn

σM, where L is an irreducible normally hereditary
σ-local formation lsn

σ -length t, 1 ⩽ t ⩽ k−1, andM is a normally hereditary σ-local formation lsn
σ -length

k−1, such that L∩M is a maximal normally hereditary formation σ-local subformation of L.
In particular, if σ = σ1 = {{2},{3},{5}, . . .} from Theorem 5.5 we have
Corollary 5.9. Let F be a reducible τ-closed local formation. If and only if the lτ-length of

a formation F is equal to k when F = L∨ lM, where L is an irreducible τ-closed local formation of
lτ-length t, 1 ⩽ t ⩽ k− 1, and M is a τ-closed local formation of lτ-length k− 1 such that L∩M is
a maximal τ-closed local subformation of L.

6. Reducible τ-closed σ-local formations of Hτσ-defect 2

In this section, using Theorem 5.1, we give a description of reducible τ-closed σ-local formations
with Hτσ-defect 2, and also consider some special cases and consequences of the following main result
of this section.

Theorem 6.1. Let F and H be τ-closed σ-local formations such that F ̸⊆ H ⊆Nσ and let F be
lτσ-reducible. If and only if Hτσ-defect of a formation F is 2 when F satisfies one of the following conditions:

(1) F = L1 ∨ τ
σL2 ∨ τ

σM, where M ⊆ H, and L1 and L2 are distinct minimal τ-closed σ-local
non-H-formations;

(2) F= L∨ τσM, where M⊆ H, and L is an irreducible τ-closed σ-local formation Hτσ-defect of 2,
M⊈ L.

Proof. By Theorem 5.1, one of the following conditions holds for F:
(1) F = L∨ τ

σM, where L is an irreducible τ-closed σ-local formation Hτσ-defect 1, and M is
a τ-closed σ-local formation Hτσ-defect 1 such that L∩M is a maximal τ-closed σ-local subformation
of L;

(2) F= L∨ τσM, where L is an irreducible τ-closed σ-local formation Hτσ-defect 2,M is a τ-closed
σ-local formation such thatM⊆ H andM⊈ L.

Let F be a formation satisfying condition (1). Since L is an irreducible τ-closed σ-local formation of
Hτσ-defect 1, L is the minimal τ-closed σ-local non- H-formation. Moreover, since L∩M is the maximal
τ-closed σ-local subformation of L, it follows that L∩M⊆H. By Theorem 4.12 we haveM=M1∨ τσL1,
where M1 is a τ-closed σ-local subformation of H, L1 is the minimal τ-closed σ-local non- H-formation.
Note also that since L ̸⊆M, then L ̸= L1.Means,

F= L∨ τσM= L∨ τσ(M1 ∨ τσL1) = L∨ τσL1 ∨ τσM1,

where M1 ⊆ H, a L and L1 are distinct minimal τ-closed σ-local non- H-formations. Thus, the formation
F satisfies condition (1) of the theorem.

If condition (2) holds for F, then F obviously satisfies condition (2) of the theorem.
Theorem 6.1 has many different special cases and consequences for specific subgroup functors τ,

formations H, and partitions σ. Let us consider some of them.
Thus, if τ = s is the identity subgroup functor, then the following holds.
Corollary 6.2. Let F and H be hereditary σ-local formations such that F ̸⊆H⊆Nσ and let F be an

ls
σ-reducible formation. If and only if Hs

σ-defect of a formation F is 2 when F satisfies one of the following
conditions:
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(1) F= L1 ∨ s
σL2 ∨ s

σM, whereM⊆ H, and L1 and L2 are distinct minimal s-closed σ-local non-
H-formations;

(2) F= L∨ τσM, where M⊆ H, and L is an irreducible τ-closed σ-local formation Hs
σ-defect of 2,

M⊈ L.
If τ(G) = sn(G) is the set of all normal subgroups of G for any group G, then we obtain the

following statement.
Corollary 6.3. Let F and H be normally hereditary σ-local formations such that F ̸⊆ H⊆Nσ and

let F be lsn
σ -reducible. If and only if Hsn

σ -defect of a formation F is 2 when F satisfies one of the following
conditions:

(1) F= L1 ∨ sn
σ L2 ∨ sn

σM, whereM⊆H, and L1 and L2 are distinct minimal sn-closed σ-local non-
H-formations;

(2) F = L∨ sn
σM, where M ⊆ H, and L is an irreducible sn-closed σ-local formation Hsn

σ -defect
of 2,M⊈ L.

In the case where H =Nσ, we obtain the following special case of Theorem 6.1.
Theorem 6.4. Let F be an lτσ-reducible τ-closed σ-local formation. If and only if the σ-nilpotent

lτσ-defect of a formation F is 2 when F satisfies one of the following conditions:
(1) F = L1 ∨ τ

σL2 ∨ τ
σM, where M ⊆ Nσ, and L1 and L2 are distinct minimal τ-closed σ-local

non-σ-nilpotent formations;
(2)F=L∨τσM,whereM⊆Nσ, andL is an irreducible τ-closed σ-local formation with σ-nilpotent

lτσ-defect equal to 2,M⊈ L.
In the case where τ = s is the identity subgroup functor, Theorem 6.4 implies
Corollary 6.5. Let F be an ls

σ-reducible hereditary σ-local formation. If and only if the σ-nilpotent
ls
σ-defect of a formation F is 2 when F satisfies one of the following conditions:

(1) F = L1 ∨ s
σL2 ∨ s

σM, where M ⊆ Nσ, and L1 and L2 are distinct minimal s-closed σ-local
non-σ-nilpotent formations;

(2) F= L∨ s
σM, whereM⊆Nσ, and L is an irreducible s-closed σ-local formation Hs

σ-defect of 2,
M⊈ L.

If τ(G) = sn(G), then from Theorem 6.4 we obtain
Corollary 6.6. Let F be an lsn

σ -reducible, non-σ-nilpotent normally hereditary σ-local formation. If
and only if the σ-nilpotent lsn

σ -defect of a formation F is 2 when F satisfies one of the following conditions:
(1) F= L1 ∨ sn

σ L2 ∨ sn
σM, where M⊆Nσ, and L1 and L2 are distinct minimal sn-closed σ-local

non-σ-nilpotent formations;
(2) F= L∨ sn

σM, where M⊆Nσ, and L is an irreducible τ-closed σ-local formation Hsn
σ -defect

of 2,M⊈ L.
In the classical case, when σ = σ1, from Theorem 6.4 we obtain
Corollary 6.7 [2, Theorem 5.2.19]. Let F be a reducible τ-closed local formation. Then the

nilpotent lτ-defect of a formation F is equal to 2 if and only if one of the following conditions holds:
(1) F = L1 ∨ τ

l L2 ∨ τ
l M, where M ⊆ N, and L1 and L2 are distinct minimal τ-closed local

non-nilpotent formations;
(2) F= L∨ τl M, whereM⊆N, and L is a τl-irreducible τ-closed local formation with nilpotent

lτ-defect equal to 2,M⊈ L.
If, in addition, τ is a trivial subgroup functor, then we have
Corollary 6.8 [1, Theorem 20.6]. Let F be a reducible local formation. Then the nilpotent defect of

a formation F is equal to 2 if and only if F satisfies one of the following conditions:
(1) F = L1 ∨ lL2 ∨ lM, where M ⊆N, and L1 and L2 are distinct minimal local non-nilpotent

formations;
(2) F = L∨ τl M, where M ⊆N, and L is an irreducible local formation with nilpotent defect 2,

M⊈ L.
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7. τ-Closed σ-local formations of lτσ-length ⩽ 3

Let F be a τ-closed σ-local formation. Following [2, p. 212], an lτσ-length of a formation F we
define the number lτσ(F) = |F : (1)|τσ.

In this section, we apply Theorem 4.2 to describe τ-closed σ-local formations with lτσ-length ⩽ 3.
Lemma 7.1. Let F = F1 ⊕ . . .⊕Fk, where F j is a non-identity τ-closed σ-local formation with

lτσ(F j) = m j < ∞. Then lτσ(F) = m1 +m2 + · · ·+mk. In particular, if F ⊆ Nσ and |σ(F)| < ∞, then
lτσ(F) = |σ(F)|.

Proof. We prove the lemma by induction on k. For k = 1, the lemma is true. Now let k ⩾ 1 and
assume that the lemma is true for k−1. Then, by induction, for the formation F1 ⊕ . . .⊕Fk−1 we have
lτσ(F1 ⊕ . . .⊕Fk−1) = m1 +m2 + · · ·+mk−1. By Lemma 2.13, the lattice isomorphism

F/Fk = F1 ⊕ . . .⊕Fk/
τ
σFk = ((F1 ⊕ . . .⊕Fk−1)∨ τσFk)/

τ
σFk ≃

≃ F1 ⊕ . . .⊕Fk−1/
τ
σ(F1 ⊕ . . .⊕Fk−1 ∩Fk) = F1 ⊕ . . .⊕Fk−1/

τ
σ(1).

Therefore, lτσ(F) = lτσ(F1 ⊕ . . .⊕Fk−1)+ lτσ(Fk) = (m1 +m2 + · · ·+mk−1)+mk.
In particular, if the formation F is σ-nilpotent and |σ(F)|< ∞, then F=Gσi1

⊕ . . .⊕Gσit
, where

{σi1 , . . . ,σit}= σ(F). Therefore, from the first part of the lemma, we obtain lτσ(F) = |σ(F)|.
Lemma 7.2. Every τ-closed σ-local formation of lτσ-length 2 is reducible.
Proof. Let F be an irreducible τ-closed σ-local formation. Assume that the lτσ-length of F is 2. Since

F∩Nσ =Nσ(F) by Lemma 3.5, it follows that |σ(F)| = lτσ(Nσ(F)) by Lemma 7.1. Clearly, |σ(F)| > 1.
Since the formation F is lτσ-irreducible, it follows that Nσ(F) ⊂ F. Therefore, F contains a proper τ-closed
σ-local subformation of lτσ-length ⩾ 2. This contradicts Lemma 3.2.

Lemma 7.3. Let F be a τ-closed σ-local formation. If F is an lτσ-irreducible formation of lτσ-length
3, then |σ(F)|= 2.

Proof. Let F be an lτσ-irreducible formation of lτσ-length 3 and M be its unique maximal τ-closed
σ-local subformation. Then lτσ(M) = 2. Now applying Lemmas 7.2 and 7.1 we have |σ(M)|= 2. Since the
formation F is lτσ-irreducible, any proper τ-closed σ-local subformation of F is contained inM. Therefore,
σ(F) = σ(M).

Theorem 7.4. Let F be a τ-closed σ-local formation. Then the following statements hold:
(1) lτσ(F)⩽ 2 if and only if F=NΠ, where |Π|⩽ 2;
(2) lτσ(F)= 3 if and only ifF=NΠ,where |Π|= 3, orF is aminimal τ-closedσ-local non-σ-nilpotent

formation, |σ(F)|= 2.
Proof. (1) If |σ(F)| = 1, then F =Gσi for some i. Then lτσ(F) = 1 by Lemma 7.1. Suppose that

F is not σ-nilpotent. Then F is not a σ-primary formation, and hence there exist σi and σ j such that
σi,σ j ∈ σ(F) (i ̸= j). By Lemma 2.4, we have Gσi ,Gσ j ⊆ F. Therefore, Gσi ⊕Gσ j ⊆ F. By Lemma 7.1
we have lτσ(Gσi ⊕Gσ j) = 2. Therefore, Gσi ⊕Gσ j = F. Contradiction. This means that (1) holds.

(2) Let lτσ(F) = 3. If F is σ-nilpotent, then F=NΠ,where |Π|= 3, by Lemmas 3.5 and 7.1. Suppose
that F is not σ-nilpotent. Then, by Theorem 4.10, F has a minimal τ-closed σ-local non-σ-nilpotent
subformation H. By Theorem 4.2, we have |σ(H)|⩾ 2. Since H∩Nσ =Nσ(H) by Lemma 3.5, it follows
that lτσ(H∩Nσ) ⩾ 2. Since at the same time F ̸⊆ Nσ and lτσ(F) = 3, then lτσ(H∩Nσ) = 2. Therefore,
lτσ(H) = 3 and |σ(H)|= 2. This means H= F.

Let F be either a τ-closed σ-local σ-nilpotent formation with |σ(F)|= 3, or a minimal τ-closed
σ-local non-σ-nilpotent formation and |σ(F)|= 2. Then in the first case lτσ(F) = 3 by Lemma 7.1. In the
second case, the formation F has a unique maximal τ-closed σ-local subformation F∩Nσ. By Lemma 3.5,
we have F∩Nσ =Nσ(F). Therefore, |σ(Nσ(F))| = 2 and, therefore, lτσ(Nσ(F)) = 2 by Lemma 7.1. But
then lτσ(F) = 3.

In particular, if is a trivial subgroup functor, then we have
Corollary 7.5. Let F be a σ-local formation. Then the following statements hold:
(1) lσ(F)⩽ 2 if and only if F=NΠ, where |Π|⩽ 2;
(2) lσ(F) = 3 if and only if F =NΠ, where |Π| = 3, or F is a minimal σ-local non-σ-nilpotent

formation.
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Using Theorem 4.2 from Theorem 7.4, we obtain the following description of τ-closed σ-local
formations of lτσ-length ⩽ 3.

Theorem 7.6. Let F be a τ-closed σ-local formation. Then the following statements hold:
(1) lτσ(F)⩽ 2 if and only if F= lτσformG, where G is a σ-nilpotent group with |σ(G)|⩽ 2;
(2) lτσ(F) = 3 if and only if F= lτσformG, where G is either a σ-nilpotent group with |σ(G)|= 3, or

a simple non-σ-primary group with τ(G) = {1,G} and |σ(G)|= 2, or G = P⋊K, where P =CG(P) is a
p-group, p ∈ σi, and K is a simple σ j-group ( j ̸= i) such that τ(K) = {1,K}.

Proof. Let F be a τ-closed σ-local formation and lτσ(F) ⩽ 3. Then, by Theorem 7.4, one of the
following statements holds for F: a) F=NΠ, where |Π|⩽ 2; b) F=NΠ, where |Π|= 3, or F is a minimal
τ-closed σ-local non-σ-nilpotent formation, |σ(F)|= 2.

Suppose that F is σ-nilpotent, |σ(F)| ⩽ 3. And let G be a σ-nilpotent group in F such that
σ(G) = σ(F). Then lτσformG =Nσ(F) = F by Lemma 3.5.

Now let F be a minimal τ-closed σ-local non-σ-nilpotent formation, |σ(F)| = 2. Then, by
Theorem 4.2, we have F= lτσformG and one of the following conditions holds:

1) G is a simple, non-σ-primary, τ-minimal, non-Gσi-group for any σi ∈ σ(G);
2) G = P⋊K, where P =CG(P) is a p-group, p ∈ σi, and K is a simple σ j-group ( j ̸= i) such that

τ(K) = {1,K}.
Let G satisfy condition 1). Then if σi,σ j ∈ σ(F) and H ∈ τ(G)\{G}, then H ∈Gσi ∩Gσ j = (1).

Consequently, τ(G) = {1,G} and the group G satisfies Condition (2) of the theorem.
If Condition 2) is satisfied for G, then obviously G satisfies Condition (2) of the theorem.
In particular, if τ is the trivial subgroup functor, then the following holds.
Corollary 7.7. Let F be a σ-local formation. Then the following statements hold:
(1) lσ(F)⩽ 2 if and only if F= lσformG, where G is a σ-nilpotent group with |σ(G)|⩽ 2;
(2) lσ(F) = 3 if and only if F= lσformG, where G is either a σ-nilpotent group with |σ(G)|= 3, or

a simple non-σ-primary group with |σ(G)|= 2, or G = P⋊K, where P =CG(P) is a p-group, p ∈ σi,
and K is a simple σ j-group, j ̸= i.

In the classical case, when σ= σ1 = {{2},{3},{5}, . . .} From Theorem 7.6 follows
Corollary 7.8 [2, Lemma 5.3.11]. LetF be a τ-closed local formation. Then the following statements

hold:
1) lτ(F)⩽ 2 if and only if F is nilpotent and |π(F)|⩽ 2;
2) lτ(F) = 3 if and only if F= τlformG, where G is either a Schmidt group or a nilpotent group

with |π(G)|= 3.
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Abstract. Let X = {Xk}∞
k=1 be a sequence of independent symmetric bounded random

variables. This paper investigates systems of the form {XiX j}i< j, {XiX jXk}i< j<k, . . ., finite
unions of such systems, and systems close to them, in the spaceL∞ of bounded randomvariables.
Series over such systems do not hold the property of unconditionality: the convergence of
the series depends on the ordering of the terms. At the same time, as we demonstrate in the
paper, such systems posess a very close property of random unconditional convergence (or
RUC-property).
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Аннотация. Пусть X = {Xk}∞
k=1 – последовательность независимых симметричных и

ограниченных случайных величин. В работе рассматриваются системы вида {XiX j}i< j ,
{XiX jXk}i< j<k, . . ., конечные объединения таких систем и близкие к ним системы
в пространстве L∞ ограниченных случайных величин. Ряды по таким системам не
обладают свойством безусловности: сходимость рядов зависит от порядка, в котором
нумеруются элементы системы. В то же время, как показано в работе, такие системы
обладают очень бизким свойством случайной безусловной сходимости.

1. Introduction

Investigating the behavior of special sequences is a cornerstone of geometric Banach space theory
[1; 2]. The properties associated with random sequences and series are particularly important [3; 4].
The simplest version of such random constructions arises by applying random signs to the terms of
a series and studying norm changes of the sum under such arrangements. Another probabilistic method
can be used when the Banach space itself consists of random variables, such as the Lebesgue space
of measurable functions on the interval. Here, one studies sequences of independent random variables
or polynomial forms from such sequences [5–11]. The independence of sequence elements allows for
the application of general and strong results for sums over such terms, related to distribution estimates,
moments, and limit theorems. At the same time, these sequences provide a rich source of examples and
counterexamples that illuminate the geometry of the underlying space. By considering sums in Banach
spaces of random variables with random coefficients, we can combine these two approaches of applying
probabilistic methods to study the geometry of subspaces in such spaces.

We follow papers [12; 13], which initiated the study of sums over Rademacher chaos within the
space L∞[0,1]. This space is viewed as the set of bounded random variables on the unit interval with
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the Lebesgue measure. The authors investigated the stability properties of norms for such sums under
a random arrangement of signs. Let us recall the basic concepts and formulate some results from these
works. Rademacher functions rk(t), for t ∈ [0,1] and k ∈ N, can be defined as follows:

rk(t) = (−1)[2
kt], k = 1,2, ...,

where [x] denotes the integer part of the number [x]. Rademacher functions are used in a large number
of fundamental and applied problems[14–17]. The following fact was proved in [13]. For any n ∈ N and
any real coefficients ai, j, 1 ⩽ i < j ⩽ n, it holds that

Eθ

∥∥∥∥∥ ∑
1⩽i< j⩽n

θi jai jrir j

∥∥∥∥∥
L∞([0,1])

≍ min
θi, j=±1

∥∥∥∥∥ ∑
1⩽i< j⩽n

θi jai jrir j

∥∥∥∥∥
L∞([0,1])

≍

≍ max

n−1

∑
i=1

(
n

∑
j=i+1

a2
i j

)1/2

,
n

∑
j=2

(
j−1

∑
i=1

a2
i j

)1/2
 .

(1)

Here, ri = ri(t) are Rademacher functions, θi j are independent signs (i. e., ±1 valued random variables),
and Eθ denotes the expectation with respect to these signs. The notation X ≍Y means that c1Y ⩽ X ⩽ c2Y
for some universal constants c1,c2 > 0. This result establishes the random unconditional convergence
(RUC) property for the second-degree Rademacher chaos in L∞ and connects its norm to one special
norm of the coefficient matrix. RUC property was introduced by Billard, Kwapien, Pelczynski and
Samuel in [18]. It shows that although the system may not be an unconditional basic sequence (basis),
there holds a certain relaxation.

The nature of Rademacher random variables (we then use term rvs) gives the idea that results
concerning it can be extended to similar random variables, such as symmetric bounded random variables.
Moreover, the identical distribution of such rvs is not necessary for properties under investigation.
A primary objective of this work is to extend the aforementioned L∞-norm equivalences and the RUC
property to polynomial chaos constructed from sequences (X1,X2, . . . ,Xn, . . .) of real-valued independent
symmetric random variables with ∥Xi∥L∞

= Ci > 0. We demonstrate that these extensions hold, with
the key modification being a rescaling of the chaos coefficients by the respective bounding constants Ci.
In addition, the paper shows that chaoses of different degrees can be combined while maintaining the
property of random unconditional convergence.

The paper is organized as follows.
In Section 2 we present general definitions, some results from previous works that we will rely

on, and auxiliary statements.
In Section 3 we consider systems formed by mixing the first- and second-degree Rademacher chaos.

We examine two variants of such mixing. The first, more simple variant uses three independent copies of
the Rademacher sequences {rk},{r′i},{r′j} and examines the behavior in L∞ of sums of the form

Ssep(t) =
n

∑
k=1

bkrk(t)+
n

∑
i=1

n

∑
j=1

ai jr′i(t)r
′′
j (t).

The index "sep" in Ssepmeans that we are considering separated (or decoupled) chaos, i. e. chaos constructed
from independent copies of the original sequence of independent random variables. In the second case, we
work with ordinary (or unseparated) Rademacher chaos, i. e., we study the behavior of sums of the form

S(t) =
n

∑
k=1

bkrk(t)+ ∑
1⩽i< j⩽n

ai jri(t)r j(t).

The key property that allows us to transfer the results for homogeneous chaos from papers [12;13] to the
mixed chaos we consider is the complementedness of homogeneous chaos inmixed chaos. This property can
also be obtained from the work of [19]. We, however, also consider a direct proof of the complementedness
property, which is especially simple in the considered case of first- and second-degree chaos.

In Section 4 we extend the results of Section 3 to systems constructed from a sequence of
independent symmetric bounded random variables, not necessarily identically distributed. The main idea
is that the subspaces X := span[{Xk},{XiX j}] and Y := span[{Yk},{YiYj}] generated by different systems
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of independent random variables are isometric to each other in the case of ∥Xk∥L∞
= ∥Yk∥L∞

,k = 1,2 . . .:∥∥∥∥ n

∑
k=1

bkXk + ∑
1⩽i< j⩽n

ai jXiX j

∥∥∥∥
L∞

=

∥∥∥∥ n

∑
k=1

bkYk + ∑
1⩽i< j⩽n

ai jYiYj

∥∥∥∥
L∞

,

and the same equalities are valid for chaos of arbitrary degree. Formally, we prove this equality for
homogeneous separated chaos. The result is then extended to the unseparated chaos via the decoupling
method and finally to the mixed chaos by using the complementedness of homogeneous parts.

Rademacher chaos, discussed in Section 3, is a special case of the more general chaos studied in
Section 4.Moreover, results for the general case can be proved independently ofRademacher chaos.However,
we stress the case of the Rademacher chaos due to its particular importance for applications. Bilinear
and quadratic binary forms, equivalent to separated and unseparated Rademacher chaos, respectively,
are important in neural network models of associative memory [20–22], energy analysis of spin glasses
[23; 24], and adiabatic quantum computing [25].

2. Preliminaries and auxiliary results

A sequence {xk}∞
k=1 of elements in a Banach space X is called basic if it is a Schauder basis for

its closed linear span span{xk}. A basic sequence {xk} is an unconditional basic sequence if for any
x = ∑k akxk ∈ span{xk} and any sequence of signs ϵk =±1, the series ∑k ϵkakxk converges. In this case
there exists a constant Cu ⩾ 1, not dependent on x, such that∥∥∥∥∥∑k

ϵkakxk

∥∥∥∥∥
X

⩽Cu

∥∥∥∥∥∑k
akxk

∥∥∥∥∥
X

.

The elements of the unconditional basis sequence form a basis in span{xk} under any permutation. This
is equivalent to the property of convergence of series for all arrangements of signs, indicated in our
definition of unconditionality. For basic and unconditional basic sequences we refer to [2]. Note that
we also use the "inverse" form of the previous inequality∥∥∥∥∥∑k

akxk

∥∥∥∥∥
X

⩽Cu

∥∥∥∥∥∑k
ϵkakxk

∥∥∥∥∥
X

.

Equivalence follows since both inequalities must be valid for any ak and ϵk.
It is known that the Rademacher system {rk}, as well as systems consisting of products of

Rademacher functions {rir j}, {rir jrk} . . ., is an unconditional basic sequence in Lp([0,1]) for 1 ⩽ p < ∞

[26]. It is obvious that the Rademacher system will retain the property of unconditionality in the space
L∞[0,1], since the distribution of this system does not change when its elements are rearranged. However,
this is not the case for the system of products [27; 28].

We follow ([13, Remark 1], [18]) to give the following definition. A sequence of elements {xk} in
a Banach space X is said to possess the Random Unconditional Convergence (RUC) property if there exist
universal constants such that for any finite sequence of scalars {ak}, 1 ⩽ k ⩽ n,

Eθ

∥∥∥∥∥ n

∑
k=1
θkakxk

∥∥∥∥∥
X

≍ min
θk=±1

∥∥∥∥∥ n

∑
k=1
θkakxk

∥∥∥∥∥
X

.

where {θk} is a sequence of independent Rademacher signs, i. e. for the probabilities of values of random
variables θk the condition P{θk = 1}= P{θk =−1}= 1/2 is satisfied. This shows that the expectation
of the norm behaves like the minimum, so they are "close". We note that in definition of the RUC property
we consider finite sums only and consequently the order of elements of the sequence does not matter.

We consider Rademacher chaos polynomials. A d-th degree homogeneous unseparated Rademacher
chaos (or homogeneous Rademacher chaos) is a system consisting of functions of variable t ∈ [0,1]
of the form

(r j1 . . .r jd )(t) = r j1(t) . . .r jd (t), j1 < j2 < .. . < jd .
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We then consider polynomials constructed from these functions of the form

P(t) = ∑
1⩽ j1< j2<···< jd⩽n

a j1,..., jd r j1(t) . . .r jd (t),

where a j1,..., jd are real coefficients.Wewill call such functions homogeneousRademacher chaos polynomials.
The homogeneous multiple Rademacher system of degree d (also referred to as separated or decoupled
Rademacher chaos of d-th degree) consists of functions of d variables (t1, . . . , td) ∈ [0,1]d:

(r j1 ⊗·· ·⊗ r jd )(t1, . . . , td) = r j1(t1) . . .r jd (td).

A linear combination of such elements,

Psep(t1, . . . , td) = ∑
1⩽ j1,..., jd⩽n

a j1,..., jd r j1(t1) . . .r jd (td),

we will call a d-th degree homogeneous multiple Rademacher system polynomial.
The L∞-norm of a function f : [0,1]d →R is || f ||L∞

= sup(t1,...,td)∈[0,1]d | f (t1, . . . , td)|. For d-th degree
multiple Rademacher system polynomial Psep(t1, . . . , td), this is equivalent to the maximum over all 2n

sign combinations ϵ = (ϵ1, . . . ,ϵn) ∈ {±1}n:

∥Psep∥L∞
= max
ϵ∈{±1}n

∣∣∣∣∣ ∑
1⩽ j1,..., jd⩽n

a j1,..., jdϵ j1 . . .ϵ jd

∣∣∣∣∣ .
Analagous relation holds for Rademacher chaos polynomial, but signs may dependent in that case.

We will need the following decoupling argument.
Lemma 2.1 (Decoupling forL∞-norms, cf. [13, Corollary 1; 29, Theorem3.1.1]). Let d,n∈Nwith

d ⩽ n. Let (ξ1, . . . ,ξn) be a sequence of bounded independent random variables, and let (ξ(k)1 , . . . ,ξ
(k)
n ), for

k = 1, . . . ,d, be d independent copies of this sequence. Suppose that coefficients d j1,..., jd are symmetric, i. e.
d j1,..., jd = d jπ(1),..., jπ(d) for eachmulti-index ( j1, . . . , jd)∈ Ñd

n := {(i1, . . . , id)∈ {1, . . . ,n}d : ip ̸= iq if p ̸= q}
and every permutation π of {1, . . . ,d}. Then,

cd

∥∥∥∥∥∥ ∑
(i1,...,id)∈Ñd

n

di1,...,idξ
(1)
i1 . . .ξ

(d)
id

∥∥∥∥∥∥
L∞(Ω1×...×Ωd)

⩽

∥∥∥∥∥∥ ∑
(i1,...,id)∈Ñd

n

di1,...,idξi1 . . .ξid

∥∥∥∥∥∥
L∞(Ω)

⩽

⩽

∥∥∥∥∥∥ ∑
(i1,...,id)∈Ñd

n

di1,...,idξ
(1)
i1 . . .ξ

(d)
id

∥∥∥∥∥∥
L∞(Ω1×...×Ωd)

,

where cd is constant depending only on d, and the L∞-norms are essential suprema over the respective
probability spaces Ω (for ξk) and Ω1 × . . .×Ωd (for ξ( j)

k ).
Note that the right inequality in Lemma 2.1 is elementary: the set of essential values of the

random variable ∑di1,...,idξi1 . . .ξid is included in the set of essential values of the random variable
∑di1,...,idξ

(1)
i1 . . .ξ

(d)
id .

Let d,n ∈ N with 1 ⩽ d ⩽ n. Let Nd
n be the set of multi-indices J = ( j1, . . . , jd) such that jk ∈ [n],

where [n] := {1,2, . . . ,n}. For k ∈ {1, . . . ,d}, let J′k denote the multi-index ( j1, . . . , jk−1, jk+1, . . . , jd),
and also denote t

′
k = (t1, . . . , tk−1, tk+1, . . . , td). The multiple Rademacher system of degree d is {r⊗J }J∈Nd

n
,

where r⊗J (t1, . . . , td) = r j1(t1) . . .r jd (td).
Then we define ∆d be the set of multi-indices J = ( j1, . . . , jd) such that 1 ⩽ j1 < j2 < · · · < jd .

The (homogeneous) Rademacher chaos of degree d is a function {rJ}J∈∆d , where rJ(t) = r j1(t) . . .r jd (t),
t ∈ [0,1]. By ∆d

n we denote the set {J = ( j1, j2, . . . , jd) : 1 ⩽ j1 < j2 < .. . < jd ⩽ n}.
Also we use elements of the multiple Rademacher system of the form

r⊗J′k
(t

′
k) = r j1(t1) . . .r jk−1(tk−1)r jk+1(tk+1) . . .r jd (td).

Finally, for every d,n ∈ N,k = 1,2, . . . ,d and l = 1,2, . . . ,n we put

Nd
n(k, l) = {J = ( j1, . . . , jd) ∈ Nd

n : jk = l}.



58 P. A. Slinyakov, K. V. Lykov

Now we discuss the two central theorems for our paper. They establish the RUC property of the
multiple Rademacher system and Rademacher chaos of degree d in L∞.

Theorem 2.2 [13, Theorem 4]. For every d ∈ N the multiple Rademacher system {r⊗J }J∈Nd has the
RUC property in L∞([0,1]d). More precisely, for all n ∈ N and aJ ∈ Rd ,J ∈ Nd

n the following inequalities
hold: ∥∥∥∥∥ ∑

J∈Nd
n

aJr⊗J

∥∥∥∥∥
L∞([0,1]d)

⩾ 2
1−d

2 max
k∈[d]

n

∑
l=1

(
∑

J∈Nd
n(k,l)

a2
J

)1/2

, (2)

and

Eθ

∥∥∥∥∥ ∑
J∈Nd

n

aJθJr⊗J

∥∥∥∥∥
L∞([0,1]d)

⩽
d

∑
k=1

2k−1
n

∑
l=1

(
∑

J∈Nd
n(k,l)

a2
J

)1/2

, (3)

where (θJ)J∈Nd
n
is a system of independent random signs, i. e. P{θJ = 1}= P{θJ =−1}= 1/2, J ∈ Nd

n .
Theorem 2.3 [13, Corollary 7]. Let d,n ∈ N, d ⩽ n. There exist universal constant C′

d (depending
only on d) such that for any real coefficients (aJ)J∈∆d

n
,

min
θ

∥∥∥∥∥ ∑
J∈∆d

n

θJaJrJ

∥∥∥∥∥
L∞([0,1])

⩽ Eθ

∥∥∥∥∥ ∑
J∈∆d

n

θJaJrJ

∥∥∥∥∥
L∞([0,1])

⩽C′
d

∥∥∥∥∥ ∑
J∈∆d

n

aJrJ

∥∥∥∥∥
L∞([0,1])

, (4)

where (θJ)J∈∆d
n
is a sequence of independent random signs.

Let us briefly describe the main ideas from [13] used in proving these results. We consider the
case d = 2. For the lower bound on

∥∥∑
n
i=1 ∑

n
j=1θi, jai, jri ⊗ r j

∥∥
L∞([0,1]2)

, one can use Szarek’s refinement
of Khintchine’s inequality for L1-norms [30]. We choose t1, argument of the first function of products
ri ⊗ r j = ri(t1)r j(t2), in an appropriate way, and the problem is reduced to estimating the L1-norm of
a Rademacher sum of degree 1 with respect to the remaining variable. Applying Khintchine’s inequality
then yields a lower bound in terms of L2,1-norm:∥∥∥∥∥ n

∑
i=1

n

∑
j=1

ai jri ⊗ r j

∥∥∥∥∥
L∞([0,1]2)

⩾
n

∑
i=1

1w

0

∣∣∣ n

∑
j=1

ai jr j(t)
∣∣∣dt ⩾

1√
2

n

∑
i=1

(
n

∑
j=1

a2
i j

)1/2

.

The L∞-norm of left hand side of (2) is thus bounded below. As we have symmetry in indices i and j,
swapping them, we get another lower bound. For the upper bound (3) explanation authors use such
techniques as the symmetrization trick and Ledoux–Talagrand contraction principle. It should be noted
that the specific method of applying these techniques to obtain the upper bound was taken from paper [31].
For more thorough explanations we refer to [13]. Now, having these estimates and using Lemma 2.1,
we proceed to RUC property for Rademacher chaos, i. e. (4).

We will consider multilinear and polynomial forms constructed from systems of random variables,
which are defined on a probability space ([0,1],µ) with standard Lebesgue measure, or on products of
such probability spaces. It is easy to see that the main results remain valid when replacing the segment
[0,1] with an arbitrary probability space.

Let us agree on the terminology used.
Let X = (Xk) be a sequence of independent random variables, and X (1) = (X (1)

k ), X (2) = (X (2)
k ), . . .,

X (d) = (X (d)
k ) be its independent copies. This means that the systems X ,X (1),X (2), . . . ,X (d) are identically

distributed and independent in the aggregate. We will call the system {X (1)
j1 X (2)

j2 . . .X (d)
jd }( j1, j2,..., jd)∈Nd

a homogeneous multiple random system of degree d, and the union of such homogeneous and mutually
independent systems of degrees 1,2, . . . ,d – a mixed multiple random system of degree d.

We will also consider systems generated by a single sequence X , without using its independent
copies. We will call the system {X j1X j2 . . .X jd}( j1, j2,..., jd)∈∆d a homogeneous chaos of degree d, and the
union of such homogeneous systems of degrees 1,2, . . . ,d – a mixed chaos of degree d.

Thus, the homogeneous multiple Rademacher system and homogeneous Rademacher chaos defined
above, which appear in Theorems 2.2 and 2.3, respectively, turn out to be special cases of a homogeneous
multiple random system and homogeneous chaos. We note that the precise ordering of elements of these
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systems is not relevant for the RUC-property discussed in the article. However, it should be noted that such
systems will form basic sequences if they are numbered using the lexicographic order on the index set [32].

Next, we will work with polynomials, by which we mean finite linear combinations of some
elements of the introduced system. To specify the underlying system for a given polynomial, we will use
a corresponding prefix. For example, a 3-degree homogeneous chaos polynomial will look like this:

P3(X) = ∑
1⩽i< j<k⩽n

ai jkXiX jXk.

And a 2-degree mixed multiple random system polynomial will look like this:

Ssep(X (1),X (2),X (3)) =
n

∑
k=1

bkX (1)
k +

n

∑
i=1

n

∑
j=1

ai jX
(2)
i X (3)

j .

Note also that Lemma 2.1 involves both a homogeneous chaos polynomial and a homogeneous
multiple random system polynomial. The distributions of these polynomials are different, but the lemma
shows that their L∞-norms are equivalent. Along with the notations P3(X),Ssep(X (1),X (2),X (3)), as above,
in which we emphasize the dependence of our polynomials on a system of independent rvs, we will also
use notations of the form P3(t),Ssep(t1, t2, t3), in which we consider our polynomials as random variables
(functions) of the variables t ∈ [0,1], (t1, t2, t3) ∈ [0,1]3.

It is also worth noting that every mixed chaos polynomial Q(X) of degree d can be uniquely
represented as the sum of its homogeneous parts:

Q(X) =
d

∑
k=1

Qk(X),

where Qk(X) is a k-th degree homogeneous chaos polynomial (or the k-th homogeneous component of Q).
An important result of Kwapien [19, Lemma 2] states that the mean values of a mixed chaos polynomial
Q(X) constructed from a symmetric vector X dominate the mean values of its homogeneous components.

Lemma 2.4 (Kwapien, [19, Lemma 2]) . Let F be a vector space, and let φ : F → R+ be a convex
function such that φ(−x) =φ(x) for all x ∈ F . Let Q(η) be a mixed chaos polynomial of degree d with
coefficients in F , where η= (η1, . . . ,ηn) is a vector of independent symmetric random variables. Let Qk(η)
denote its k-th homogeneous component, for 1 ⩽ k ⩽ d. Then there exists a constant Kd , depending only
on d, such that E [φ(Qk(η))]⩽ E [φ(KdQ(η))] .

We will use the following corollary.
Corollary 2.5. There is a constant Kd , depending only on d, such that for every mixed chaos

polynomial Q(η) of degree d, for every homogeneous component Qk(η) of this polynimial and every vector
η= (η1, . . . ,ηn) of independent bounded symmetric random variables we have

∥Qk(η)∥L∞
⩽ Kd∥Q(η)∥L∞

. (5)

Proof. The function φ(x) = |x|p for x ∈ [0,1] satisfies all conditions of Lemma 2.4. Applying the
lemma and taking the p-th root, we have

(E|Qk(η)|p)1/p ⩽ Kd (E|Q(η)|p)1/p .

Passing to the limit as p → ∞, this yields the L∞ estimate (5).
Remark 2.6. It is known that Kd can be taken as 2d , which is also cited by Kwapien.
This paper considers chaoses constructed from a sequence of independent symmetric bounded

random variables, which we will denote as (Xk)
∞
k=1, such that for each k, ∥Xk∥L∞

=Ck > 0.

3. RUC property for mixed multiple Rademacher system and mixed Rademacher chaos

In this section we extend the results of papers [12;13] about homogeneous Rademacher chaos to
the case of mixed Rademacher chaos. Thus we will consider 2-th degree polynomials of the form

S(t) =
n

∑
k=1

bkrk(t)+ ∑
1⩽i< j⩽n

ai jri(t)r j(t), (6)
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where bk and ai j are real coefficients. We denote the first-degree homogeneous part of S(t) as P1(t) and
the second-degree part as P2(t), so S(t) = P1(t)+P2(t).

We also consider "separated" version of chaos, in which different degree terms are generated
by independent copies of Rademacher sequences. More precisely, we will consider mixed multiple
Rademacher system polinomials of the form

Ssep(t) =
n

∑
k=1

bkrk(t)+
n

∑
i=1

n

∑
j=1

ai jr′i(t)r
′′
j (t), (7)

where r, r′, and r′′ are three mutually independent Rademacher sequences. Note that this function has
the same distribution as following function, defined on [0,1]3:

Ssep(t0, t1, t2) =
n

∑
k=1

bkrk(t0)+
n

∑
i=1

n

∑
j=1

ai jri(t1)r j(t2). (8)

We will use this fact of equivalence of distributions in our proofs.
We first consider the simpler case of mixed multiple Rademacher system, where the components of

different degrees are generated by independent Rademacher sequences.

3.1. RUC property for mixed multiple Rademacher system

Proposition 3.1. Let Ssep(t) = P1(t)+P2(t) be a mixed Rademacher multiple system polynomial of
second degree, where

P1(t) =
n

∑
k=1

bkrk(t), P2(t) =
n

∑
i=1

n

∑
j=1

ai jr′i(t)r
′′
j (t).

Then
∥Ssep∥L∞[0,1] = ∥P1∥L∞[0,1]+∥P2∥L∞[0,1]. (9)

Proof. We use equimeasurability of Ssep(t) and Ssep(t1, t2, t3), which follows from (7) and (8). We
know that for mixed Rademacher system polynomial of second degree their L∞-norm is the absolute
value of their sum for certain signs arrangement, i. e. there exists a sign configurations (ϵk,ϵ

′
i,ϵ

′′
j) ∈

∈ {−1,1}n ×{−1,1}n ×{−1,1}n which corresponds to such t∗0 , t
∗
1 , t

∗
2 , where maximum is attained, such

that:
∥P1∥L∞([0,1]) = max

t0∈[0,1]
|

n

∑
k=1

bkrk(t0)|= max
ϵk

|
n

∑
k=1

bkϵk|

and
∥P2∥L∞([0,1]2) = max

t1,t2∈[0,1]2
|

n

∑
i=1

n

∑
j=1

ai jri(t1)r j(t2)|= max
ϵ
′
i ,ϵ

′′
j

|
n

∑
i=1

n

∑
j=1

ai jϵ
′
iϵ

′′
j|.

These maxima we denote correspondingly by M1 and M2. Let also s1 and s2 denote the sign of the sum
under the module in points t∗0 , t

∗
1 , t

∗
2 . Now we consider the symmetry argument which later be modified to

the Rademacher chaos case. Because we choose t0 independently of t1, t2, we can always have s := s1 = s2.
Indeed, if these signs are different, we just take t∗∗0 such that rk(t∗∗0 ) =−rk(t∗0) for all k. Such point always
exists, because it corresponds to (−ϵk) sequence of signs. Therefore, we change the sign of P1 without
changing its absolute value. Therefore, we have

|P1(t∗0)+P2(t∗1 , t
∗
2)|= |sM1 + sM2|= |s(M1 +M2)|= M1 +M2.

Taking maxima of both sides of the equation, we get

∥Ssep∥L∞
= max

t0,t1,t2
|P1(t0)+P2(t1, t2)|⩾ M1 +M2.

On the other hand,

∥Ssep∥L∞
= max

t0,t1,t2
|P1(t0)+P2(t1, t2)|⩽ max

t0,t1,t2
{|P1(t0)|+ |P2(t1, t2)|}⩽ M1 +M2.

Combining the two inequalities, we obtain the desired equality. (9)
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Corollary 3.2. For mixed multiple Rademacher system polynomial as in Proposition 3.1 we have

∥P1∥L∞
⩽ ∥Ssep∥L∞

,

∥P2∥L∞
⩽ ∥Ssep∥L∞

.

From this we conclude that the following is true.
Theorem 3.3. For all n ∈ N and ai j ∈ R, 1 ⩽ i, j ⩽ n, we have the following two-sided estimates

with equivalence constants independent of n,ai j

Eθk,θi j

[∥∥∥ n

∑
k=1
θkbkrk +

n

∑
i=1

n

∑
j=1
θi jai jri ⊗ r j

∥∥∥
L∞

]
≍ min

Θ1,Θ2

[∥∥∥ n

∑
k=1
θkbkrk +

n

∑
i=1

n

∑
j=1
θi jai jri ⊗ r j

∥∥∥
L∞

]
≍ (10)

≍
n

∑
k=1

|bk|+max

 n

∑
i=1

(
n

∑
j=1

a2
i j

)1/2

,
n

∑
j=1

(
n

∑
i=1

a2
i j

)1/2
 ,

where Θ1 = (θk) and Θ2 = (θi j) are independent sequences of Rademacher signs.
As consequence, the mixed multiple Rademacher system has the RUC property.
Proof. We firstly prove the RUC property. If Θ1 = (θk) ∈ {−1,1}n and Θ2 = (θi j) ∈ {−1,1}n ×

×{−1,1}n are independent random sign, then we put

Θ1P1 :=
n

∑
k=1
θkbkrk, Θ2P2 :=

n

∑
i=1

n

∑
j=1
θi jai jri ⊗ r j.

Now, because always EΘ1,Θ2∥Θ1P1 +Θ2P2∥L∞
⩾ minΘ1,Θ2 ∥Θ1P1 +Θ2P2∥L∞

, it is enough for us to get an
upper bound of expectation on signs:

EΘ1,Θ2∥Θ1P1 +Θ2P2∥L∞
= Eθk,θi j

[
∥

n

∑
k=1
θkbkrk∥L∞

+∥
n

∑
i=1

n

∑
j=1
θi jai jri ⊗ r j∥L∞

]
=

= Eθk∥
n

∑
k=1
θkbkrk∥L∞

+Eθi j∥
n

∑
i=1

n

∑
j=1
θi jai jri ⊗ r j∥L∞

⩽

⩽ min
θk

∥
n

∑
k=1
θkbkrk∥L∞

+CRUC min
θi j

∥
n

∑
i=1

n

∑
j=1
θi jai jri ⊗ r j∥L∞

⩽

⩽CRUC min
Θ1,Θ2

(∥Θ1P1∥L∞
+∥Θ2P2∥L∞

)⩽

⩽CRUC min
Θ1,Θ2

∥Θ1P1 +Θ2P2∥L∞
,

where the first equality comes by taking expectations on (Θ1,Θ2) from both sides of (9), the second equality
by linearity of expectation and independence of (Θ1,Θ2), and third inequality from symmetric property
of Rademacher system and from RUC property of second-degree homogeneous multiple Rademacher
systems (by Theorem 2.2). In fact, the L∞ norm of the first-degree Rademacher system with random signs
is equal to sum of absolute values bk, which corresponds to symmetric property of this system in L∞. And
then we use known properties of minima of functions and in the final inequality we use (9) again. Thus,
the mixed multiple Rademacher system possesses the RUC property.

Now, to prove the second part of (10), we again use the Proposition 3.1 and the following simple
fact:

∥Θ1P1∥L∞
=

n

∑
k=1

|θkbk|= ∥(bk)∥l1 . (11)

Now, if we take b̃k = θkbk for fixed combinations of signs Θ1 = (θk), the same holds true. Then we unfix
the signs and take expectation from both sides of the equality:

EΘ1∥Θ1P1∥L∞
= Eθk

n

∑
k=1

|θkbk|= ∥bk∥l1 . (12)
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For the second-degree homogeneous multiple Rademacher system polynomial Θ2P2 = ∑
n
i=1 ∑

n
j=1 ai jri⊗r j,

by Theorem 2.2, its average L∞-norm is equivalent to the matrix norm:

EΘ2∥Θ2P2∥L∞
≍ max

 n

∑
i=1

(
n

∑
j=1

a2
i j

)1/2

,
n

∑
j=1

(
n

∑
i=1

a2
i j

)1/2
 . (13)

Combining relations (12) and (13) with Proposition 3.1, we obtain the right-hand side of relation (10).

3.2. RUC property for mixed Rademacher chaos

Now we consider the mixed Rademacher chaos polynomials, as in (6). Let S(t) = P1(t)+P2(t) be
such a polynomial, with P1(t) = ∑

n
k=1 bkrk(t) and P2(t) = ∑1⩽i< j⩽n ai jri(t)r j(t). In this case, the simple

additivity of L∞-norms observed in Proposition 3.1 no longer holds due to the mutual dependence between
P1(t) and P2(t). However, a crucial relationship still provides control over the norm of its components
by the norm of the total sum.

Proposition 3.4. Let

P1(t) =
n

∑
k=1

bkrk(t), P2(t) = ∑
1⩽i< j⩽n

ai jri(t)r j(t),

and S(t) = P1(t)+P2(t) is a mixed Rademacher chaos polynomial of second degree as it defined in (6).
Then,

∥P1∥L∞
⩽ ∥S∥L∞

, ∥P2∥L∞
⩽ ∥S∥L∞

. (14)

As consequence,
∥S∥L∞

⩽ ∥P1∥L∞
+∥P2∥L∞

⩽ 2∥S∥L∞
.

Proof. Let t∗ be a point where |P1(t∗)| = ∥P1∥L∞
. Without loss of generality, assume P1(t∗) =

= ∥P1∥L∞
⩾ 0. Consider another point t∗∗ such that rk(t∗∗) =−rk(t∗) for all k = 1, . . . ,n. Then P1(t∗∗) =

= ∑bk(−rk(t∗)) = −P1(t∗). However, P2(t∗∗) = ∑i< j ai j(−ri(t∗))(−r j(t∗)) = ∑i< j ai jri(t∗)r j(t∗) =
= P2(t∗). Thus, we have two values for S(t): S(t∗) = P1(t∗) +P2(t∗) and S(t∗∗) = −P1(t∗) +P2(t∗).
At least one of P1(t∗) or −P1(t∗) must have the same sign as P2(t∗).

If P1(t∗) and P2(t∗) have the same sign, then

|S(t∗)|= |P1(t∗)+P2(t∗)|= |P1(t∗)|+ |P2(t∗)|⩾ |P1(t∗)|= ∥P1∥L∞
.

If P1(t∗) and P2(t∗) have opposite signs, then

|S(t∗∗)|= |−P1(t∗)+P2(t∗)|= |P1(t∗)|+ |P2(t∗)|⩾ |P1(t∗)|= ∥P1∥L∞

In either case,
∥S∥L∞

= max
t

|S(t)|⩾ ∥P1∥L∞
.

Thus, we get the first inequality in (14), and for the second inequality we can apply the similar argument.
Next, using inequalities (14) we get:

∥P1∥L∞
+∥P2∥L∞

⩽ 2∥S∥L∞
,

and by triangle inequality
∥S∥L∞

⩽ ∥P1∥L∞
+∥P2∥L∞

.

Corollary 3.5. LetX1 = span{rk : k = 1,2,3, . . .} be the closed subspace of first-degree homogeneous
Rademacher chaos in L∞([0,1]), X2 = span{rir j : i < j, i, j = 1,2,3, . . .} be the closed subspace of second-
degree homogeneous Rademacher chaos in L∞([0,1]), andX1,2 = span{rir j,rk : i< j, i, j,k = 1,2,3, . . .} be
the closed subspace of second-degree mixed Rademacher chaos in L∞([0,1]). Then there is an isomorphism
of Banach spaces:

X1,2 ∼= X1 ⊕X2,
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where
X1 ⊕X2 := {x = x1 + x2 : x1 ∈ X1,x2 ∈ X2}, ∥x1 + x2∥X1⊕X2 := ∥x1∥X1 +∥x2∥X2 .

Thus X1 and X2 are complemented subspaces of X1,2.
Proof. Mixed chaos is a basic sequence in lexicographic order in the space L∞ [32, Theorem 2].

Therefore, the space X1,2 consists of those elements x1,2 ∈ L∞ which can be represented in the form

x1,2(t) = b1r1(t)+b2r2(t)+b1,2r1(t)r2(t)+b3r3(t)+b1,3r1(t)r3(t)+b2,3r2(t)r3(t)+ . . . , (15)

where the series converges in the L∞-norm. Similarly, the spaces X1 and X2 consist, respectively, of
elements which are represented as sums of the form

x1 = a1r1(t)+a2r2(t)+a3r3(t)+ . . . and x2 = a1,2r1(t)r2(t)+a1,3r1(t)r3(t)+a2,3r2(t)r3(t)+ . . .

Let us consider two arbitrary elements x1 ∈ X1 and x2 ∈ X2. It is easy to see that from the convergence of
the series for x1 and x2 follows the convergence of the series

x1 + x2 = a1r1(t)+a2r2(t)+a1,2r1(t)r2(t)+a3r3(t)+a1,3r1(t)r3(t)+a2,3r2(t)r3(t)+ . . . ,

therefore X1 +X2 ⊂ X1,2. Then we note that convergence in L∞ implies convergence in L2, in which the
spaces X1 and X2 are orthogonal. Therefore X1∩X2 = {0}, and the space X1⊕X2 is well defined. Moreover,

∥x1 + x2∥X1,2 = ∥x1 + x2∥L∞
⩽ ∥x1∥L∞

+∥x2∥L∞
= ∥x1 + x2∥X1⊕X2 .

Now let x1,2 ∈ X1,2 and S(n)1,2 be the partial sum of the corresponding series (15). Then S(n)1,2 = S(n1)
1 +

+S(n2)
2 , where S(n1)

1 is some finite sum according to system {rk}, and S(n2)
2 is a finite sum according to

system {rir j}. As n increases, new terms will be added to the sums S(n1)
1 and S(n2)

2 in a certain order
determined by the lexicographic numbering of the combined system of {rk} and {rir j}. The sequence of
sums Sn1

1 will form the series
b1r1(t)+b2r2(t)+b3r3(t)+ . . . ,

and, similarly, the sequence of sums S(n2)
2 will form the series

b1,2r1(t)r2(t)+b1,3r1(t)r3(t)+b2,3r2(t)r3(t)+ . . . .

Both of these series will converge. This follows from the convergence of the series for x1,2 and inequalities∥∥S(m1)
1 −S(n1)

1

∥∥
L∞

⩽
∥∥S(m)

1,2 −S(n)1,2

∥∥
L∞

and
∥∥S(m2)

2 −S(n2)
2

∥∥
L∞

⩽
∥∥S(m)

1,2 −S(n)1,2

∥∥
L∞
, n < m,

which are valid by virtue of Proposition 3.4. Hence x1,2 = x1 + x2, where xi ∈ Xi, and X1,2 ⊂ X1 ⊕X2. By
virtue of the already established continuous embedding X1 ⊕X2 ⊂ X1,2 and Banach’s inverse operator
theorem, embedding X1,2 ⊂ X1 ⊕X2 is also continuous. Moreover, passing to the limit in inequalities∥∥S(n1)

1

∥∥
L∞

⩽
∥∥S(n)1,2

∥∥
L∞

and
∥∥S(n2)

2

∥∥
L∞

⩽
∥∥S(n)1,2

∥∥
L∞
, n < m,

which are valid according to Proposition 3.4, we obtain

∥x1,2∥X1,2 ⩽ ∥x1,2∥X1⊕X2 ⩽ 2∥x1,2∥X1,2 .

Nowwe prove the RUC property for mixed Rademacher chaos. We proceed similarly to Theorem 3.3.
Theorem 3.6. For all n ∈ N and ai j ∈ R, 1 ⩽ i < j ⩽ n, we have the following two-sided estimates

with equivalence constants independent of n,ai j

EΘ1,Θ2

∥∥∥∥∥ n

∑
k=1
θkbkrk + ∑

1⩽i< j⩽n
θi jai jrir j

∥∥∥∥∥
L∞

≍ min
Θ1,Θ2

∥∥∥∥∥ n

∑
k=1
θkbkrk + ∑

1⩽i< j⩽n
θi jai jrir j

∥∥∥∥∥
L∞

≍ (16)

≍
n

∑
k=1

|bk|+max

n−1

∑
i=1

(
n

∑
j=i+1

a2
i j

)1/2

,
n

∑
j=2

(
j−1

∑
i=1

a2
i j

)1/2
 ,

where Θ1 = (θk) and Θ2 = (θi j) are independent sequences of Rademacher signs.
As consequence, the mixed Rademacher chaos has the RUC property.



64 P. A. Slinyakov, K. V. Lykov

Proof. Let us denote

Θ1P1 :=
n

∑
k=1
θkbkrk, Θ2P2 := ∑

1⩽i< j⩽n
θi jai jri(t)r j(t),

as in the proof of Theorem 3.3, we obtain

EΘ1,Θ2∥(Θ1P1)+(Θ2P2)∥L∞
⩽ Eθk,θi j

[
∥

n

∑
k=1
θkbkrk∥L∞

+∥ ∑
1⩽i< j⩽n

θi jai jrir j∥L∞

]
=

= Eθk∥
n

∑
k=1
θkbkrk∥L∞

+Eθi j∥ ∑
1⩽i< j⩽n

θi jai jrir j∥L∞
⩽

⩽ min
θk

∥
n

∑
k=1
θkbkrk∥L∞

+CRUC min
θi j

∥ ∑
1⩽i< j⩽n

θi jai jrir j∥L∞
⩽

⩽CRUC min
Θ1,Θ2

(∥Θ1P1∥L∞
+∥Θ2P2∥L∞

)⩽

⩽ 2CRUC min
Θ1,Θ2

∥Θ1P1 +Θ2P2∥L∞
,

where final inequality comes from Proposition 3.4. From this we obtain the RUC-property for the mixed
Rademacher chaos.

To prove the second equivalence in (16), we again use Proposition 3.4. Thus we get

EΘ1,Θ2∥Θ1P1 +Θ2P2∥L∞
≍ Eθk∥

n

∑
k=1
θkbkrk∥L∞

+Eθi j∥ ∑
1⩽i< j⩽n

θi jai jrir j∥L∞
≍

≍
n

∑
k=1

|bk|+max

n−1

∑
i=1

(
n

∑
j=i+1

a2
i j

)1/2

,
n

∑
j=2

(
j−1

∑
i=1

a2
i j

)1/2
 ,

where we used relations (11) and (1).

4. RUC property for multiple random system and chaos of symmetric bounded random
variables

In this section we extend results from Section 3 obtained for second-degree mixed multiple
Rademacher system and mixed Rademacher chaos to broader class of d-th degree mixed multiple random
system and mixed chaos of symmetric bounded (a. e.) rvs.

4.1. RUC property for homogeneous multiple random system and homogeneous chaos

First we will establish equality between L∞-norm of homogeneous multiple random system
polinomial and the L∞-norm of homogeneous multiple Rademacher system polynomial of degree d. As
before, we will denote by X (1), . . . ,X (d) independent copies of the sequence X = (Xk).

Theorem 4.1. Let {X (1)
j1 . . .X (d)

jd } be a d-homogeneous multiple random system formed by the
sequence X = (Xk) of independent symmetric bounded random variables, and ∥Xk∥L∞

=Ck > 0. Let

P(X (1), . . . ,X (d)) = ∑
J∈Nd

n

aJX (1)
j1 . . .X (d)

jd

is a polynomial by this system. Then,

∥P(X (1), . . . ,X (d))∥L∞
=

∥∥∥∥∥ ∑
J∈Nd

n

(
aJ ∏

l∈J
Cl

)
r⊗J

∥∥∥∥∥
L∞

,

where r⊗J denotes the elements of the d-th degree multiple Rademacher system.
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Proof. We remind that we work on a probability space (Ω,A,P) with Ω = [0,1] an P= µ, where µ
is a standard Lebesgue measure. Let us consider an auxiliary multilinear form

Ph(x(1), . . . ,x(d)) := ∑
J∈Nd

n

aJx(1)j1 . . .x(d)jd ,

which depends on variables x(1) = (x(1)1 , . . . ,x(1)n ), . . ., x(d) = (x(d)1 , . . . ,x(d)n ), and each x(k), k ∈ [d], changes
on a Cartesian product ∏

n
i=1[−Ci,Ci]. We show that the L∞-norm of the d-homogeneous multiple random

system polynomial formed by independent symmetric bounded random variables Xk coincides with the
L∞-norm of this multilinear form.

To show that ∥Ph∥L∞
= ∥∑J∈Nd

n
aJX (1)

j1 . . .X (d)
jd ∥L∞

, we proof two inequalities, which will give us the
desired equality when combined.

Firstly, we note that the inequality ∥Ph∥L∞
⩾ ∥∑J∈Nd

n
aJX (1)

j1 . . .X (d)
jd ∥L∞

holds true, because the co-
domain of random variable P(X (1), . . . ,X (d)) is included in the co-domain of Ph(x(1), . . . ,x(d)) almost surely.
Note that this holds for arbitrary independent symmetric bounded rvs (Xi) with norm ∥Xi∥L∞

=Ci > 0.
Now we prove the inverse inequality. By multilinearity of the form Ph we have that

M := ∥Ph∥L∞
= max

|x(k)jk
|=C jk

∣∣∣∣∣ ∑
J∈Nd

n

aJx(1)j1 . . .x(d)jd

∣∣∣∣∣= ∑
J∈Nd

n

aJC∗
1, j1 . . .C

∗
d, jd ,

where we note C∗
i, ji equal to C ji or −C ji , depending on where the maximum is attained.

We consider the following family of sets:

Ωi, ji,ϵ :=
{
ω ∈ Ω | X (i)

ji (ω) ∈ ∆i, ji,ϵ

}
, i ∈ [d], ji ∈ [n],

where by ∆i, ji,ϵ we denote either the interval [C∗
i, ji −ϵ,C

∗
i, ji ] or the interval [C

∗
i, ji ,C

∗
i, ji +ϵ], again, depending

on the sign of C∗
i, ji . By definition of essential supremum, we have that P(Ωi, ji,ϵ)> 0.

Let us consider the set

Ωϵ =
d⋂

i=1

n⋂
ji=1

Ωi, ji,ϵ.

By independence rvs from the system {(X (i)
k )k}i, we have that

P(Ωϵ) =
d

∏
i=1

n

∏
ji=1

P(Ωi, ji,ϵ),

so that P(Ωϵ)> 0 as the product of positive measures. By definition of Ωϵ we have inclusions{
P(X (1), . . . ,X (d)) |ω ∈ Ωϵ

}
⊂
{

Ph | x(i)ji ∈ ∆i, ji,ϵ

}
= [M−δ(ϵ),M] ,

with some δ(ϵ). Moreover, δ(ϵ)→ 0 with ϵ→ 0 by continuity of Ph.
From here we have that

|P(X (1), . . . ,X (d)|⩾ M−δ(ϵ)

on a set with positive measure. From this we get

∥P(X (1), . . . ,X (d)∥L∞
⩾ lim
ϵ→0

{M−δ(ϵ)}= M.

Thus,

∥P(X (1), . . . ,X (d))∥L∞
= sup

|x(k)jk
|=C jk

∣∣∣∣∣∑J
aJx(1)j1 . . .x(d)jd

∣∣∣∣∣=
= max
ϵ
(m)
k ∈{±1}

∣∣∣∣∣∑J
aJ(C j1ϵ

(1)
j1 ) . . .(C jdϵ

(d)
jd )

∣∣∣∣∣=
= max
ϵ
(m)
k ∈{±1}

∣∣∣∣∣∑J

(
aJ ∏

l∈J
Cl

)
ϵ
(1)
j1 . . .ϵ

(d)
jd

∣∣∣∣∣ .
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The last expression is precisely the L∞-norm of the d-th degree multiple Rademacher system with modified
coefficients ãJ = aJ ∏l∈J Cl . Therefore,

∥P(X (1), . . . ,X (d))∥L∞
=

∥∥∥∥∥ ∑
J∈Nd

n

(
aJ ∏

l∈J
Cl

)
r⊗J

∥∥∥∥∥
L∞

.

The following statement follows from Theorem 4.1, Theorem 2.2 and averaging over cyclic
permutations of the index k in inequality (3).

Theorem 4.2. The d-degree homogeneous multiple random system formed by the sequence X = (Xk)
of independent symmetric bounded rvs has the RUC property. Moreover, for all n ∈N and aJ ∈Rd ,J ∈Nd

n
the following inequalities hold:∥∥∥∥∥ ∑

J=( j1, j2,..., jd)∈Nd
n

aJX (1)
j1 X (2)

j2 . . .X (d)
jd

∥∥∥∥∥
L∞([0,1]d)

⩾ 2
1−d

2 max
k∈[d]

n

∑
l=1

(
∑

J∈Nd
n(k,l)

ã2
J

)1/2

,

and

Eθ

∥∥∥∥∥ ∑
J=( j1, j2,..., jd)∈Nd

n

aJθJX (1)
j1 X (2)

j2 . . .X (d)
jd

∥∥∥∥∥
L∞([0,1]d)

⩽
2d −1

d

d

∑
k=1

n

∑
l=1

(
∑

J∈Nd
n(k,l)

ã2
J

)1/2

,

where (θJ)J∈Nd
n
=±1 is a system of independent symmetric random signs, ãJ = aJ ∏l∈J Cl ,Cl = ∥Xl∥L∞

> 0.
Using the last fact for a homogeneous multiple random system and Lemma 2.1, we can establish

the RUC property for homogeneous chaos.
Theorem 4.3. The d-degree homogeneous chaos formed by the sequence X = (Xk) of independent

symmetric bounded rvs, ∥Xk∥L∞
=Ck > 0, has the RUC property. Moreover, the following relations are

valid with constants depending only on d

Eθ

∥∥∥∥∥ ∑
J∈∆d

n

θJaJXJ

∥∥∥∥∥
L∞

≍ min
θ

∥∥∥∥∥ ∑
J∈∆d

n

θJaJXJ

∥∥∥∥∥
L∞

≍
n

∑
j=1

(
∑

J = ( j1, j2, . . . , jd) ∈ ∆d
n :

∃k ∈ [d] : jk = j

ã2
J

)1/2

, (17)

where (θJ)J∈∆d
n
= ±1 is a system of independent symmetric random signs, ãJ = aJ ∏l∈J Cl , XJ =

= X j1X j2 . . .X jd .
Proof. For the proof we will use Theorem 4.2 and Lemma 2.1. Let bJ for J ∈ Nd

n be defined
as following:

b j1,..., jd =
1
d!

a jσ1
. . .a jσd

, if all ji are pairwise different,

where σ is permutation of [d] such that jσ1 < jσ2 < · · ·< jσd , and b j1,..., jd = 0 if there exists a pair ( ji1 , ji2)
such that ji1 = ji2 for i1 ̸= i2. These coefficients satisfy conditions of Lemma 2.1, and

n

∑
i1=1

· · ·
n

∑
id=1

b j1,..., jd X j1 . . .X jd = ∑
1<i1<i2<···<id

a j1,..., jd X j1 . . .X jd .

Let b̃J = bJ ∏l∈J Cl . By Lemma 2.1 and Theorem 4.2, we get∥∥∥∥ ∑
1<i1<i2<···<id

a j1,..., jd X j1 . . .X jd

∥∥∥∥
L∞

⩾ cd

∥∥∥∥ n

∑
i1=1

· · ·
n

∑
id=1

b j1,..., jd X (1)
j1 . . .X (d)

jd

∥∥∥∥
L∞

⩾

⩾ cd2
1−d

2 max
k∈[d]

n

∑
j=1

(
∑

J∈Nd
n(k, j)

b̃2
J

)1/2

=

= cd2
1−d

2

n

∑
j=1

(
∑

J∈Nd
n(1, j)

b̃2
J

)1/2

,
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where the last equality follows from the symmetry of the system of coefficients {b̃J}J∈Nd
n
. Further, due

to the same symmetry,

∑
J∈Nd

n(1, j)

b̃2
J = ∑

J∈Nd
n : j1= j

b̃2
J =

1
d ∑

J = ( j1, j2, . . . , jd) ∈ Nd
n :

∃k ∈ [d] : jk = j

b̃2
J =

1
d ∑

J = ( j1, j2, . . . , jd) ∈ ∆d
n :

∃k ∈ [d] : jk = j

ã2
J .

Hence ∥∥∥∥ ∑
1<i1<i2<···<id

a j1,..., jd X j1 . . .X jd

∥∥∥∥
L∞

⩾
cd√

d2
d−1

2

n

∑
j=1

(
∑

J = ( j1, j2, . . . , jd) ∈ ∆d
n :

∃k ∈ [d] : jk = j

ã2
J

)1/2

.

To obtain the upper estimate for the expectation Eθ, we cannot directly use the decoupling method.
The difficulty arises because moving to separated chaos requires averaging over signs ΘJ by all multi-
indices J ∈ Nd

n , not just ascending ones from ∆d
n . To overcome this, we use the reasoning following

Lemma 2.1 and establish the inequality:∥∥∥∥ ∑
J∈∆d

n

θJaJXJ

∥∥∥∥
L∞

⩽

∥∥∥∥ ∑
J∈∆d

n

θJaJX (1)
j1 X (2)

j2 . . .X (d)
jd

∥∥∥∥
L∞

for each set of signs {θJ}J∈∆d
n
. Therefore, by Theorem 4.2, where we put ãJ = 0 for J ̸∈ ∆d

n ,

Eθ

∥∥∥∥ ∑
J∈∆d

n

θJaJXJ

∥∥∥∥
L∞

⩽ Eθ

∥∥∥∥ ∑
J∈∆d

n

θJaJX (1)
j1 X (2)

j2 . . .X (d)
jd

∥∥∥∥
L∞

⩽

⩽
2d −1

d

d

∑
k=1

n

∑
j=1

(
∑

J∈Nd
n(k, j)

ã2
J

)1/2

=

=
2d −1

d

n

∑
j=1

d

∑
k=1

(
∑

J = ( j1, j2, . . . , jd) ∈ ∆d
n :

jk = j

ã2
J

)1/2

⩽

⩽
2d −1√

d

n

∑
j=1

(
d

∑
k=1

∑
J = ( j1, j2, . . . , jd) ∈ ∆d

n :
jk = j

ã2
J

)1/2

=

=
2d −1√

d

n

∑
j=1

(
∑

J = ( j1, j2, . . . , jd) ∈ ∆d
n :

∃k ∈ [d] : jk = j

ã2
J

)1/2

. □

Corollary 4.4. Let d ⩾ 2. The d-degree homogeneous chaos is not an unconditional system. This
means that there is no constant C such that for all n ∈ N, aJ ∈ Rd and θJ = ±1, J ∈ ∆d

n , the following
inequality holds: ∥∥∥∥ ∑

J∈∆d
n

aJXJ

∥∥∥∥
L∞

⩽C
∥∥∥∥ ∑

J∈∆d
n

θJaJXJ

∥∥∥∥
L∞

.

Similary, the d-degree homogeneous multiple random system is not an unconditional system.
Proof. Without loss of generality, we can assume that ∥Xk∥L∞ = 1, k = 1,2, . . .. Let us take aJ = 1.

Then ∥∥∥∥ ∑
J∈∆d

n

a jXJ

∥∥∥∥
L∞

=

∥∥∥∥ ∑
J∈∆d

n

XJ

∥∥∥∥
L∞

=Cd
n ,

where Cd
n = n!

d!(n−d)! . This follows from the fact that for any ϵ> 0

P

( n

∏
k=1

{Xk > 1−ϵ}
)
> 0,
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and from the continuity of the polynomial form

∑
J∈∆d

n

xJ, xJ = x j1x j2 . . .x jd .

On the other hand, according to (17),

min
θ

∥∥∥∥∥ ∑
J∈∆d

n

θJXJ

∥∥∥∥∥
L∞

⩽C
n

∑
j=1

(
∑

J = ( j1, j2, . . . , jd) ∈ ∆d
n :

∃k ∈ [d] : jk = j

12

)1/2

=Cn
√

Cd−1
n−1 ,

with some constant C that does not depend on n. Since

Cd
n ≍ nd , cn

√
Cd−1

n−1 ≍ n
d+1

2 ,

where the equivalence constants depend only on d, the unconditional inequality cannot be satisfied, as for
d ⩾ 2 we get d >

d +1
2

.
An analogous fact can be established for the d-degree homogeneous multiple system by using

a similar argument.

4.2. RUC property for mixed multiple random system and mixed chaos

Wewill first establish a key property for the L∞-norm of mixedmultiple system polynomial generated
by symmetric bounded random variables, analogous to Proposition 3.1 for Rademacher variables.

Proposition 4.5. Let

Ssep(X (1),X (2), . . . ,X ( d(d+1)
2 )) = P1(X (1))+P2(X (2),X (3))+ . . .+Pd(X (1+ d(d−1)

2 ),X (2+ d(d−1)
2 ), . . . ,X ( d(d+1)

2 ))

be a d-degree mixed multiple system polynomial, where X (1),X (2), . . .X (d(d+1)/2) are independent copies
of a sequence X = (Xk) of independent symmetric bounded variables. Then,

∥Ssep∥L∞
= ∥P1∥L∞

+∥P2∥L∞
+ . . .+∥Pd∥L∞

.

The assertion follows easily from the mutual independence of the terms P1,P2, . . ., and the following
simple property.

Lemma 4.6. Let ξ and η be independent symmetric bounded random variables. Then

∥ξ+η∥L∞
= ∥ξ∥L∞

+∥η∥L∞
.

Proof. Let
A = ∥ξ∥L∞

, B = ∥η∥L∞
.

Due to the symmetry of random variables ξ and η, for any ε> 0, events

Ωξ,ε := {ξ ∈ [A−ε,A]} and Ωη,ε := {η ∈ [B−ε,B]}

have positive measure. From the independence of ξ and η it follows that

P(Ωξ,ε∩Ωη,ε)> 0.

Moreover,
(ξ+η)(Ωξ,ε∩Ωη,ε)⊂ [A+B−2ε,A+B].

Hence
∥ξ+η∥L∞

⩾ lim
ε→0

(A+B−2ε) = A+B.

The opposite inequality coincides with the triangle inequality.
Now, analogously to the proof of Theorem 3.3 from Proposition 4.5 and Theorem 4.2 we conclude

that the following is true.
Theorem 4.7. The mixed multiple random system from the sequence (Xk) of independent symmetric

bounded rvs has the RUC property. Moreover, let

Ssep(X (1),X (2), . . . ,X ( d(d+1)
2 ),Θ) =
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= Θ1P1(X (1))+Θ2P2(X (2),X (3))+ . . .+ΘdPd(X (1+ d(d−1)
2 ),X (2+ d(d−1)

2 ), . . . ,X ( d(d+1)
2 )),

where

ΘmPm := ∑
( j1, j2,..., jm)∈Nm

n

θ j1 j2... jma j1 j2... jmX (1+m(m−1)
2 )

j1 X (2+m(m−1)
2 )

j2 . . .X (m(m+1)
2 )

jm .

Then

EΘ∥Ssep(X (1),X (2), . . . ,X ( d(d+1)
2 ),Θ)∥L∞

≍ min
Θ

∥Ssep(X (1),X (2), . . . ,X ( d(d+1)
2 ),Θ)∥L∞

≍

≍
d

∑
m=1

max
k∈[m]

n

∑
l=1

(
∑

J∈Nm
n (k,l)

ã2
J

)1/2

,

where Θ is the system of independent signs θ=±1, ãJ = aJ ∏l∈J Cl , Cl = ∥Xl∥L∞
> 0, and a constants in

the designated equivalences do not depend on n and real numbers {a j1 j2... jm}d
m=1 (but depend on d).

In the special case of mixed chaos of the second degree we obtain the following statement.
Corollary 4.8. The mixed multiple random system {X (1)

k ,X (2)
i X (3)

j } from independent symmetric
bounded rvs has the RUC property, and we have the following inequalities:

Eθk,θi j

∥∥∥∥∥ n

∑
k=1
θkbkX (1)

k +
n

∑
i=1

n

∑
j=1
θi jai jX

(2)
i X (3)

j

∥∥∥∥∥
L∞

≍ min
θk,θi j

∥∥∥∥∥ n

∑
k=1
θkbkX (1)

k +
n

∑
i=1

n

∑
j=1
θi jai jX

(2)
i X (3)

j

∥∥∥∥∥
L∞

≍

≍
n

∑
k=1

|b̃k|+max

 n

∑
i=1

(
n

∑
j=1

ã2
i j

)1/2

,
n

∑
j=1

(
n

∑
i=1

ã2
i j

)1/2
 ,

where b̃k =Ckbk, ãi j =CiC jai j, Ck = ∥Xk∥L∞
> 0.

To obtain an analogue of Theorem 4.7 for mixed chaos, we first note the following statement,
similar to Proposition 4.5.

Proposition 4.9. Let
S(X) = P1(X)+P2(X)+ . . .+Pd(X)

be a d-degree mixed chaos polynomial, decomposed into the sum of its homogeneous components Pm(X),
where X = (Xk) is a sequence of independent symmetric bounded variables. Then,

∥S∥L∞
≍ ∥P1∥L∞

+∥P2∥L∞
+ . . .+∥Pd∥L∞

.

Proof. From Corollary 2.5 we obtain

∥P1∥L∞
+∥P2∥L∞

+ . . .+∥Pd∥L∞
⩽ dKd∥S∥L∞

.

The opposite estimate is obtained from the triangle inequality.
From Proposition 4.9 and Theorem 4.3 we get
Theorem 4.10. The mixed chaos from the sequence (Xk) of independent symmetric bounded rvs has

the RUC property. Morever, let

S(X ,Θ) = Θ1P1(X)+Θ2P2(X)+ . . .+ΘdPd(X),

where
ΘmPm := ∑

J∈∆m
n

θJaJXJ, XJ = X j1X j2 . . .X jm .

Then

EΘ∥S(X ,Θ)∥L∞
≍ min

Θ
∥S(X ,Θ)∥L∞

≍

≍
d

∑
m=1

n

∑
j=1

(
∑

J = ( j1, j2, . . . , jm) ∈ ∆m
n :

∃k ∈ [d] : jk = j

ã2
J

)1/2

,
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where Θ is the system of independent signs θ=±1, ãJ := aJ ∏l∈J Cl , Cl = ∥Xl∥L∞
> 0, and a constants in

the designated equivalences do not depend on n and real numbers {{aJ}J∈∆m
n
}d

m=1 (but depend on d).
Corollary 4.11. Let (Xk) is a sequence of independent symmetric bounded rvs. We have the following

two-sided estimates

Eθk,θi, j

∥∥∥∥∥ n

∑
k=1
θkbkXk + ∑

1⩽i< j⩽n
θi jai jXiX j

∥∥∥∥∥
L∞

≍ min
θk,θi, j

∥∥∥∥∥ n

∑
k=1
θkbkXk + ∑

1⩽i< j⩽n
θi jai jXiX j

∥∥∥∥∥
L∞

≍

≍
n

∑
k=1

|b̃k|+max

n−1

∑
i=1

(
n

∑
j=i+1

ã2
i j

)1/2

,
n

∑
j=2

(
j−1

∑
i=1

ã2
i j

)1/2
 ,

where (θk =±1,θi, j =±1) is the system of independent signs, b̃k =Ckbk, ãi j =CiC jai j,Ck = ∥Xk∥L∞
> 0.

Summary

This paper investigates systems composed of products of independent random variables and their
properties related to the additive decomposition of other random variables over such systems. These
representations are closely related to the well-known Polynomial Chaos Expansion (PCE, see [33]) and
are a special case of the generalized polynomial chaos (see [34–36]), which has numerous applications
in mathematical modeling and machine learning. We show that for symmetric bounded random variables,
these product systems, while failing to be unconditional convergence systems in the space L∞ of bounded
random variables, nonetheless possess the closely related property of Random Unconditional Convergence
(RUC). Following the principle of moving from particular and simple cases to more general and complex
ones, we sequentially examine the cases of Rademacher random variables (in Section 3) and arbitrary
symmetric bounded random variables (in Section 4). We consider two variants of these product systems.
In the first, simpler variant, each product involves factors from different independent copies of the
generating sequence of random variables (Theorems 3.3, 4.2, and 4.7). In the second variant, each
product consists of factors from one common sequence (Theorems 3.6, 4.3, and 4.10), which creates
a more complex dependence structure between the elements of the constructed system. We also made
a transition from homogeneous systems, where all products consist of the same number of factors
(Theorems 2.2, 2.3, 4.2, and 4.3), to mixed systems, which are unions of several homogeneous systems
(Theorems 3.3, 3.6, 4.7, and 4.10).

The next stage of our research is to study the behavior of chaoses in arbitrary symmetric spaces.
The class of symmetric spaces in which the homogeneous Rademacher chaos forms an unconditional
sequence is characterized in papers [27; 28]. However, even for the special case of Rademacher chaos,
a similar question regarding the property of random unconditional convergence remains open.

The work was supported by the State Research Programme “Convergence–2025” of the National
Academy of Sciences of Belarus (assignment 1.3.05).
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Birkhäuser Boston, MA, 1992.

9. Novikov S. Ya. Sequences of Functions in Symmetric Spaces. Samara, Samara University, 2008
(in Russian).

10. Astashkin S. V., Sukochev F. A. Independent functions and the geometry
of Banach spaces. Russian Math. Surveys, 2010, vol. 65, no. 6, pp. 1003–1081.
https://doi.org/10.1070/RM2010v065n06ABEH004715

11. Astashkin S. V. Sequences of independent functions and structure of rearrangement invariant
spaces. Russian Math. Surveys, 2024, vol. 79, no. 3, pp. 375–457. https://doi.org/10.4213/rm10171e

12. Astashkin S. V., Lykov K. V. One property of the multiple Rademacher system and its
applications to problems of graph discrepancy. Russian Math. Surveys, 2024, vol. 79, no. 4, pp. 727–729.
https://doi.org/10.4213/rm10185e

13. Astashkin S. V., Lykov K. V. Random unconditional convergence of Rademacher chaos in L∞

and sharp estimates for discrepancy of weighted graphs and hypergraphs. Mathematische Annalen, 2025,
vol. 393, no. 1, pp. 407–438. https://doi.org/10.1007/s00208-025-03257-9

14. Ledoux M., Talagrand M. Probability in Banach spaces. Berlin, Heidelberg, Springer-Verlag,
1991. https://doi.org/10.1007/978-3-642-20212-4

15. Bartlett P. L., Mendelson S. Rademacher and Gaussian Complexities: Risk Bounds
and Structural Results. Journal of Machine Learning Research, 2002, vol. 3, pp. 463–482.
https://dl.acm.org/doi/10.5555/944919.944944

16. Mohri M., Rostamizadeh A., Talwalkar A. Foundations of Machine Learning.MIT Press, 2018.
17. Astashkin S. V. The Rademacher System in Function Spaces. Birkhäuser, Switzerland, 2020.
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Аннотация. Вводится рациональный сингулярный интеграл Джексона, представля-
ющий собой линейную комбинацию рациональных интегральных операторов Фурье–
Чебышёва с соответствующей треугольной матрицей коэффициентов и фиксированным
количеством геометрически различных полюсов. Устанавливается его интегральное
представление.
Исследуются рациональные аппроксимации функций Маркова на отрезке [−1, 1]
введенным методом. Устанавливается интегральное представление приближений и
оценка сверху равномерных приближений.
Изучаются аппроксимации функций Маркова с абсолютно непрерывной мерой, произ-
водная которой асимптотически равна некоторой степенной функции. В этом случае
найдены оценки сверху поточечных и равномерных приближений и асимптотическое
выражение мажоранты равномерных приближений.
Устанавливаются оптимальные значения параметров, при которых обеспечиваются
наилучшие равномерные приближения функций Маркова рациональными сингулярны-
ми интегралами Джексона. С этой целью решается соответствующая экстремальная
задача. Показано, что при специальном выборе параметров равномерные рациональные
приближения имеют более высокую скорость убывания в сравнении с соответствующи-
ми полиномиальными аналогами. В качестве следствия рассмотрены аппроксимации
некоторых элементарных функций, представимых функциями Маркова на отрезке
[−1, 1].
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Abstract. The rational Jackson singular integral is introduced, which is a linear combination
of Fourier–Chebyshev rational integral operators with a corresponding triangular matrix of
coefficients and a fixed number of geometrically different poles. Its integral representation is
established.
Rational approximations of Markov functions on the segment [−1, 1] are investigated by the
introduced method. An integral representation of approximations and an upper bound of
uniform approximations are established.
Approximations of Markov functions with an absolutely continuous measure whose derivative
is asymptotically equal to a function with a power singularity are studied. In this case, top-
down estimates of pointwise and uniform approximations and an asymptotic expression of the
majorant of uniform approximations are found.
Optimal values of the parameters of rational Jackson singular integrals are established, at
which the best uniform approximations of Markov functions are provided by this method. For
this purpose, the corresponding extreme problem is solved. It is shown that with a special
choice of parameters, uniform rational approximations have a higher rate of decrease in
comparison with the corresponding polynomial analogues. As a corollary, approximations
of some elementary functions represented by Markov functions on the segment [−1, 1] are
considered.
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1. Введение

Пусть µ – положительная борелевская мера с компактным носителем F = suppµ ⊂ R.
Преобразование Коши меры µ

µ̂(z) =
w

F

dµ(t)
t − z

, z ∈ C̄\F,

называется функцией Маркова. Функции Маркова голоморфны в C\F и исследование их раци-
ональных аппроксимаций является хорошо известной классической задачей. Одной из первых
в этом направлении является работа А. А. Маркова [1]. Позднее данной тематике посвятили свои
статьи А. А. Гончар [2], Т. Ганелиус [3], Дж.-Е. Андерссон [4], А. А. Пекарский [5]. Н. С. Вяче-
славов и Е. П. Мочалина [6] изучили аппроксимации функций Маркова в пространствах Харди
Hp, p ∈ (0,+∞), при определенных условиях на меру µ. А. П. Старовойтовым и Ю. А. Лабыч [7]
для функции Маркова, порожденной положительными борелевскими мерами степенного типа,
установлена асимптотика поведения строчных последовательностей ее таблицы Паде. Последнее
позволило найти точные порядки убывания наилучших приближений функций Маркова рациональ-
ными функциями с фиксированным числом полюсов. Отметим недавнюю работу Т. С. Мардвилко [8],
в которой исследованы наилучшие равномерные рациональные приближения четного и нечетного
продолжения функций со степенной особенностью при помощи функций Маркова. Отметим, что
при решении указанных выше задач не применялись методы, основанные на классических рядах
Фурье и методах их суммирования.

В работе [9] исследованы аппроксимации функций Маркова в единичном круге частичны-
ми суммами рядов Фурье по системам рациональных функций, введенных С. Такенакой [10] и
Ф. Мальмквистом [11], а также на отрезке [−1, 1] по системам рациональных функций, введенных
М. М. Джрбашяном и А. А. Китбаляном [12]. В работе [13] эти исследования были продолжены:
найдены асимптотические оценки равномерных рациональных приближений указанными метода-
ми при фиксированном числе геометрически различных полюсов аппроксимирующей функции.
Отметим, что впервые аппроксимации с ограничениями на количество геометрически различных
полюсов изучались в работах К. Н. Лунгу (см., напр., [14; 15]).

Д. Джексон [16] для решения задачи аппроксимации 2π-периодических функций, удовлетво-
ряющих условию Липшица, тригонометрическими полиномами, вводит сингулярный интегральный
оператор, образом которого является тригонометрический полином. Эта конструкция впоследствии
получила название сингулярного интеграла Джексона с ядром Джексона. Полиномиальный тригоно-
метрический сингулярный интеграл Джексона к настоящему времени достаточно хорошо изучен
и нашел широкое применение при решении практических задач теории аппроксимаций [17; 18]
и других направлений [19; 20]. Г. П. Сафроновой [21] установлено, что сингулярный интеграл
Джексона является методом суммирования тригонометрического ряда Фурье с некоторой тре-
угольной матрицей коэффициентов и найдено явное представление этих коэффициентов. Позже
А. К. Покало [22] применил найденное представление сингулярного интеграла Джексона для
решения задач аппроксимации на ряде функциональных классов. Воспользовавшись результатом
Г. П. Сафроновой, в работе [23] было установлено представление сингулярного интеграла Джексона
на отрезке [−1, 1], ассоциированного с системой полиномов Чебышёва первого рода, линейной
комбинацией частичных сумм полиномиального ряда Фурье–Чебышёва:

U (0)
2n ( f , x) =

1
γn+1

[
n−1

∑
k=0

bksk ( f , x)+
n

∑
k=0

bn+ksn+k ( f , x)

]
, x ∈ [−1, 1],

где

γn+1 =
2(n+1)(2(n+1)2 +1)

3
,

bk =

{
−3k2 +(4n+1)k+2(n+1) , k = 0,1, . . . ,n−1,
k2 − k(2n+3)+(n+1)(n+2), k = n,n+1, . . . ,2n,

(1)
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sk ( f , x) – частичные суммырядаФурье–Чебышёва соответствующих степеней.Последнее позволило
найти новые аппроксимационные свойства сингулярного интеграла Джексона на классах функций
со степенной особенностью на отрезке [−1, 1].

В. Н. Русак [24;25] ввел рациональные интегральные операторы типа Джексона на веществен-
ной оси и исследовал некоторые их аппроксимационные свойства. ВпоследствииА.А.Пекарский [26]
применил эти операторы для получения новых оценок равномерных рациональных приближений
непрерывных функций. Направление исследований, связанное с построением рациональных инте-
гральных операторов, являющихся аналогами известных полиномиальных периодических операто-
ров типа Фурье, Фейера, Джексона, Валле Пуссена, и изучением их аппроксимационных свойств
является актуальным и продолжается в трудах других математиков. Е. А. Ровба [27] ввел рацио-
нальные интегральные операторы типа Джексона на отрезке [−1, 1] и получил оценки равномерных
рациональных приближений непрерывных функций этим методом в терминах модулей непрерыв-
ности. К. А. Смотрицкий [28] изучил аппроксимационные свойства рациональных интегральных
операторов типа Джексона на классах выпуклых на отрезке функций. Им было установлено, что
для данного класса функций равномерные приближения в этом случае имеют порядок наилучшего.
Основываясь на результатах работы [23], был построен [29] сингулярный интеграл Джексона на
отрезке [−1, 1], ассоциированный с системой рациональных функций Чебышёва–Маркова с дву-
мя геометрически различными полюсами в расширенной комплексной плоскости, и изучены его
аппроксимационные свойства на классах функций со степенной особенностью.

В 1979 г. Е. А. Ровба [30] ввел рациональный оператор, ассоциированный с системой
рациональных функций Чебышёва–Маркова, который является обобщением полиномиального
оператораФурье–Чебышёва и представляет собой рациональнуюфункциюпорядка n с произвольным
количеством полюсов. Пусть задано произвольное множество чисел {ak}n

k=1 , где ak либо являются
действительными и |ak|< 1, либо попарно комплексно сопряженными. На множестве суммируемых
на отрезке [−1, 1] с весом 1/

√
1− x2 функций f (x) рассмотрим рациональный интегральный

оператор типа Фурье–Чебышёва порядка не выше n (см. [30]):

sn( f , x) =
1

2π

+πw

−π
f (cosv)

sin
(

v−u
2

+λn(u, v)
)

sin
v−u

2

dv, x = cosu, (2)

где

λn(u, v) =
vw

u

λn(y)dy, λn(y) =
n

∑
k=1

1−|zk|2

1+2|zk|cos(y− argzk)+ |zk|2
, zk =

ak

1+
√

1−a2
k

, |zk|< 1.

Оператор sn : f → Rn(A), где Rn(A) – множество рациональных функций вида
pn (x)

n

∏
k=1

(1+akx)
, pn ∈ N,

A – множество параметров (a1, . . . ,an), и sn(1, x)≡ 1. В частности, если положить ak = 0, k = 1, . . . ,n,
то sn( f , x) – есть частичная сумма ряда Фурье по многочленам Чебышёва первого рода.

В работе [31] изучены рациональные аппроксимации функции Маркова на отрезке [−1, 1]
интегральными операторами (2) с фиксированным количеством геометрически различных полюсов.
В частности, когда suppµ= [1,a], a> 1,мераµ абсолютно непрерывна на [1,a],a> 1, и удовлетворяет
условиям: dµ(t) =φ(t)dt иφ(t)≍ (t−1)α на [1,a], получены асимптотические оценки равномерных
приближений в случае четной кратности полюсов аппроксимирующей функции. Установлено, что
специальным выбором параметров аппроксимирующейфункции достигается более высокая скорость
убывания равномерных приближений на изучаемых классах в сравнении с соответствующими
полиномиальными аналогами. В [32] изучены аппроксимационные свойства сумм Абеля–Пуассона
рациональных интегральных операторов (2) в приближениях функций Маркова. Аналогичная задача
для сумм Фейера и Валле Пуссена решена в [33] и [34] соответственно.
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Представляет интерес исследовать аппроксимационные свойства сингулярного интеграла
Джексона как метода суммирования рациональных интегральных операторов Фурье–Чебышёва (2)
на классах функций Маркова. В настоящей работе вводятся суммы рациональных интегральных
операторов Фурье–Чебышёва (2) с фиксированным количеством геометрически различных полюсов,
представляющие собой сингулярный интеграл Джексона, и изучаются аппроксимации функций
Маркова на отрезке [−1, 1] этим методом. В работе получены соответствующие оценки равномерных
приближений. Установлено, что введенный рациональный сингулярный интеграл Джексона при
определенном выборе полюсов обеспечивает скорости равномерных приближений на кассахфункций
Маркова лучшие в смысле порядка чем соответствующие полиномиальные.

2. Рациональный сингулярный интеграл Джексона

Пусть q – произвольное натуральное число. Aq – есть множество параметров из A таких, что
среди чисел a1,a2, . . . ,an, ровно q различных и кратность каждого параметра равна m,n = mq, т. е.
Aq = (a1,a2, . . . ,aq, . . . ,a1,a2, . . . ,aq︸ ︷︷ ︸

m раз

). Составим сумму

U2n,q( f , x) =
1

γm+1

2m

∑
k=0

bkskq,q( f , x), x ∈ [−1, 1], m ∈ N∪{0}, (3)

где коэффициенты bk и константа Джексона γm+1 определены в (1), skq,q(·, ·),k = 0,1, . . . ,2m, –
рациональные интегральные операторы Фурье–Чебышёва (2), образом которых являются раци-
ональные функции порядка kq. Выражение (3) естественно назвать рациональным сингулярным
интегралом Джексона.

Из представления (3) очевидно, что суммы U2n,q : f → R2n(Aq), где R2n(Aq) – множество
рациональных функций вида

π2n (x)(
∏

q
k=1 (1+akx)

)2m , ak =
2zk

1+ z2
k
, n = mq, π2n(x) ∈ P2n.

Причем U2n,q(1, x) ≡ 1.
Таким образом будем вести речь об аппроксимации рациональными функциями с q геометри-

чески различными полюсами в расширенной комплексной плоскости кратности 2m каждый.
Теорема 2.1. Для сингулярного интеграла Джексона на отрезке [−1, 1], ассоциированного

с системой рациональных функций Чебышёва–Маркова, с q геометрически различными полюсами
в расширенной комплексной плоскости, имеет место интегральное представление

U2n,q( f , x) =− 1
8πγm+1

πw

−π
f (cosv)

Pn,q(u, v)

sin
v−u

2
sin3 λq(u, v)

2

dv, x = cosu, n = mq, (4)

где

Pn,q(u, v) = (m+1)cos
(

3λq(u, v)
2

− v−u
2

)
−3cos

(
λq(u, v)

2
− v−u

2

)
−

−(m+1)cos
(
λq(u, v)

2
+

v−u
2

)
+4cos

((
m+

1
2

)
λq(u, v)+

v−u
2

)
−

−cos
((

2m+
3
2

)
λq(u, v)+

v−u
2

)
,

величина λq(u, v) определена в (2).
Доказательство. Воспользуемся представлением (3). Известно [30], что для рационального

интегрального оператора Фурье–Чебышёва порядка kq,k = 0,1,2, . . . , с q геометрически различными
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полюсами имеет место интегральное представление

skq,q( f , x) =
1

2π

πw

−π
f (cosv)

ζ

(
ωq(ζ)

ωq(ξ)

)k

−ξ
(
ωq(ξ)

ωq(ζ)

)k

ζ−ξ
dv,

где

ωq(y) =
q

∏
k=1

y+ zk

1+ zky
, ξ= eiu, ζ= eiv, x = cosu. (5)

Подставим последнее интегральное представление в (3) и поменяем порядок суммирования и
интегрирования. Тогда

U2n,q( f , x) =
1

2πγm+1

πw

−π

f (cosv)
ζ−ξ

[
ζ

2m

∑
k=0

bk

(
ωq(ζ)

ωq(ξ)

)k

−ξ
2m

∑
k=0

bk

(
ωq(ξ)

ωq(ζ)

)k
]

dv,

где коэффициенты bk, k = 0,1, . . . ,2m, определены в (1).
Учитывая известные равенства

n

∑
k=0

qk =
1−qn+1

1−q
,

n

∑
k=0

kqk = q
1+nqn+1 − (n+1)qn

(1−q)2 , q ̸= 1,

n

∑
k=0

k2qk = q
1+q− (n+1)2qn +

(
2n2 +2n−1

)
qn+1 −n2qn+2

(1−q)3 , q ̸= 1,

чтобы прийти к представлению (4) достаточно выполнить соответствующие преобразования.
Отметим, что интегральное представление сумм Джексона, установленное в теореме 2.1,

позволяет ассоциировать исследуемый метод суммирования с рациональными интегральными
операторами, и, в частности, с рациональным сингулярным интегралом Джексона.

Следствие 2.2. Для сингулярного интеграла Джексона на отрезке [−1, 1], ассоциированного
с системой полиномов Чебышёва первого рода, имеет место интегральное представление

U2n,q( f , x) =
1

πγn+1

πw

−π
f (cosv)

sin
n+1

2
(v−u)

sin
v−u

2


4

dv, x = cosu.

Доказательство. Достаточно в представлении (4) положить zk = 0,k = 1,2, . . . ,q.Тогда n=m,
q = 1, λq(u, v) = v−u и останется выполнить некоторые тригонометрические преобразования.

Изучим приближения функции Маркова µ̂(x) на отрезке [−1, 1] сингулярным интегралом
Джексона (3). Введем следующие обозначения:

ε2n(x, Aq) = µ̂(x)−U2n,q(µ̂, x), x ∈ [−1, 1],

ε2n(Aq) =
∥∥µ̂(x)−U2n,q(µ̂, x)

∥∥
C[−1, 1] , n ∈ N.

Будем полагать, что suppµ ⊂ [1,+∞) и
w dµ(t)

t −1
< ∞. (6)

Теорема 2.3. Пусть мера µ удовлетворяет условию (6), а мера ν определяется соотноше-
нием

dν(y) =
4y2

1− y2 dµ(η(y)), y ∈ (0,1], η(y) =
1
2

(
y+

1
y

)
. (7)

Тогда для равномерных приближений функций Маркова µ̂(x) на отрезке [−1, 1] суммами Джексо-
на (3) имеет место оценка сверху

ε2n(Aq)⩽ ε
∗
2n(Aq), n ∈ N, (8)
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где

ε∗2n(Aq) =
1

γm+1

w

suppν

(m+1)−3|ωq(y)|− (m+1)|ωq(y)|2 +4|ωq(y)|m+2 −|ωq(y)|2m+3

(1−|ωq(y)|)3(1− y)
|dν(y)|.

Доказательство. Рассмотрим приближения на отрезке [−1,1] функций Маркова рациональ-
ным интегральным оператором типа Фурье–Чебышёва (2) в случае q геометрически различных
полюсов аппроксимирующей функции

δkq(x,Aq) = µ̂(x)− skq,q(µ̂,x), x ∈ [−1, 1], k = 1,2, . . . , 2m, n = mq.

Умножим на коэффициенты bk, k = 0,1, . . . ,2n, правую и левую части последнего равенства,
просуммируем по k от 0 до 2m и разделим их на γm+1. Тогда

1
γm+1

2m

∑
k=0

bkδkq(x, Aq) = µ̂(x)−
1

γm+1

2m

∑
k=0

bkskq,q(µ̂, x) = ε2n(x, Aq), x ∈ [−1, 1], (9)

где ε2n(x, Aq) – приближения функций Маркова суммами Джексона.
С другой стороны, известно [31], что в рассматриваемом случае для приближений δkq(x, Aq)

имеет место оценка сверху

|δkq(x, Aq)|⩽
1
2

w

suppν

|ωq(y)|k |dν(y)|√
1−2ycosu+ y2

,

где ξ= eiu, x = cosu, ν(y) из (7). Подставив последнее представление в соотношение (9), воспользо-
вавшись формулами для конечных сумм, которые были применены при доказательстве теоремы 2.1,
и выполнив соответствующие преобразования, получим

|ε2n(x, Aq)|⩽
1

γm+1

w

suppν

(m+1)−3|ωq(y)|− (m+1)|ωq(y)|2 +4|ωq(y)|m+2 −|ωq(y)|2m+3

(1−|ωq(y)|)3 ×

× |dν(y)|√
1−2ycosu+ y2

, x = cosu. (10)

Из последнего неравенства очевидным образом следует оценка (8).

3. Приближения сингулярным интегралом Джексона
функций Маркова в случае меры специального вида

При исследовании приближений функций Маркова часто рассматривается случай, когда
производная меры µ(t) слабо эквивалентна некоторой степенной функции [4; 5]. Решим подобную
задачу. Пусть мера µ абсолютно непрерывна, suppµ ∈ [1, a],a > 1, dµ(t)∼ (t−1)γ dt,γ> 0. Изучим
оценку (8) в этом случае. Будем полагать также, что параметры аппроксимирующей рациональной
функции ak ∈ [0,1), k = 1,2, . . . ,q, и для большей наглядности сделаем замену zk 7→ −αk, k = 1,2 . . .

. . . ,q, αk ∈ [0,1), где zk = ak/(1+
√

1−a2
k), k = 1,2, . . . ,q.

Теорема 3.1. Пусть suppν ∈ [d,1], 0 < d < 1, d = a−
√

a2 −1, a > 1, dµ(t) =φ(t)dt иφ(t)∼
∼ (t −1)γ,γ ∈ (0, 1). Тогда в условиях теоремы 2.3 для приближений функции µ̂(x) сингулярным
интегралом Джексона справедливы

1) оценка поточечных приближений

|ε2n(x, Aq)|⩽
21−γ

γm+1

1w

d

(1− y)2γy−γ√
1−2yx+ y2

×

×
(m+1)−3|ωq(y)|− (m+1)|ωq(y)|2 +4|ωq(y)|m+2 −|ωq(y)|2m+3

(1−|ωq(y)|)3 dy, (11)

2) оценка равномерных приближений

ε2n(Aq)⩽ ε
∗
2n(Aq), n ∈ N, (12)
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где

ε∗2n(Aq) =
21−γ

γm+1

1w

d

(1− y)2γ−1y−γ×

×
(m+1)−3|ωq(y)|− (m+1)|ωq(y)|2 +4|ωq(y)|m+2 −|ωq(y)|2m+3

(1−|ωq(y)|)3 dy,

(13)

ωq(y) =
q

∏
k=1

y−αk

1−αky
, αk ∈ [0,1), m = 0,1, . . . .

Доказательство. В случае dµ(t) = φ(t)dt и φ(t) ∼ (t − 1)γ, из оценки (10) и условия (7)
сразу же приходим к соотношению (11). Оценка (12) легко следует из соотношения (11).

В теореме 3.1 положим αk = 0, k = 1,2, . . . , q. Тогда Aq = (0,0, . . . ,0) = O и величина ε2n(O) =

= ε
(0)
2n представляет собой равномерные приближенияфункцийМаркова смерой µ̂, удовлетворяющей

условиям теоремы 3.1, сингулярным интегралом Джексона, ассоциированным с системой полиномов
Чебышёва первого рода.

Следствие 3.2. Справедлива оценка сверху

ε
(0)
2n ⩽

21−γ

γn+1

1w

d

(1− y)2γ−1y−γ
(n+1)−3y− (n+1)y2 +4yn+2 − y2n+3

(1− y)3 dy, n ∈ N.

4. Асимптотика мажоранты равномерных приближений

Исследуем асимптотическое поведение при n → ∞ величины (13). С этой целью в интеграле
выполним замену переменного по формуле y = (1− u)/(1+ u). Тогда

ε∗2n(Aq) =
2γ+1

γm+1

Dw

0

µγ(u)
(m+1)−3|πq(u)|− (m+1)|πq(u)|2 +4|πq(u)|m+2 −|πq(u)|2m+3

(1−|πq(u)|)3 du,

где

µγ(u) =
u2γ−1

(1+u)(1−u2)γ
, πq(u) =

q

∏
k=1

βk −u
βk +u

, βk =
1−αk

1+αk
, D =

1−d
1+d

, D ∈ (0,1).

Отметим, что в рассматриваемом случае для каждого значения n ∈ N может выбираться соответ-
ствующий набор параметров (α1,α2, . . . ,αq), т. е. в общем случае αk = αk(n) k = 1, 2, . . . ,q. При
этом будем полагать, что выполняется следующее условие:

lim
n→∞

n
q

∑
k=1

(1−αk) = ∞. (14)

Из сказанного следует, что для любого значения величины d = a−
√

a2 −1 существует такое
m0, m0 = 1,2, . . . , что при m > m0 будутαk ∈ [d, 1), k = 1,2, . . . ,q. Эти ограничения будем учитывать
в дальнейших рассуждениях. В этом случае без нарушения общности можно полагать параметры
βk упорядоченными следующим образом: 0 < βq < .. . < β1 < D < 1.

Теорема 4.1. Для мажоранты равномерных приближений функции Маркова с мерой в усло-
виях теоремы 3.1 рациональным сингулярным интегралом Джексона имеют место асимптоти-
ческие равенства

ε∗2n(Aq)∼
3

2(m+1)2 +1

η(γ) (m+1)2−2γ(
∑

q
k=1

1
βk

)2γ +Φ
(γ)
n (Aq)

 , m → ∞, (15)
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где

η(γ) =


22−γΓ(2γ)(21−2γ−1)

(1−2γ)(2−2γ)(3−2γ)
, γ ∈ (0, 1/2) ,

√
2ln2, γ= 1/2,

23−3γΓ(2γ)(22γ−1 −1)
(2γ−1)(2−2γ)(3−2γ)

, γ ∈ (1/2, 1);

Φ
(γ)
n (Aq) =

Dw

βq

µγ(u)
1+ |πq(u)|

(1−|πq(u)|)2 du; (16)

Γ(·) – гамма-функция Эйлера; n = mq.
Доказательство. Мажоранту равномерных приближений представим в виде

ε∗2n(Aq) =
2γ+1

γm+1
[I(1)n (Aq)+ I(2)n (Aq)+ I(3)n (Aq)], n ∈ N, (17)

где

I(1)n (Aq) =

βqw

0

µγ(u)
(m+1)−3πq(u)− (m+1)π2

q(u)+4πm+2
q (u)−π2m+3

q (u)
(1−πq(u))3 du,

I(2)n (Aq) =
q−1

∑
j=1

β jw

β j+1

µγ(u)
(m+1)−3|πq(u)|− (m+1)|πq(u)|2 +4|πq(u)|m+2 −|πq(u)|2m+3

(1−|πq(u)|)3 du,

I(3)n (Aq) =

Dw

β1

µγ(u)
(m+1)−3|πq(u)|− (m+1)|πq(u)|2 +4|πq(u)|m+2 −|πq(u)|2m+3

(1−|πq(u)|)3 du.

Изучим по отдельности асимптотическое поведение при n → ∞ каждого из этих выражений. Так,
для исследования интеграла I(1)n (Aq) воспользуемся методами, предложенными в [35]. Продиффе-
ренцируем интеграл I(1)n (Aq) три раза по параметру m. Тогда находим

∂ I(1)n (Aq)

∂m
=

βqw

0

µγ(u)
1−π2

q(u)+4lnπq(u)πm+2
q (u)−2lnπq(u)π2m+3

q (u)
(1−πq(u))3 du,

∂ 2I(1)n (Aq)

∂m2 = 4
βqw

0

µγ(u)
(lnπq(u))2πm+2

q (u)− (lnπq(u))2π2m+3
q (u)

(1−πq(u))3 du,

∂ 3I(1)n (Aq)

∂m3 = 4

βqw

0

µγ(u)
(

lnπq(u)
1−πq(u)

)3

e(m+2)S(u) du−2
βqw

0

µγ(u)
(

lnπq(u)
1−πq(u)

)3

e(2m+3)S(u) du

 ,
где

S(u) =
q

∑
k=1

ln
βk −u
βk +u

.

Для исследования асимптотического поведения интегралов справа в предыдущем равенстве вос-
пользуемся методом Лапласа [36;37]. Функция S(u) убывает на отрезке [0, βq], и, следовательно,
достигает своего максимального значения при u = 0. Учитывая разложение

S(u) =−2u
q

∑
k=1

1
βk

+o(u),

и асимптотическое равенство

µγ(u)
(

lnπq(u)
1−πq(u)

)3

∼−u2γ−1,



Об одном рациональном сингулярном интеграле Джексона и аппроксимациях... 81

справедливые при u → 0, для некоторого малого ε> 0 будем иметь

∂ 3I(1)n (Aq)

∂m3 ∼−4

[
εw

0

u2γ−1e−2(m+2)u∑
q
k=1

1
βk du−2

εw

0

u2γ−1e−2(2m+3)u∑
q
k=1

1
βk du

]
, m → ∞.

Выполнив в первом интеграле справа замену переменного по формуле 2(m+2)u∑
q
k=1

1
βk

7→ u, а во
втором замену переменного 2(2m+3)u∑

q
k=1

1
βk

7→ u, получим

∂ 3I(1)n (Aq)

∂m3 ∼ −4(
2(m+2)

q

∑
k=1

1
βk

)2γ

ε(m+2)∑
q
k=1

1
βkw

0

u2γ−1e−u du+

+
8(

2(2m+3)
q

∑
k=1

1
βk

)2γ

ε(2m+1)∑
q
k=1

1
βkw

0

u2γ−1e−u du, m → ∞.

Принимая во внимание, что
+∞w

0

u2γ−1e−u du = Γ(2γ), 2γ> 0,

получим
∂ 3I(1)n (Aq)

∂m3 ∼ −4Γ(2γ)(
2

q

∑
k=1

1
βk

)2γ

[
1

(m+2)2γ −
2

(2m+3)2γ

]
, m → ∞.

Чтобы вернуться к асимптотическому выражению первоначального интеграла, проинтегрируем
правую и левую части последнего асимптотического равенства три раза по параметру m. Тогда

I(1)n (Aq)∼



22−2γΓ(2γ)(21−2γ−1)(m+1)3−2γ

(1−2γ)(2−2γ)(3−2γ)

(
q

∑
k=1

1
βk

)2γ , γ ∈ (0, 1/2) ,

(m+1)2 ln2
q

∑
k=1

1
βk

, γ= 1/2,

23−4γΓ(2γ)(22γ−1 −1)(m+1)3−2γ

(2γ−1)(2−2γ)(3−2γ)

(
q

∑
k=1

1
βk

)2γ , γ ∈ (1/2, 1) .

(18)

Исследуем выражение I(2)n (Aq) (см. (17)). Поскольку

I(2)n (Aq) = (m+1)
q−1

∑
j=1

β jw

β j+1

µγ(u)
1+ |πq(u)|

(1−|πq(u)|)2 du−3
q−1

∑
j=1

β jw

β j+1

µγ(u)
|πq(u)|

(1−|πq(u)|)3 du+

+4
q−1

∑
j=1

β jw

β j+1

µγ(u)
|πq(u)|m+2

(1−|πq(u)|)3 du−
q−1

∑
j=1

β jw

β j+1

µγ(u)
|πq(u)|2m+3

(1−|πq(u)|)3 du,

то очевидно, что

I(2)n (Aq) = (m+1)
q−1

∑
j=1

β jw

β j+1

µγ(u)
1+ |πq(u)|

(1−|πq(u)|)2 du+δ(1)n (Aq), n → ∞, (19)
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где δ(1)n (Aq) имеет заведомо больший порядок малости в сравнении с главным членом асимптотиче-
ского разложения.

Рассуждая аналогичным образом в отношении интеграла I(3)n (Aq), заключаем, что

I(3)n (Aq) = (m+1)
Dw

β1

µγ(u)
1+ |πq(u)|

(1−|πq(u)|)2 du+δ(2)n (Aq), n → ∞. (20)

Из представления (17) с учетом найденных асимптотических равенств (18), (19) и (20), получим
(15). Доказательство теоремы 4.1 завершено.

Следствие 4.2. В условиях теоремы 3.1 для равномерных приближений функции Марко-
ва µ̂(x) на отрезке [−1,1] сингулярным интегралом Джексона, ассоциированным с системой
полиномов Чебышёва первого рода, справедливы асимптотические равенства

ε
(0)
2n ∼ η0(γ)

(n+1)2γ , n → ∞, (21)

где

η0(γ) = 3



21−γΓ(2γ)(21−2γ−1)
(1−2γ)(2−2γ)(3−2γ)

, γ ∈ (0, 1/2) ,
√

2
2

ln2, γ= 1/2,

22−3γΓ(2γ)(22γ−1 −1)
(2γ−1)(2−2γ)(3−2γ)

, γ ∈ (1/2, 1) .

Доказательство. Следует непосредственно из асимптотических равенств (15), если положить
ak = 0,k = 1,2 . . . ,q.

Обратим внимание, что в отличие от результатов, полученных в теореме 4.1, в следствии 4.2
содержится именно асимптотическая оценка равномерных приближений, а не мажоранты, поскольку
в полиномиальном случае максимум приближений достигается при x = 1.

5. Наилучшие приближения рациональным сингулярным интегралом Джексона

Представляет интерес минимизировать правые части соотношений (15) посредством выбора
оптимального для каждой задачи набора параметров A∗

q, т. е. искать наилучшую оценку равномерных
приближений функции Маркова µ̂(x) на отрезке [−1,1] в условиях теоремы 3.1 сингулярным
интегралом Джексона (3). Положим

ε2n,q = inf
Aq
ε2n(Aq), ε∗2n,q = inf

Aq
ε∗2n(Aq).

Отметим, что из неравенства (12) следует справедливость соотношения

ε2n,q ⩽ ε
∗
2n,q, n ∈ N.

Ввиду последней оценки в дальнейшем будем вести речь об асимптотическом выражении мажоранты
равномерных приближений.

Теорема 5.1. Для мажоранты равномерных приближений функции Маркова мерой в усло-
виях теоремы 3.1 на отрезке [−1, 1] сингулярным интегралом Джексона справедливы асимпто-
тические равенства

ε∗2n,q ∼
ν(γ, q)

(n+1)2
(

1− (1−γ)q
1+γ

) , n → ∞, (22)

где

ν(γ, q) =
3(c(γ))

γ
1+γ (1+γ)(η(γ))

(1−γ)q−1
1+γ

2
1

1+γ (4γ)1− (1−γ)q−1
1+γ (1−γ)

1−(1−γ)q−1
γ(1+γ)

q2
(

1− (1−γ)q
1+γ

)
, c(γ) =

Dw

0

u2γ+1 du
(1+u)(1−u2)γ

, (23)

величина η(γ) определена в (15).
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Доказательство. Исследуем асимптотические равенства (15). Очевидно, что при постоянных
βk, k = 1,2, . . . ,q, порядок в этих соотношениях не отличается от полиномиального. Будем полагать,
что βk = βk(n)→ 0,βk+1 = o(βk), n → ∞, с выполнением условия (14). В этом случае нетрудно
получить, что при m → ∞ справедливы асимптотические равенства

q

∑
k=1

1
βk

∼ 1
βq

, 1−
j

∏
k=1

βk −u
βk +u

q

∏
k= j+1

u−βk

u+βk
∼ 2u
β j

, j = 1,2, . . . ,q, u ∈ [β j+1, β j],

1−
q

∏
k=1

u−βk

u+βk
∼ 2β1

u
, u ∈ [β1, 1].

При этом из (16) находим, что

Φ
(γ)
n (Aq)∼

1
2(2−2γ)

q−1

∑
j=1

β2
j

β
2−2γ
j+1

+
c(γ)
2β2

1
, n → ∞,

где c(γ) определена в (23).
Асимптотические равенства (15) при этом примут вид

ε∗2n,q(Aq)∼
m+1

(2−2γ)γm+1

[
2(2−2γ)η(γ)(m+1)2−2γβ2γ

q +
q−1

∑
j=1

β2
j

β
2−2γ
j+1

+
(2−2γ)c(γ)

β2
1

]
, m → ∞.

(24)
При каждом фиксированном γ> 0 правые части асимптотического равенства (24) представляют
собой функции переменных (β1,β2, . . . ,βq), непрерывные в каждой точке q-мерного куба [δ,1]q,
где δ= δ(n)> 0 – некоторая величина, зависящая от n и при любом n ограничивающая множество
параметров (β1,β2, . . . ,βq) слева. Согласно теореме Вейерштрасса правые части указанных равенств
имеют строгий минимум при некотором β∗ = (β∗

1, β
∗
2, . . . ,β

∗
q) ∈ [δ,1]q. Причем поскольку βk =

= 1, k = 1, . . . ,q, соответствует полиномиальному случаю, а при βk(n)→ 0, n → ∞, с достаточно
большой скоростью правые части в (24) неограниченно растут, то можно предположить, что β∗ –
внутренняя точка куба [δ,1]q. Для того чтобы найти оптимальный набор β∗ для соответствующего
асимптотического равенства решим экстремальную задачу

ε∗2n,q(Aq)−→
Aq

inf.

Тогда в квадратной скобке равенства (24) приходим к задаче

Ψ
(γ)(Aq) = cqβ

2γ
q +

β2
q−1

β
2−2γ
q

+
β2

q−2

β
2−2γ
q−1

+ · · ·+ β2
2

β
2−2γ
3

+
β2

1

β
2−2γ
2

+
c1

β2
1
−→

Aq
inf,

где для краткости положено

cq = 2(2−2γ)η(γ)(m+1)2−2γ, c1 = (2−2γ)c(γ).

Функция Ψ(γ)(Aq) переменных (β1,β2, . . . ,βq) непрерывно дифференцируема в кубе (0,1)q. Есте-
ственно искать точку минимума этой функции там, где выполняется необходимое условие экстре-
мума: ∂Ψ(γ)(Aq)/∂βk = 0, k = 1,2, . . . ,q. Несложные вычисления приводят к системе уравнений

γcqβ
2γ−1
q − (1−γ)

β2
q−1

β
3−2γ
q

= 0,

βq−1

β
2−2γ
q

− (1−γ)
β2

q−2

β
3−2γ
q−1

= 0,

. . .

β2

β
2−2γ
3

− (1−γ) β2
1

β
3−2γ
2

= 0,

β1

β
2−2γ
2

− c1

β3
1
= 0,

(25)
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из которой находим, что с оптимальным набором параметров целевая функция

Ψ
(γ)(A∗

q) =
1+γ
γ

c1

β∗2
1
. (26)

Осталось найти параметр β∗
1. С этой целью снова обратимся к системе (25). Последовательно

находим 

(
β∗

q−1

β∗
q

)2

=
γcq

1−γ
,(

β∗
q−2

β∗
q−1

)2

=
1

1−γ

(
β∗

q−1

β∗
q

)2−2γ

=
1

1−γ

(
γcq

1−γ

)1−γ
,

. . .(
β∗

1
β∗

2

)2

=
(γcq)

(1−γ)(q−2)

(1−γ)
1−(1−γ)(q−1)

γ

.

(27)

С другой стороны, из последнего уравнения в (25) получим

β∗
2 =

(
β∗4

1
c1

) 1
2−2γ

.

Подставив β2 в последнее равенство системы (27), после необходимых преобразований будем иметь

β∗
1 = c

1
2(1+γ)

1

 (γcq)
(1−γ)(q−2)

(1−γ)
1−(1−γ)(q−1)

γ

− 1
2

1−γ
1+γ

.

При найденном β∗
1, в представлении (26) получим

Ψ
(γ)(A∗

q) =
1+γ
γ

c
γ

1+γ

1

 (γcq)
(1−γ)(q−2)

(1−γ)
1−(1−γ)(q−1)

γ


1−γ
1+γ

, γ ∈ (0,1) .

Возвращаясь к первоначальным значениям параметров c1 и cq, из последнего соотношения и (24)
находим, что

ε∗2n,q(Aq, U2n,q)∼
3(c(γ))

γ
1+γ (1+γ)(η(γ))

(1−γ)q−1
1+γ

2
1

1+γ (4γ)1− (1−γ)q−1
1+γ (1−γ)

1−(1−γ)q−1
γ(1+γ)

1

(m+1)2
(

1− (1−γ)q
1+γ

) , m → ∞.

Теперь, учитывая, что n = mq, придем к асимптотическим равенствам (22).
Замечание 5.2. Сравнивая результаты теоремы 5.1 и асимптотических равенств (21),

приходим к выводу, что скорость равномерных рациональных аппроксимаций функции Мар-
кова с мерой в условиях теоремы 3.1 сингулярным интегралом Джексона оказывается выше
соответствующих полиномиальных аналогов.

6. Аппроксимации элементарных функций

Многие элементарные функции можно представить в виде комбинаций функций Маркова.
Рассмотрим пример такой функции и в качестве следствия теоремы 5.1 найдем точную константу и
порядок ее приближений сингулярными интегралами Джексона (3).

Функция f (z) = (z−1)γ, γ ∈ (0,+∞)\N, является голоморфной в области C\(1,+∞). Стан-
дартное применение интегральной формулы Коши приводит к соотношению

(z−1)γ =
1

2πi

w

∂Ω

(ξ−1)γ

ξ− z
dξ, z ∈ Ω,
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где Ω – круг радиуса a > 1 с центром в начале координат и разрезом по отрезку [1,a]. Из последней
формулы легко получить (см. [4; 5]), что при |z|< a, z∈(1,a), справедливо равенство

(1− x)γ = µ̂1(x)+g(x), (28)

где

µ̂1(x) =−sinπγ
π

aw

1

(t −1)γ

t − x
dt, g(x) =

1
2πi

w

|ξ|=a

(1−ξ)γ

ξ− x
dξ.

Функция µ̂1(x), x ∈ [0, 1], – есть функция, которая удовлетворяет условию теоремы 3.1. Поэтому

ε∗2n,q(µ̂1(x))∼
sinπγ
π

ν(γ, q)

(n+1)2
(

1− (1−γ)q
1+γ

) , n → ∞,

где величина ν(γ, q) определена в формулировке теоремы 5.1.
Исследуем приближения функции g(x) сингулярным интегралом Джексона (3). Имеем

ε2n,q(g, x, Aq) =
1

γm+1

2m

∑
k=0

bkδkq,q(g, x, Aq), x ∈ (−1, 1), (29)

где

δkq,q(g, x, Aq) = g(x)− skq,q(g, x, Aq) =
1

(2π)2i

w

|ξ|=a

(1−ξ)γ

ξ− x
Ikq(x, ξ)dξ,

– приближения функции g(x) рациональным интегральным оператором Фурье–Чебышёва (2) с на-
бором параметров Aq,

Ikq(x, ξ) =
+πw

−π

cosu− cosv
ξ− cosv

(
ζ
ωk

q(ζ)

ωk
q(z)

− z
ωk

q(z)
ωk

q(ζ)

)
dv
ζ− z

, ζ= eiv, z = eiu, x = cosu,

величина ωq(·) определена в (5). Известно [32], что

|δkq,q(g, x, Aq)|⩽ c(a, γ)λk, λ< 1,

c(a, γ) – некоторая величина, не зависящая от k. Из последней оценки и равенства (29) получим

|ε2n,q(g, x, Aq)|⩽
1

γm+1

2m

∑
k=0

bk|δkq,q(g, x, Aq)|⩽
c(a, γ)
γm+1

2m

∑
k=0

bkλ
k, m ∈ N.

Воспользовавшись формулами для конечных сумм, которые применялись при доказательстве
теоремы 2.1, нетрудно получить, что справедлива оценка

|ε2n,q(g, x, Aq)|⩽ O
(

1
(m+1)2

)
, m ∈ N.

Другими словами, равномерные приближения функции g(x) сингулярным интегралом Джексона
убывают со скоростью большего порядка малости в сравнении со скоростью аппроксимации
функции µ̂1(x). Следовательно, из равенства (28) находим

ε∗2n,q((1− x)γ) = ε∗2n(µ̂1(x))+O
(

1
(n+1)2

)
, n → ∞.

Следствие 6.1 (Аппроксимация функции (1−x)γ). Для равномерных рациональных при-
ближений функции (1−x)γ, γ∈ (0, 1), на отрезке [−1, 1] рациональным сингулярным интегралом
Джексона с q геометрически различными полюсами справедливы асимптотические равенства

ε∗2n,q((1− x)γ) =
sinπγ
π

ν(γ, q)

(n+1)2
(

1− (1−γ)q
1+γ

) +O
(

1
(n+1)2

)
, n → ∞, (30)

где величина ν(γ, q) определена в формулировке теоремы 5.1.
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При этом из следствия 4.2 заключаем, что для полиномиальных приближений возможно
добиться лишь

ε
(0)
2n ((1− x)γ) = O

(
1

n2γ

)
, n → ∞.

Известно [38, с. 96], что наилучшие равномерные полиномиальные приближения функций со сте-
пенной особенностью обладают следующим свойством:

E2n(|x|2γ; [−1, 1]) =
1
2γ

En((1− x)γ; [−1, 1]).

Рассуждая аналогичным образом, из асимптотического равенства (30) находим, что

ε∗4n,2q(|x|s)∼
µ(s, q)

(n+1)
2
(

1− (2−s)q

2q−1(2+s)

) , s ∈ (0, 2), n → ∞,

где величина µ(s, q) может быть выписана в явном виде. В частности, при q = 1 приходим
к равномерной оценке аппроксимации функции |x|s, s ∈ (0, 2), на отрезке [−1, 1] рациональным
сингулярным интегралом Джексона с двумя геометрически различными полюсами:

ε∗2n,2(|x|s)∼
µ(s, 1)

(n+1)
4s

2+s
, n → ∞.

Этот результат содержится в [29] в случае приближений функции |x|s, s ∈ (0, 2), сингулярным
интегралом Джексона, ассоциированным с системой алгебраических дробей Чебышёва–Маркова
с двумя геометрически различными полюсами.

7. Заключение

В работе изучены аппроксимации функций Маркова на отрезке [−1, 1] рациональными
функциями с ограничениями на количество геометрически различных полюсов. Методом прибли-
жений выступают рациональные сингулярные интегралы Джексона, ассоциированные с системой
алгебраических дробей Чебышёва–Маркова с фиксированным количеством геометрически раз-
личных полюсов. Для введенного метода рациональной аппроксимации установлено интегральное
представление.

Рассмотрены аппроксимации функцииМаркова с абсолютно непрерывной мерой, производная
которой асимптотически равна функции со степенной особенностью. В этом случае найдены
оценки сверху поточечных и равномерных приближений, асимптотическое выражение мажоранты
равномерных приближений.

Установлены значения параметров, при которых обеспечиваются наилучшие равномерные
приближения этим методом. В качестве следствия рассмотрены рациональные аппроксимации
сингулярным интегралом Джексона некоторых элементарных функций на отрезке, представимых
функциями Маркова.

Работа выполнена при финансовой поддержке государственной программы научных иссле-
дований «Конвергенция–2025» (№ ГР 20212046).
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Аннотация. Рассматривается линейная периодическая система управления с посто-
янной матрицей при управлении. Программное управление является периодическим,
причем его период несоизмерим с периодом матрицы коэффициентов. Допустимое
множество таких периодических управлений названо иррегулярным. Ставится задача
выбора такого управления из указанного допустимого множества, чтобы теперь уже
у квазипериодической системы появилось периодическое решение с заданным спектром
частот, период которого совпадает с периодом управления. Поставленая задача названа
задачей управления асинхронным спектром с иррегулярным допустимым множеством.
Приводится необходимое условие ее разрешимости.
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Abstract. A linear periodic control system with a constant control matrix is considered.
The program control is periodic, and its period is incommensurate with the period of the
coefficient matrix. The feasible set of such periodic controls is called irregular. The problem
is posed of selecting a control from this feasible set so that the now quasiperiodic system has
a periodic solution with a given frequency spectrum whose period coincides with the control
period. This problem is called the asynchronous spectrum control problem with an irregular
feasible set. A necessary condition for its solvability is given.

1. Введение

Управление сложными системами самой различной природы, такими как беспилотные
летательные аппараты, радиоэлектронные устройства, эпидемиологические модели и др., требует
разработки соответствующего математического аппарата. Одной из многих возникающих при
этом задач, связанных с периодическими процессами (см., напр. [1; 2], и др.), является задача
управления асинхронным спектром [3], которая состоит в следующем. Пусть управляемая система
описывается уравнением

ẋ = f (t,x,u), t ∈ R, x ∈ Rn,
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правая часть которого обеспечивает существование и единственность решений и периодична
или почти периодична по t. Управление u принимает значения в некотором допустимом множе-
стве, определяемом постановкой конкретной задачи. Задачу выбора такого управления u, чтобы
у данного уравнения появились нерегулярные периодические решения, спектр частот которых со-
держит заданное подмножеством L, названа задачей управления спектром нерегулярных колебаний
(асинхронным спектром) с целевым множеством частот L.

Вопросы разрешимости сформулированной задачи применительно к линейнымпериодическим
системам с программным управлением того же периода изучались в работах [4–6] и др. Вполне
естественно ожидать, что задача управления асинхронным спектром допускает модифицированные
варианты, связанные с выбором иных видов управления. Например, в монографии [7, гл. III]
и др. рассматривался случай синтеза управления в виде линейной по фазовым переменным
обратной связи.

В настоящей работе впервые формулируется задача управления асинхронным спектром
периодических систем, где в качестве допустимого множества выступают периодические функции,
период которых несоизмерим с периодом системы.

2. Предварительные сведения

Приведем необходимые для замкнутости изложения понятия теории периодических и квази-
периодических скалярных функций, которые без труда переносятся на векторно- и матричнозначные
функции. Пусть конечное множество действительных чисел (ω1)

−1, . . . ,(ωk)
−1 рационально линей-

но независимо. Непрерывная функция g(t) называется квазипериодической с периодамиω1, . . . ,ωk,
если найдется непрерывная функция k переменных G∗(t1, . . . , tk), периодическая по t j с периодом
ω j ( j = 1,m), которая является диагональной для исходной функции, т. е.

g(t)≡ G∗(t, . . . , t).

Числа 2π/ω1, . . . ,2π/ωk образуют базис частот квазипериодической функции f (t). Квази-
периодическими будут, в частности, тригонометрические многочлены с рационально линейно
независимыми частотами. Например, функция f (t) = sin2πt + cos(2π/

√
2)t является квазипери-

одической с периодами ω1 = 1 и ω2 =
√

2. Очевидно, что периодические функции являются
подмножеством квазипериодических и имеют одночастотный базис.

Для непрерывнойω-периодическойфункции f (t) среднее значение – это постоянная величина

f̂ =
1
ω

ωw

0

f (τ)dτ,

а осциллирующая часть определяется равенством

f̃ (t) = f (t)− f̂ .

Показателем Фурье (частотой) функции f (t) называется действительное число µ такое, что
хотя бы один из интегралов

ωw

0

f (t)cosµtdt

или
ωw

0

f (t)sinµtdt

отличен от нуля. Множество показателей Фурье периодической функции образует ее спектр.
Через rankrow H̃ обозначим строчный ранг некоторой периодической матрицы H(t), т. е.

наибольшее число ее линейно независимых столбцов. Подобным образом можно определить и
столбцовый ранг этой матрицы rankcol H . Отметим, что в общем случае строчный и столбцовый
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ранги матрицы H(t) не обязаны совпадать. Действительно, для матрицы

H(t) =
(

sin t 2sin t
cos t 2cos t

)
имеем rankrow H = 2, а rankcol H = 1. В стационарном случае введенные ранги, очевидно, будут
совпадать. Будем говорить, что H(t) – матрица неполного столбцового ранга, если ее столбцовый
ранг меньше числа столбцов.

Рассмотрим квазипериодическую систему
dz
dt

= g(t,z)+h(t,z), z ∈ Rn,

где вектор-функции g и h периодические по первому аргументу с периодамиω и Ω соответственно,
причем отношение этих периодов иррационально.

Определение 2.1. Периодическое решение z = z(t) с периодом Ω данной системы называется
частично нерегулярным [8], а его частотный спектр – частично асинхронным.

3. Постановка задачи

Рассмотрим линейную систему управления

ẋ = A(t)x+Bu, t ∈ R, x ∈ Rn, (1)

в которой A(t) – непрерывнаяω-периодическая (n×n)-матрица; B – постоянная (n×m)-матрица;
u – управление. В качестве управляющего воздействия u(·) в системе (1) будем использовать
непрерывные на вещественной оси Ω-периодические m-вектор-функции такие, что числа ω и
Ω несоизмеримы. Допустимые множества периодических функций такого рода будем называть
иррегулярными.

Задача управления частично асинхронным спектром с целевым множеством L и иррегулярным
допустимым множеством состоит в следующем: выбрать такое программное управление

u =U(t) (2)

из указанного допустимого множества, чтобы система

ẋ = A(t)x+Bu(t) (3)

имела нетривиальное частично нерегулярное решение x = x(t) периода Ω с заданным спектром
частот L.

Сформулированная задача является принципиально новой, поскольку в силу выбора указан-
ного управления система (3) будет не периодической, а квазипериодической с двумя базисными
частотами.

4. Основной результат

Укажем необходимое условие разрешимости поставленной задачи. Справедлива
Теорема 4.1. Пусть задача управления асинхронным спектром системы (1) с иррегулярным

допустимым множеством имеет решение. Тогда осциллирующая составляющая матрицы
коэффициентов имеет неполный столбцовый ранг, т. е. выполняется оценка

rankcol Ã = n−d, 1 ⩽ d < n. (4)

Доказательство проведем методом от противного. Допустим, что задача управления асин-
хронным спектром системы (1) с иррегулярным допустимым множеством разрешима, а условие
(4) не имеет места. Другими словами, найдется Ω-периодический вектор (2) такой, что система (3)
будет иметь нетривиальное решение x = x(t) того же периода, причем матрица Ã(t) имеет полный
столбцовый ранг, т. е. имеет место равенство

rankcol Ã = n. (5)
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Разложим в ряд Фурье Ω-периодический вектор x(t)

x(t)∼
∞

∑
m=−∞

xm exp
(

2πim
Ω

t
)
,

где

xm =
1
Ω

Ωw

0

x(τ)exp
(
−2πim

Ω
τ

)
dτ.

С учетом полученного разложения запишем произведение(
A(t)− 1

ω

ωw

0

A(τ)dτ

)
x(t)∼

(
A(t)− 1

ω

ωw

0

A(τ)dτ

)
∞

∑
m=−∞

xm exp
(

2πim
Ω

t
)
. (6)

Разложим в ряд Фурье ω-периодическую матричную функцию

A(t)− 1
ω

ωw

0

A(τ)dτ∼
∞

∑
k=−∞, k ̸=0

Ak exp
(

2πik
ω

t
)
, (7)

где

Ak =
1
ω

ωw

0

A(τ)exp
(
−2πik
ω
τ

)
dτ.

Используя разложение (7), применим свойства формальных операций над рядами Фурье
[9, с. 39] к произведению (6)(

A(t)− 1
ω

ωw

0

A(τ)dτ

)
x(t)∼

∞

∑
k, m=−∞, k ̸=0

Akxm exp
(

2πik
ω

+
2πim

Ω

)
t. (8)

Запишем (8) в виде ряда(
A(t)− 1

ω

ωw

0

A(τ)dτ

)
x(t)∼

∞

∑
j=−∞

c j exp(2πiλ j)t, (9)

коэффициенты которого находятся следующим образом:

c j = ∑
νk+µm=λ j

Akxm, νk =
k
ω
, µm =

m
Ω
, (10)

т. е. c j суммирует попарные произведения тех коэффициентов Фурье Ak и xm, соответствующие
которым числа νk и µm дают одинаковые равные λ j суммы.

Покажем, что для каждой пары индексов k и m индекс j будет единственным, обеспечивающим
равенство

νk +µm = λ j.

Это значит, что каждая из сумм (10) будет состоять только из одного слагаемого при любых
значениях индексов k и m. Допустим, что это не так, т. е. найдутся такие две пары индексов k1, m1
и k2, m2 (k1 ̸= k2, m1 ̸= m2), что выполняется равенство

νk1 +µm1 = νk2 +µm2 ,

из которого с учетом принятых обозначений получаем
k1

ω
+

m1

Ω
=

k2

ω
+

m1

Ω
.

В силу того, что k1 − k2 ̸= 0 и m1 −m2 ̸= 0, из полученного равенства находим отношение периодов
ω

Ω
=

k1 − k2

m1 −m2
.

Поскольку индексы k1, k2, m1, m2 – целые числа, то правая часть этого равенства является
рациональным числом. Следовательно, периоды ω и Ω соизмеримы – получили противоречие.
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Значит, сделанное допущение неверно и каждый определяемый соотношением (10) коэффициент c j

ряда (9) действительно будет состоять только из одного слагаемого.
Так как квазипериодическая система (3) имеет частично нерегулярное решение x = x(t) и

отношениеω/Ω иррационально, то согласно [10] вектор x(t) удовлетворяет, в частности, тождеству(
A(t)− 1

ω

ωw

0

A(τ)dτ

)
= Ã(t)x(t)≡ 0. (11)

С учетом тождества (11) для ряда (9) имеем представление

0 ≡

(
A(t)− 1

ω

ωw

0

A(τ)dτ

)
x(t)∼

∞

∑
j=−∞

c j exp(2πiλ j)t. (12)

Из разложения в ряд (12) на основании теоремы единственности для почти периодических
функций [9, с. 51] следует, что все коэффициенты этого ряда нулевые. Значит, нулевыми будут
и коэффициенты ряда (9), т. е

Akxm = 0 (13)

при всех k = ±1,±2, . . . и m = 0,±1,±2, . . ..
Поскольку по предположению периодический вектор x(t) ̸≡ 0, то найдется по меньшей мере

один из его коэффициентов Фурье, имеющий хотя бы одну ненулевую компоненту. Пусть это будет
коэффициент xs (s ∈ {0,N}). Применим свойства формальных операций над рядами Фурье [9,
с. 39] к одному из слагаемых представления (6) при m = s, т. е. рассмотрим произведение(

A(t)− 1
ω

ωw

0

A(τ)dτ

)
xs ∼

∞

∑
k=−∞, k ̸=0

Akxs exp
(

2πik
Ω

t
)
.

Как показано выше, согласно (13) все произведения Pkxs = 0 (k = ±1,±2, . . .). Поэтому ввиду
периодичности функции Ã(t)xs на основании [9, с. 51] и принятых обозначений имеем тождество

Ã(t)xs ≡ 0, xs ̸= 0,

из которого следует, что Ã(t) – матрица неполного столбцового ранга. Имеем противоречие
со сделанным в начале доказательства предположением (5) о линейной независимости столбцов
этой матрицы. Значит, допущение (5) неверно и в случае разрешимости поставленной задачи
управления системы (1) осциллирующая составляющая ее матрицы коэффициентов имеет неполный
столбцовый ранг. Теорема доказана.

Заключение. Для линейной периодической системы управления с постоянной матрицей
при управлении впервые поставлена задача управления асинхронным спектром с иррегулярным
допустимым множеством и дано необходимое условие ее разрешимости.

Работа выполнена в Институте математики НАН Беларуси при поддержке БРФФИ (проект
№ Ф25КИ-015).
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Abstract. A two-dimensional anti-Perron effect of changing arbitrary different positive
Lyapunov exponents of a linear differential system to negative ones by a perturbation of a
higher order of smallness is realized.

Рассматриваем двумерные дифференциальные системы: линейную

ẋ = A(t)x, x ∈ R2, t ⩾ t0 ⩾ 0, (1)

с ограниченными бесконечно дифференцируемыми коэффициентами и характеристическими
показателями

λ2(A)⩾ λ1(A)> 0

и нелинейную

ẏ = A(t)y+ f (t,y), y ∈ R2, t ⩾ t0, (2)

также с бесконечно дифференцируемым так называемым (см., например [1]) m-возмущением f (t,y),
имеющим порядок m > 1 малости в окрестности начала координат y = 0 и допустимого роста вне ее:

∥ f (t,y)∥⩽C f ∥y∥m, C f = const > 0, y ∈ R2, t ⩾ t0. (3)

Эффект Перрона [2, см. также 3, с. 50–51] устанавливает существование двумерных си-
стемы (1) со всеми отрицательными показателями и m-возмущения (3) таких, что возмущенная
система (2) имеет нетривиальные решения с положительными показателями Ляпунова. Его иссле-
дованию посвящена серия работ авторов, в том числе и совместных с С. К. Коровиным. Бо́льший
интерес своими возможными приложениями представляет противоположный антиперроновский
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эффект смены положительных характеристических показателей линейного приближения (1) на отри-
цательные у (некоторых) нетривиальных решений возмущенных систем (2) с малыми возмущениями,
в частности, m-возмущениями (3) высшего порядка малости.

В работе [4] антиперроновский эффект в случае положительных совпадающих характеристи-
ческих показателей реализован на одном нетривиальном решении системы (2) с отрицательным
показателем.

В этом же случае совпадения положительных показателей линейного приближения дву-
мерный антиперроновский эффект реализован [5] на большем числе нетривиальных решений
с отрицательными показателями возмущенной системы (2) с соответствующим m-возмущением –
на 4 таких решениях.

Возникает вопрос о возможной реализации двумерного антиперроновского эффекта смены
m-возмущениями (3) положительных различных показателей λ2(A) > λ1(A) > 0 линейного при-
ближения (1) на отрицательные у (некоторых) нетривиальных решений возмущенной системы (2).
Положительный ответ содержит

Теорема. Для любых параметров

λ2 > λ1 > 0, m > 1, θ> 1

существуют:
1) двумерная линейная система (1) с ограниченными бесконечно дифференцируемыми

коэффициентами и характеристическими показателями λi(A) = λi, i = 1,2;
2) также бесконечно дифференцируемое по m-возмущение

f (t,y) : [t0,+∞)×R2 → R2

такие, что нелинейная возмущенная система (2) имеет решение y(t)> 0 с показателем

λ[y] =−(θ+1)
mθλ1 +λ2

m2θ2 −1
. (4)

1. Доказательство 1◦. Определение линейной системы

Будем строить ее в диагональном виде

ẋ = diag[a1(t),a2(t)]x ≡ A(t)x, x ∈ R2, t ⩾ t0, (5)

с ограниченными бесконечно дифференцируемыми коэффициентами и характеристическими
показателями λi(A) = λi, i = 1,2. Для этого, как обычно, будем использовать моменты времени
tk = θk, k ∈ N0 ≡ N ∪{0}, и обеспечивающую бесконечную дифференцируемость коэффициентов
a1(t) и a2(t) системы (5) известную функцию Гелбаума–Олмстеда [6, с. 54]

eγδ(τ,τ1,τ2) = γ+(δ−γ)exp{−(τ−τ1)
−2 exp[−(τ−τ2)

−2]}, τ ∈ (τ1,τ2),

принимающую на концах рассматриваемого интервала значения γ и δ и нулевые значения своих
односторонних производных любого порядка.

В рассматриваемом случае различных значений λ2 > λ1 > 0 коэффициенты a1(t) и a2(t),
в отличие от работы [5] с совпадающими положительными построенными λ1 и λ2, определим
на отрезках

T2k+ j = [t2k+ j, t ′2k+ j+1], t
′
2k+ j+1 ≡ t2k+ j+1 −ε(t2k+ j+1), ε(t)≡ exp(−t2), k ∈ N0, j = 0,1,

равенствами

ai(t) = (−1)i−1

{
αi, t ∈ T2k+ j,

−αi, t ∈ T2k+ j+1,
k ∈ N0, i = 1,2, j = 0,1. (6)

В них постоянные αi имеют представление

αi = λi
θ+1
θ−1

,

а номер j при всяком фиксированном i ∈ {1,2} принимает значения 0 и 1.
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Определим теперь коэффициенты a1(t) и a2(t) с помощью функций eγδ на интервалах

I2k+ j ≡ (t ′2k+ j+1, t2k+ j+1), k ∈ N0, j = 0,1,

используя для этого уже определенные равенствами (6) их значения на концах интервалов I2k+ j :

ai(t) = eai(t ′2k+ j+1)ai(t2k+ j+1)(t), t ∈ I2k+ j+1, k ∈ N0, j = 0,1.

В силу свойств функций Гелбаума–Олмстеда так определенные при всех k ∈ N0 и j = 0,1
коэффициенты являются бесконечно дифференцируемыми на всей полуоси t ⩾ 1.

Для вычисления характеристических показателей построенной системы линейного прибли-
жения (5) воспользуемся вспомогательной также диагональной линейной системой

ẋ = diag[b1(t),b2(t)]x ≡ B(t)x, x ∈ R2, t ⩾ t0, (51)

коэффициенты bi(t), i = {1,2}, которой определяются равенствами

bi(t)≡ ai(t2k+ j), t ∈ [t2k+ j, t2k+ j+1), k ∈ N0, j = 0,1.

Очевидно, для коэффициентов систем (5) и (51) справедливы соотношения

|ai(t)−bi(t)|=

{
≡ 0, t ∈ [t2k+ j, t ′2k+ j+1),

⩽ 2α2, t ∈ [t ′2k+ j+1, t2k+ j+1), j = 0,1.

Тем самым в силу малой длины

0 < t2k+ j+1 − t ′2k+ j+1 ⩽ exp(−t2
2k), k ∈ N0, j = 0,1,

промежутков [t ′2k+ j+1, t2k+ j+1) неравенство
+∞w

t0

∥B(τ)−A(τ)∥eστdτ<+∞

выполнено при любом конечном σ> 0. Поэтому [7] линейные системы (5) и (51) являются асимп-
тотически эквивалентными и их характеристические показатели совпадают. Последние же для
системы (51) с кусочно-постоянными «периодически повторяющимися» коэффициентами имеют
необходимые представления

λi(A) = λi(B) = αi
θ−1
θ+1

= λi, i = 1,2.

2. Построение возмущенной системы и ее решения с отрицательным показателем

Эти построения будем вести методом, изложенным в нашей работе [4] c необходимыми
изменениями и дополнениями.

На отрезке [t2k, t2k+2] с произвольно фиксированным k > k0 осуществим одновременные
построения:

1) бесконечно дифференцируемого m-возмущения

f (t,y) = ( f1(t,y2), f2(t,y1)) : [t2k, t2k+2]×R2
+ → R2

с положительным октантом

R2
+ = {y = (y1,y2) ∈ R2 : y1 ⩾ 0, y2 ⩾ 0}

и нулевыми значениями

fi(t2k+ j,y3−i)≡ 0, y ∈ R2
+, i = 1,2, j = 0,2,

его компонент и такими же значениями их правосторонних производных любого порядка при
j = 0 и левосторонних при j = 2;

2) решения y(t) = (y1(t),y2(t)) системы (2) с построенным m-возмущением f (t,y), принимаю-
щего на концах рассматриваемого отрезка начальные и конечные значения

yi(t2k+ j) = eβit2k+ j , i = 1,2, j = 0,2 (6i j)
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своих компонент

0 < yi(t)⩽ eβ2t , t ∈ [t2k, t2k+2], i = 1,2, (6i)

в которых отрицательные постоянные β1 и β2 определяются системой равенств

β1 = mθ2β2 +(θ−1)2α1, (71)

β2 = mβ1 +(θ−1)(mα1 +α2). (72)

Из этой системы получаем их следующие явные значения

β1 =−(θ−1)
[
α1 +

θ(α1 +mθα2)

m2θ2 −1

]
< β2 =−(θ−1)

mθα1 +α2

m2θ2 −1
< 0. (8)

Исходя из уже полученных выше нулевых значений

fi(t2k,y3−i) = 0, i = 1,2,

компонент возмущения f (t,y), продолжим их аналогичным образом

fi(t,y3−i)≡ 0, t ∈ [t2k,η2k+3−i], η2k+i ≡ t2k+i −1, y ⩾ 0, i = 1,2, (8i)

на максимально возможные по длине временные промежутки.
Для определения этих компонент f1(t,y2) и f2(t,y1) соответственно на интервалах

(η2k+2, t2k+2) и (η2k+1, t2k+1) воспользуемся функциями

E(τ,τ1,τ2,τ3,τ4) =


e0,1(τ,τ1,τ2), τ ∈ [τ1,τ2],

1, τ ∈ (τ2,τ3],

e10(τ,τ3,τ4), τ ∈ (τ3,τ4],

Fk(yi) =

{
ym

i e01(yi,0,ε(tk)), yi ∈ [0,ε(tk)], i = 1,2,
ym

i , yi > ε(tk), i = 1,2,

построенными нами в работе [4].
В соответствии с определением (81) первой компоненты f1(t,y2) возмущения f (t,y) для

первой же компоненты y1(t) решения y(t) с начальным условием (610) имеем представления

y1(t) =


exp[β1t2k +α1(t − t2k)], t ∈ [t2k, t ′2k+1],

y1(t ′2k+1)exp
tw

t ′2k+1

a1(τ)dτ≡ y1(t ′2k+1)x1(t, t ′2k+1), t ∈ [t ′2k+1, t2k+1].
(91)

На следующем промежутке [t2k+1, t ′2k+2] компонента y1(t) определяется равенством

y1(t) = y1(t2k+1)exp[−α1(t − t2k+1), t ∈ [t2k+1, t ′2k+2]. (92)

Оценим ее сверху на отрезке [t2k, t2k+1] :

λ1(t)≡ t−1 lny1(t)⩽ t−1[β1t2k +α1(t − t2k)] = (β1 −α1)t2kt−1 +α1 ⩽

⩽ (β1 −α1)θ
−1 +α1 = [β1 +α1(θ−1)]θ−1 (8)

= −(θ−1)
α1 +mθα2

m2θ2 −1
< β2, t ∈ [t2k, t2k+1]. (10)

На следующем отрезке [t2k+1, t ′2k+2] производная

λ′1(t) = t−2[− lny1(t2k+1)]−α1t2k+1

для компоненты y1(t) (см. (91), (92)) не меняет знака на интервале (t2k+1, t ′2k+2) и поэтому функция
λ1(t) принимает следующее наибольшее значение:

maxλ1(t) = max{λ1(t2k+1),λ1(t ′2k+2)}, t ∈ [t2k+1, t ′2k+2].



100 Н. А. Изобов, А. В. Ильин

И если неравенство λ1(t2k+1) < β2 уже установлено (см. (10)), то для λ1(t ′2k+2) в силу равенства
(92) и (71) справедливы оценки

max{λ1(t ′2k+2),λ1(t2k+2)}⩽ [β1 − (θ−1)2α1 +2α1ε(t2k+2)]θ
−2 < β2 < 0,

при k ⩾ k0 и соответствующем k0 ∈ N.
Для последующего построения второй компоненты f2(t,y1) m-возмущения f (t,y) на отрезке

[η2k+1, t2k+1] необходимо получить на нем оценку снизу первой компоненты y1(t) решения y(t).
Из представлений (91) и первой оценки (10) имеем неравенства

exp[(β1 −α1)t2k +α1t]⩾ y1(t)⩾ exp[(β1 −α1)t2k +α1t −2α1ε(t2k+1)]≡

≡ d′
2k+1 exp[(β1 −α1)t2k +α1t]⩾ c′2k+1 exp[−α1 +(β1 +(θ−1)α1)]t2k, t ∈ [η2k+1, t2k+1].

Из предыдущего неравенства с использованием представлений (71) и (8) величины β1
получаем оценки

y1(t)> c2k+1 exp
[
−θ(θ−1)α2t2k

mθ−1

]
> c2k+1 exp(−α2t2k+1)> exp(−t2

2k+1)≡

≡ ε(t2k+1), t ∈ [η2k+1, t2k+1], k ⩾ k0,

с постоянными c2k+1 = c′2k+1e−α1 и очевидным k0 ∈ N.
Полученная оценка позволяет представить на отрезке [η2k+1, t2k+1] вторую компоненту

f2(t,y1) возмущения f (t,y) в следующем виде:

f2(t,y1)|y1=y1(t) =−d2k+1F2k+1(y1)|y1=y1(t)×E(t,η2k+1,η
′
2k+1, t

′
2k+1, t2k+1) =

=−d2k+1ym
1 (t)E(t, ·, ·, ·, ·),η′2k+1 = η2k+1 +ε(t2k+1), t ∈ [η2k+1, t2k+1].

На предыдущем [t2k,η2k+1] и последующем [t2k+1, t2k+2] промежутках эта вторая компонента
f2(t,y1) тождественно равна нулю (см. (82)). При этом постоянная d2k+1 подлежит последующему
определению.

Исследуем теперь поведение второй компоненты y2(t) на отрезке [t2k, t2k+2]. На первой его
половине [t2k, t2k+1] она будет являться решением линейного неоднородного уравнения

ẏ2 = a2(t)y2 + f2[t,y1(t)]

с начальным значением y2(t2k) = exp(β2t2k). На отрезке [t2k,η2k+1], на котором f2(t,y1)≡ 0, имеем
представление

y2(t) = exp[β2t2k −α2(t − t2k)],

а тем самым в силу неравенства β2 > −α2 и необходимую оценку

0 < y2(t)⩽ expβ2t, t ∈ [t2k,η2k+1].

На следующем отрезке [η2k+1, t2k+1] компонента y2(t), являясь решением приведенного неодно-
родного уравнения, имеет представление

y2(t) = y2(t2k)x2(t, t2k)−d2k+1

tw

η2k+1

E(τ,η2k+1,η
′
2k+1, t

′
2k+1, t2k+1)×

×ym
1 (τ)x2(t,τ)dτ≡ z(t)−d2k+1J2(η2k+1, t), t ∈ [η2k+1, t2k+1], (11)

в котором x2(t,τ)≡ exp
tr

τ

a2(ξ)dξ и J2(η2k+1, t) – интеграл. Постоянная же d2k+1 > 0 определяется
из условия

z(t2k+1)−d2k+1J2(η2k+1, t2k+1) = ỹ2(t2k+1)> 0, (12)

в котором

ỹ2(t2k+1) = x−1
2 (t2k+2, t2k+1)exp(β2t2k+2) (13)

– новое значение компоненты y2(t) в момент t = t2k+1.
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Из равенств (12) и (13) получим значение постоянной d2k+1 > 0и установим его ограниченность
сверху не зависящей от k величиной, что позволит считать строящееся возмущение необходимым
m-возмущением на всей полуоси t ⩾ t0. Для этого оценим снизу интеграл J2(η2k+1, t2k+1), учитывая
при этом неравенство

y1(τ)⩾ y1(η2k+1), τ ∈ [η2k+1, t ′2k+1].

Справедливы также следующие неравенства

J2(η2k+1, t2k+1)⩾

t ′2k+1w

η′2k+1

ym
1 (η2k+1)x2(t2k+1,τ)dτ⩾ [1−2ε(t2k+1)]×

×exp{−2mα2 +[mβ1 +(θ−1)mα1]t2k} ≡ c2 exp{[mβ1 +(θ−1)mα1]t2k}= c2 exp[β2 − (θ−1)α2]t2k,

причем последнее равенство имеет место в силу определения величин β1 и β2 (см. (71)− (72)).
Из представления (13) нового значения ỹ2(t2k+1) компоненты y2(t) имеем неравенства

0 < ỹ2(t2k+1)⩽ c3 exp[β2t2k+2 − (θ−1)α2t2k+1]

с независящей от k постоянной c3 > 0.Из равенства (12) получаем представление постоянной d2k+1 :

0 < d2k+1 = [z(t2k+1)− ỹ2(t2k+1)]J2(η2k+1, t2k+1)< z(t2k+1)J−1
2 (η2k+1, t2k+1)⩽ c = const.

Положительность d2k+1 следует из неравенств

ỹ2(t2k+1)z−1(t2k+1)< exp[β2(t2k+2 − t2k)− (θ−1)α2(t2k+1 − t2k)]→ 0.

При этом справедлива оценка

y2(t) = ỹ2(t2k+1)exp[α2(t − t2k+1)]⩽ exp[β2(2t2k+2 − t)], t ∈ [t2k+1, t2k+2].

Для оценки сверху |y2(t)| второй компоненты y2(t) на отрезке [η2k+1, t2k+1], определенной
равенством (11), представим ее в следующем виде:

y2(t) = x2(t, t2k)

eβ2t2k −d2k+1

tw

η2k+1

x−1
2 (τ, t2k)E(τ, . . .)ym

1 (τ)dτ

 ,
причем согласно (12) и (13) в момент t2k+1 справедливо неравенство

eβ2t2k −d2k+1

t2k+1w

η2k+1

. . .dτ> 0. (14)

Так как первая компонента y1(t) возрастает на всем промежутке [η2k+1, t ′2k+1] (влияние
промежутка [t ′2k+1, t2k+1] длины ε[t2k+1] не сказывается), то неравенство (14) будет сохраняться и
для интеграла с верхним пределом t ∈ [η2k+1, t2k+1]. Это устанавливает положительность y2(t) на
отрезке [η2k+1, t2k+1], т. е. имеем 0 < y2(t)⩽ z(t) на этом же отрезке, а значит, y2(t)⩽ expβ2t. Это
неравенство сохранится и на следующем отрезке [t2k+1, t2k+2].

Единственный на отрезке [t2k, t2k+2] промежуток действия первой компоненты f1(t,y2) m-
возмущенная f (t,y) – отрезок [η2k+2, t2k+2] с левым концом η2k+2 = t2k+2 −1. На нем выполнена
очевидная оценка y2(t)⩾ ε(t2k+2) и поэтому F2k+2[y2(τ)] = ym

2 (τ), τ ∈ [η2k+2, t2k+2]. Тем самым на
рассматриваемом отрезке [η2k+2, t2k+2] первая компонента имеет представление

y1(t) = x1(t,η2k+2)y1(η2k+2)−d2k+2

tw

η2k+2

ym
2 (τ)E(τ, . . .) . . .dτ≡

≡ u(t)−d2k+2J1(η2k+2, t), t ∈ [η2k+2, t2k+2],

с постоянной d2k+2 > 0, определяемой условием

u(t2k+2)−d2k+2J1(η2k+2, t2k+2) = exp[β1t2k+2].
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Все последующие рассуждения по доказательству ограниченности сверху (не зависящей от k ∈ N
постоянной) и положительности величины d2k+2 аналогичны рассуждениям, проведенным выше
на отрезке [η2k+1, t2k+1].

Таким образом, на отрезке [t2k, t2k+2] построены необходимые m-возмущение и решение
y(t) = (y1(t),y2(t)) возмущенной системы с начальными и конечными значениями (6i j) и удовлетво-
ряющие неравенствам (6i).Методом математической индукции распространим эти построения на
всю полуось t ⩾ t0. Необходимое неравенство λ[y]⩽ β2 установлено. Теорема доказана.

Замечание. В нашем докладе [8] показатели λ[Yi] должны иметь представление (4).
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Аннотация. Изучается новое линейное интегро-дифференциальное уравнение на за-
мкнутой кривой, расположенной на комплексной плоскости. На кривую и на коэффици-
енты уравнения накладываются некоторые ограничения. Уравнение содержит гипер-
сингулярные интегралы с искомой функцией. Характерной особенностью уравнения
является наличие также регулярных интегралов с искомой функцией и ее комплексно-
сопряженным значением. Решение уравнения сводится к решению смешанной краевой
задачи для аналитических функций и последующему решению дифференциальных
уравнений с дополнительными условиями на решение. Явно указываются условия раз-
решимости исходного уравнения. При их выполнении решение строится в замкнутой
форме. Приводится пример.
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Abstract. A new linear integro-differential equation is studied on a closed curve located on the
complex plane. There are some restrictions on the curve and the coefficients of the equation.
The equation contains hypersingular integrals with the desired function. A characteristic
feature of the equation is the presence of regular integrals with the desired function and its
complex conjugate value. The solution of the equation is reduced to solving a mixed boundary
value problem for analytic functions and the subsequent solutijn of differential equations
with additional conditions on the solution. The conditions for the solvability of the original
equation are explicitly stated. When these are performed, the solution is in closed form. An
example is given.

1. Введение

Пусть L — простая замкнутая положительно ориентированная кривая класса C1 на ком-
плексной плоскости. Обозначим D+ внутренность, а D− внешность этой кривой. Искомой будет
в дальнейшем функцияφ(t), t ∈ L, H-непрерывная (т. е. удовлетворяющая условию Гельдера) вместе
со своими производными, входящими в исходное уравнение.

Для предельных значений на кривой L интеграла типа Коши

Φ±(z) =
1

2πi

w

L

φ(τ)dτ
τ− z

, z ∈ D±,

и его производных справедливы полученные в [1] обобщенные формулы Сохоцкого

Φ
(k)
± (t) =±1

2
φ(k)(t)+

k!
2πi

w

L

φ(τ)dτ
(τ− t)k+1 , t ∈ L. (1)

Формулы (1) справедливы в случае H-непрерывности производных φ(k)(t), при этом предельные
значения также H-непрерывны. Гиперсингулярные интегралы в формулах (1) понимаются в смысле
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конечной части по Адамару, что согласно [1] приводит для их вычисления к формулам

w

L

φ(τ)dτ
(τ− t)k+1 =

πiφ(k)(t)
k!

+
w

L

φ(τ)−∑
k
j=0

φ( j)(t)
j! (τ− t) j

(τ− t)k+1 dτ,

в правых частях которых интегралы сходятся в обычном смысле. Интегро-дифференциальное
уравнение с такими гиперсингулярными интегралами введено в рассмотрение в [2] – это линейное
уравнение с постоянными коэффициентами, которое решено в явном виде. С частными случаями
переменных коэффициентов подобные уравнения изучались в [3; 4] и других работах.

Если в сингулярных интегральных уравнениях наряду с сингулярными интегралами присут-
ствуют регулярные интегралы с искомой функцией, то такие уравнения принято называть полными.
Если в гиперсингулярные интегральные или интегро-дифференциальные уравнения входят регу-
лярные интегралы, то такие уравнения естественно тоже называть полными. Исследования полных
гиперсингулярных интегро-дифференциальных уравнений начаты недавно [5–7] и продолжаются
в настоящей работе. Эти исследования отличает конструктивный характер, когда явно указываются
условия разрешимости и при их выполнении явно записываются сами решения.

2. Постановка задачи. Некоторые обозначения и факты

Зададим числа ak ∈ C, bk ∈ R, k = 0,n, n ∈ N, an ̸= 0, bn ̸= 0. Зададим также H-непрерывные
функции a(t) ̸= 0, b(t) ̸= 0, h(t), t ∈ L. Обозначим

ε j = e
2πi
m j, j ∈ E = {0,1, ...,m−1}, (2)

комплексные корни степени m из единицы, m ∈ N, m ⩾ 2. Кривую L возьмем теперь расположенной
в угловой области {z : 0 < argz < π

m}. Будем решать уравнение
n

∑
k=0

[
(a(t)ak +b(t)bk)φ

(mk)(t)+
(a(t)ak −b(t)bk)(mk)!

πi

m−1

∑
j=0

(w
L

φ(τ)dτ
(τ−ε jt)mk+1−

−
w

L

φ(τ) dτ
(τ−εm− jt)mk+1

)]
= h(t), t ∈ L, (3)

εm = ε0. Гиперсингулярными интегралами в уравнении (3) являются интегралы сφ(τ) во внутренней
сумме при j = 0. Остальные интегралы, в том числе все интегралы с φ(τ), являются регулярными.
Обозначим

L = {t : t = τ, τ ∈ L}, D+ = {z : z = ζ, ζ ∈ D+},

Lβ = {t : t = εβτ, τ ∈ L}, Dβ = {z : z = εβζ, ζ ∈ D+},

Lβ = {t : t = εβτ, τ ∈ L}, Dβ = {z : z = εβζ, ζ ∈ D+}, β= 1,m−1,

D∗ = Ĉ\{L
⋃

D+

⋃
L
⋃

D+

m−1⋃
β=1

Lβ
m−1⋃
β=1

Dβ
m−1⋃
β=1

Lβ
m−1⋃
β=1

Dβ},

где Ĉ – расширенная комплексная плоскость.
Возможный вид некоторых введенных объектов изображен на рис. 1.
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Рис. 1. Возможный вид кривой L и областей D+, D∗ в случае m = 3

Числа ε j, вычисляемые по формуле (2) для j ∈ Z, образуют по умножению циклическую
группу порядка m (с образующим элементом ε1), поэтому в дальнейшем эти числа для j ∈ Z\E
можно заменять на равные им числа для соответствующего значения j ∈ E. Отметим также
равенство ε j = ε− j, j ∈ Z.

3. Сведение уравнения к краевой задаче для аналитических функций

Введем аналитические функции

1
2πi

m−1

∑
j=0

(
w

L

φ(τ)dτ
τ−ε jz

−
w

L

φ(τ) dτ
τ−εm− jz

)
=

{
Ψ+(z), z ∈ D+,
Ψ∗(z), z ∈ D∗.

(4)

Обоснуем, что функция Ψ∗(z) обладает свойствами

Ψ∗(ε1z) = Ψ∗(z), (5)

Ψ∗(z) = Ψ∗(z), (6)

Ψ∗(∞) = 0. (7)

Так как числа ε j образуют циклическую группу, то для любых чисел m1, m2 ∈ Z
m−1

∑
j=0

w

L

φ(τ)dτ
τ−ε j+m1z

=
m−1

∑
j=0

w

L

φ(τ)dτ
τ−ε jz

,

m−1

∑
j=0

w

L

φ(τ) dτ
τ−εm− j+m2z

=
m−1

∑
j=0

w

L

φ(τ) dτ
τ−εm− jz

.

Поэтому, взяв в частности m1 = m2 = 1, придем к равенству (5):

Ψ∗(ε1z) =
1

2πi

m−1

∑
j=0

(
w

L

φ(τ)dτ
τ−ε j+1z

−
w

L

φ(τ) dτ
τ−εm− j+1z

)
= Ψ∗(z).

Свойство (6), выражающее симметрию функции относительно действительной оси, вытекает
из равенства

1
2πi

m−1

∑
j=0

(
w

L

φ(τ)dτ
τ−ε jz

−
w

L

φ(τ) dτ
τ−εm− jz

)
=

1
2πi

m−1

∑
j=0

w

L

φ(τ)dτ
τ−ε jz

+
1

2πi

w

L

φ(τ)dτ
τ−ε jz

.
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Наконец, равенство (7) есть очевидное следствие известного свойства интеграла типа Коши.
Функция Ψ∗(z) вполне характеризуется своими значениями в области

{z : 0 ⩽ argz ⩽
π

m
}\
(

D+

⋃
L
)

(область берется вместе с соответствующими лучами). На остальную часть области D∗ ее можно
распространить, например, сначала продолжая по симметрии относительно действительной оси
на симметричную область

{z : −π
m

⩽ argz ⩽ 0}\
(

D+

⋃
L
)
.

Затем «удвоенную» область

{z : −π
m

⩽ argz ⩽
π

m
}\
(

D+

⋃
L
⋃

D+

⋃
L
)

следует вращать вокруг точки z = 0 на углы, кратные 2π
m , сохраняя в соответствующих точках те

же значения функции, что и в этой «удвоенной» области.
Для производных функции Ψ∗(z) порядков mk, k = 1,n, получим

Ψ
(mk)
∗ (z) =

(mk)!
2πi

m−1

∑
j=0

(
w

L

εmk
j φ(τ)dτ

(τ−ε jz)mk+1 −
w

L

εmk
m− jφ(τ) dτ

(τ−εm− jz)mk+1

)
=

=
(mk)!
2πi

m−1

∑
j=0

(
w

L

φ(τ)dτ
(τ−ε jz)mk+1 −

w

L

φ(τ) dτ
(τ−εm− jz)mk+1

)
,

откуда понятно, что на эти производные переносятся все свойства вида (5), (6), (7).
Запишем предельные значения на кривой L функций (4) и их производных порядков, крат-

ных m:

Ψ
(mk)
+ (t) =

1
2
φ(mk)(t)+

(mk)!
2πi

m−1

∑
j=0

(
w

L

φ(τ)dτ
(τ−ε jt)mk+1 −

w

L

φ(τ) dτ
(τ−εm− jt)mk+1

)
, (8)

Ψ
(mk)
∗ (t) =−1

2
φ(mk)(t)+

(mk)!
2πi

m−1

∑
j=0

(
w

L

φ(τ)dτ
(τ−ε jt)mk+1 −

w

L

φ(τ) dτ
(τ−εm− jt)mk+1

)
, k = 0,n, t ∈ L. (9)

Формулы (8), (9) получаются после применения к функциям в формуле (4) обобщенных формул
Сохоцкого для интеграла с φ(τ) в случае j = 0 и дифференцирования под знаком интеграла для
остальных интегралов. Вычитая и складывая равенства (8), (9), получим пару равносильных равенств

φ(mk)(t) = Ψ
(mk)
+ (t)−Ψ

(mk)
∗ (t), (10)

(mk)!
πi

m−1

∑
j=0

(
w

L

φ(τ)dτ
(τ−ε jt)mk+1 −

w

L

φ(τ) dτ
(τ−εm− jt)mk+1

)
= Ψ

(mk)
+ (t)+Ψ

(mk)
∗ (t),

с помощью которых уравнению (3) можно придать вид краевой задачи
n

∑
k=0

[
(a(t)ak +b(t)bk)

(
Ψ

(mk)
+ (t)−Ψ

(mk)
∗ (t)

)
+(a(t)ak −b(t)bk)

(
Ψ

(mk)
+ (t)+Ψ

(mk)
∗ (t)

)]
= h(t), t ∈ L,

или после очевидных упрощений
n

∑
k=0

akΨ
(mk)
+ (t) =

b(t)
a(t)

n

∑
k=0

bkΨ
(mk)
∗ (t)+

h(t)
2a(t)

, t ∈ L. (11)

Сумма в левой части равенства (11) является предельным значением на кривой L функции
Y+(z) = ∑

n
k=0 akΨ

(mk)
+ (z), аналитической в области D+. Сумма в правой части равенства (11) является

предельным значением на кривой L функции Y∗(z) = ∑
n
k=0 bkΨ

(mk)
∗ (z), аналитической в области D∗.

Поскольку все производные Ψ
(mk)
∗ (z) обладают свойствами, аналогичными (5), (6), (7), то этими же

свойствами будут обладать и их линейные комбинации с действительными коэффициентами, т. е.

Y∗(ε1z) = Y∗(z), (12)
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Y∗(z) = Y∗(z), (13)

Y∗(∞) = 0. (14)

Возникшей краевой задаче можно придать вид

Y+(t) =
b(t)
a(t)

Y∗(t)+
h(t)
2a(t)

, t ∈ L. (15)

Такая задача относится к смешанным краевым задачам. Вид краевого условия аналогичен виду
краевого условия задачи Римана. Требование (12) на одну из искомых функций имеет характер
краевого условия задачи Карлемана, а требование (13) – краевого условия задачи Гильберта. На эту
задачу удается распространить классическую схему решения двухэлементных краевых задач [8].
В результате получится, что общее решение задачи (15) записывается по формулам

Y+(z) = X+(z)(T+(z)+R(z)) , Y∗(z) = X∗(z)(T∗(z)+R(z)) ,

где
X+(z) = eΓ+(z), X∗(z) = (zm − zm

0 )
−α (zm − z0)

−α eΓ∗(z), z0 ∈ D+,

α= IndL
b(t)
a(t)

,
1

2πi

m−1

∑
j=0

[w
L

ln((τm − zm
0 )

−α(τm − z0
m)−αb(τ)/a(τ))dτ

τ−ε jz
−

−
w

L

ln
(
(τm − zm

0 )
−α(τm − z0

m)−αb(τ)/a(τ)
)

dτ
τ−εm− jz

]
=

{
Γ+(z), z ∈ D+,
Γ∗(z), z ∈ D∗,

1
4πi

m−1

∑
j=0

[
w

L

h(τ)dτ
a(τ)X+(τ)(τ−ε jz)

−
w

L

h(τ) dτ

a(τ) X+(τ)(τ−εm− jz)

]
=

{
T+(z), z ∈ D+,
T∗(z), z ∈ D∗,

R(z) =
{

∑
2α−1
k=0 ckzmk, ck – произвольные действительные постоянные, если α> 0,

0, если α⩽ 0.

При α ⩾ 0 задача разрешима безусловно, а при α < 0 для ее разрешимости необходимы и до-
статочны условия

Im
w

L

h(τ)τmk−1dτ
a(τ)X+(τ)

= 0, k = 1,−2α. (16)

Предположим, что задача (15) разрешима. Далее следует решать дифференциальные уравнения
n

∑
k=0

akΨ
(mk)
+ (z) = Y+(z), z ∈ D+, (17)

n

∑
k=0

bkΨ
(mk)
∗ (z) = Y∗(z), z ∈ D∗, (18)

и в случае нахождения их решений воспользоваться формулой (10) при k = 0:

φ(t) = Ψ+(t)−Ψ∗(t), t ∈ L. (19)

4. Решение дифференциальных уравнений

Общее решение уравнения (17), записанное после применения метода вариации произвольных
постоянных, имеет вид

Ψ+(z) =
mn

∑
σ=1

uσ(z)
(

C+
σ +

w z

z1

Uσ(ζ)dζ
U(ζ)

)
. (20)

В этой формуле функции uσ(z), явный вид которых хорошо известен и здесь не приводится, образуют
фундаментальную систему решений соответствующего однородного уравнения, C+

σ – произвольные
комплексные постоянные, U(ζ) – вронскиан функций uσ(ζ), Uσ(ζ) – определитель, полученный
изU(ζ) заменой элементов σ-го столбца на 0,0, ...,0,Y+(ζ)/an, σ= 1,mn, z1 – фиксированная точка
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в области D+. Интегрирование в формуле (20) производится по любой кривой, принадлежащей
D+ и соединяющей точки z1 и z, и вследствие конечности и односвязности области D+ приводит
к однозначным функциям.

Решение уравнения (18), в котором затем еще нужно будет учитывать условия (5), (6), (7),
записывается по аналогичной формуле

Ψ∗(z) =
mn

∑
σ=1

vσ(z)
(

C∗
σ+

w z

0

Vσ(ζ)dζ
V (ζ)

)
. (21)

В формуле (21) vσ(z) – фундаментальная система решений соответствующего однородного урав-
нения, C∗

σ – произвольные постоянные, V (ζ) – вронскиан функций vσ(ζ), Vσ(ζ) – определители,
полученные из V (ζ) заменой элементов σ-го столбца на 0,0, ...,0,Y∗(ζ)/bn, σ= 1,mn. Интегрирова-
ние производится по кривым, соединяющим в области D∗ точки 0 и z, и вследствие многосвязности
области D∗ может привести к многозначным аналитическим функциям. В дальнейшем следует
требовать выполнение равенств

w

L

Vσ(ζ)dζ
V (ζ)

= 0, σ= 1,mn, (22)

w

Lβ

Vσ(ζ)dζ
V (ζ)

= 0, β= 1,m−1, σ= 1,mn, (23)

w

L

Vσ(ζ)dζ
V (ζ)

= 0,
w

Lβ

Vσ(ζ)dζ
V (ζ)

= 0, β= 1,m−1, σ= 1,mn, (24)

являющихся необходимыми и достаточными условиями однозначности решения (21). Фундамен-
тальная система решений в формуле (21) может быть любой, однако для учета условий (5), (6), (7)
будем строить фундаментальную систему решений с некоторыми дополнительными свойствами.

Пусть уравнение
n

∑
k=0

bkλ
k = 0

имеет действительные корни λp кратностей соответственно kp, p = 1,P, и комплексно-сопряженные
корни θq, θq кратностей соответственно mq, q = 1,Q, ∑

P
p=1 kp +2∑

Q
q=1 mq = n. Для определенности

считаем, что среди чисел λp нет равного нулю. Также для определенности можно считать Imθq > 0,
q = 1,Q. Произвольным образом выберем и зафиксируем одно из значений m

√
λp, это значение

будем в дальнейшем обозначать µp, p = 1,P. Аналогично произвольным образом выберем и
зафиксируем одно из значений m

√
θq, это значение будем в дальнейшем обозначать sq, q = 1,Q.

Тогда корни уравнения
n

∑
k=0

bkµ
mk = 0,

являющегося характеристическим для однородного уравнения (18), можно записать в виде

ε0µp, ε1µp, ..., εm−1µp, p = 1,P,
ε0sq, ε1sq, ..., εm−1sq, q = 1,Q,
ε0sq, ε1sq, ..., εm−1sq, q = 1,Q,

(25)

причем каждый корень имеет соответствующую кратность kp или mq. Запишем функции

flγp(z) = zl
m−1

∑
j=0
ε
−γ
j eε jµpz, l = 0,kp −1, γ= 0,m−1, p = 1,P, (26)

glγq(z) = zl
m−1

∑
j=0
ε
−γ
j eε jsqz, l = 0,mq −1, γ= 0,m−1, q = 1,Q, (27)

hlγq(z) = zl
m−1

∑
j=0
ε
−γ
j eε jsqz, l = 0,mq −1, γ= 0,m−1, q = 1,Q. (28)
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Из работы [7] следует, что совокупность функций (26), (27), (28) образует фундаментальную систему
решений однородного уравнения (18), причем для всех этих функций справедливы равенства

flγp(ε1z) = εl+γ flγp(z), glγq(ε1z) = εl+γglγq(z), hlγq(ε1z) = εl+γhlγq(z). (29)

Если µp – комплексное число, то для некоторого j = j0 ε j0µp = µp. Учитывая тот факт,
что при j = 0,m−1 как все значения ε j− j0 , так и все значения ε j совпадут со всеми значениями
ε j, получим

m−1

∑
j=0
ε
−γ
j eε jµpz =

m−1

∑
j=0
ε
−γ
j0

(
ε−1

j0 ε j

)−γ
eε jε

−1
j0
(ε j0µp)z = ε−γj0

m−1

∑
j=0
ε
−γ
j− j0eε j− j0µpz =

= ε−γj0

m−1

∑
j=0
ε
−γ
j eε jµpz = ε−γj0

m−1

∑
j=0
ε j

−γeε j µpz.

В фундаментальной системе решений (26), (27), (28) каждую из функций в (26), для которой
соответствующая постоянная εγj0 ̸=−1, заменим на эту же функцию, умноженную на постоянную(

1+εγj0

)
. В результате получим функции

f̃lγp(z) =
(

1+εγj0

)
zl

m−1

∑
j=0
ε
−γ
j eε jµpz = zl

(
m−1

∑
j=0
ε
−γ
j eε jµpz +

m−1

∑
j=0
ε j

−γeε j µpz

)
,

симметричные относительно действительной оси. Если же εγj0 =−1, то к симметричным относи-
тельно действительной оси функциям придем по формулам

f̃lγp(z) = i flγp(z).

Среди чисел m
√
λp могут оказаться действительные числа (в количестве не более двух

для каждого p = 1,P). Если выбранное число µp ∈ R, то можно считать µp = µp, j0 = 0, тогда
ε
−γ
0 = 1. Снова заменим функцию в (26) на функцию f̃lγp(z). В этом случае функция flγp(z) лишь

удваивается, но оказывается при этом представленной в виде, в котором симметрия относительно
действительной оси очевидна.

Для функций (27) (как и для функций (28)) подобные рассуждения не приведут к симметрич-
ным функциям, поскольку среди чисел (25) нет ни действительных, ни пар комплексно-сопряженных
чисел. Теперь в совокупностях (27), (28) каждую пару функций

glγq(z), hlγq(z) = zl
m−1

∑
j=0
ε
−γ
j eε jsqz = zl

m−1

∑
j=0
ε j

−γeε j sqz

заменим на новую пару функций

g̃lγq(z) = glγq(z)+hlγq(z) = zl

(
m−1

∑
j=0
ε
−γ
j eε jsqz +

m−1

∑
j=0
ε j

−γeε j sqz

)
,

h̃lγq(z) = i
(
glγq(z)−hlγq(z)

)
= i zl

(
m−1

∑
j=0
ε
−γ
j eε jsqz −

m−1

∑
j=0
ε j

−γeε j sqz

)
,

симметрия которых относительно действительной оси очевидна.
В результате получим фундаментальную систему решений однородного уравнения (18)

f̃lγp(z), l = 0,kp −1, γ= 0,m−1, p = 1,P, (30)

g̃lγq(z), l = 0,mq −1, γ= 0,m−1, q = 1,Q, (31)

h̃lγq(z), l = 0,mq −1, γ= 0,m−1, q = 1,Q, (32)

все функции которой обладают свойством симметрии относительно действительной оси. Поскольку
линейные комбинации функций, обладающих свойствами вида (29), сохраняют эти свойства, то
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для всех функций (30), (31), (32) будут выполняться равенства

f̃lγp(ε1z) = εl+γ f̃lγp(z), g̃lγq(ε1z) = εl+γg̃lγq(z), h̃lγq(ε1z) = εl+γh̃lγq(z). (33)

Если индексы l +γ каких-то чисел εl+γ не принадлежат множеству E, то заменим эти индексы
на значения из E, сравнимые с ними по модулю m. В результате получится, что для каждого
фиксированного значения l = 0,kp −1 и для каждого фиксированного значения p = 1,P среди
функций f̃lγp(z) есть ровно одна функция со свойством вида f̃ (ε1z) = εγ f̃ (z) для каждого значения
γ= 0,m−1. Аналогичные рассуждения справедливы для функций g̃lγq(z) и h̃lγq(z). Следовательно,
в дальнейшем в качестве функций vσ(z) можно взять переобозначенные функции (30), (31), (32),
причем σ = km+ j, а

vkm+ j(ε1z) = ε j−1vkm+ j(z), k = 0,n−1, j = 1,m. (34)

Формула решения уравнения (18), приводящая вследствие равенств (34) к выполнению свойства (5),
указана в [7]:

Ψ∗(z) =
n−1

∑
k=0

C∗
km+1vkm+1(z)+

mn

∑
σ=1

vσ(z)
w z

0

Vσ(ζ)dζ
V (ζ)

. (35)

Эта формула получается из формулы (21), когда часть констант C∗
σ равна нулю.

Поскольку элементы вронскиана V (ζ) и элементы всех определителей Vσ(ζ) будут теперь
симметричными функциями относительно действительной оси, симметричными будут и все подын-
тегральные функции в формуле (35). А так как интегралы вида

r z
0 сохраняют симметрию функций,

то решение (35) будет удовлетворять еще и свойству (6), если в нем считать в дальнейшем все
постоянные C∗

km+1 действительными.
В [7] обосновано, что при наличии свойств (34) из равенств (22), (23) достаточно оставить лишь

равенства (22), поскольку равенства (23) являются следствием равенств (22). Но если справедливы
равенства (22), (23), то будут справедливы и равенства (24), поскольку интегралы по симметричным
относительно действительной оси кривым от симметричных функций одновременно либо равны
нулю, либо не равны нулю, так что и равенства (24) оказываются следствием равенств (22).

Осталось учесть условие (7). Для этого разложим функцию Ψ∗(z) в ряд Лорана в окрестно-
сти бесконечности и приравняем к нулю коэффициенты при неотрицательных степенях z этого
разложения. В результате получим следующую бесконечную систему линейных алгебраических
уравнений, которой должны удовлетворять постоянные C∗

km+1:
n−1

∑
k=0

dlkC∗
km+1 = δl, l = 0,1,2, ..., (36)

где

dlk =
w

|t|=ρ

vkm+1(t)dt
tml+1 , δl =−

mn

∑
σ=1

w

|t|=ρ

vσ(t)dt
tml+1

w t

0

Vσ(ζ)dζ
V (ζ)

,

ρ – достаточно большое положительное число.

5. Формулировка результата. Пример

Используя формулу (19), сформулируем окончательный результат.
Теорема. Для разрешимости уравнения (3) необходимо и достаточно, чтобы выполнялись

равенства (16) при α < 0, равенства (22) и была совместна система (36). Если эти условия
выполняются, то общее решение уравнения (3) находится по формуле

φ(t) =
mn

∑
σ=1

[
uσ(t)

(
C+
σ +

w t

z1

Uσ(ζ)dζ
U(ζ)

)
− vσ(t)

w t

0

Vσ(ζ)dζ
V (ζ)

]
−

n−1

∑
k=0

C∗
km+1vkm+1(t), t ∈ L, (37)

гдеC+
σ – произвольные комплексные постоянные,σ= 1,mn, аC∗

km+1 – действительные постоянные,
являющиеся решением системы (36), k = 0,n−1.
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Приведем пример уравнения (3), для которого оказываются выполненными все условия раз-
решимости. Возьмем в качестве кривой L окружность |t −1− i|= 1

2 . Из уравнения этой окружности
в виде τ = 1+ i+ 1

2 e2iσ, σ ∈ [0,π], получим dτ = − dτ
4(τ−1−i)2 . Запишем уравнение

3φ′′(t)− (1+4i)φ(t)+
1−4i
πi

(
w

L

φ(τ)dτ
τ− t

+
w

L

φ(τ)dτ
4(τ−1− i)2(τ− t)

+
w

L

φ(τ)dτ
τ+ t

+

+
w

L

φ(τ)dτ
4(τ−1− i)2(τ+ t)

)
+

2
πi

(
w

L

φ(τ)dτ
(τ− t)3 +

w

L

φ(τ)dτ
4(τ−1− i)2(τ− t)3 +

w

L

φ(τ)dτ
(τ+ t)3 +

+
w

L

φ(τ)dτ
4(τ−1− i)2(τ+ t)3

)
=

2(t12 +11t8 +20t6 +40t4 −48t2 +48)
(t4 +4)3 , t ∈ L. (38)

Так на указанной окружности выглядит пример уравнения (3) при n = 1, m = 2, a(t) = b(t) = 1,
a1 = 2, b1 = 1, a0 =−4i, b0 =−1. Задача (15) для уравнения (38) приобретает вид задачи о скачке

Y+(t)−Y∗(t) =
t12 +11t8 +20t6 +40t4 −48t2 +48

(t4 +4)3 , t ∈ L. (39)

Области D+ и D∗ аналитичности функций соответственно Y+(z) и Y∗(z) изображены на рис. 2.

Рис. 2. Области D+ и D∗ для задачи (39)

Дляm= 2 получим ε0 = 1, ε1 =−1, поэтому условие (12) примет видY∗(−z)=Y∗(z) и будет выражать
четностьфункцииY∗(z). Совокупность условий (12), (13)можноистолковать как симметриюфункции
Y∗(z) относительно обеих осей – действительной и мнимой.

Задача (39) (с учетом условия (14)) безусловно разрешима и имеет единственное решение.
Легко найти представление

t12 +11t8 +20t6 +40t4 −48t2 +48
(t4 +4)3 = 1− t8 −20t6 +8t4 +48t2 +16

(t4 +4)3 ,

из которого, очевидно, получим

Y+(z) = 1, Y∗(z) =
z8 −20z6 +8z4 +48z2 +16

(z4 +4)3 .

Далее следует решать уравнения

2Ψ
′′
+(z)−4 i Ψ+(z) = 1, z ∈ D+, (40)
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Ψ
′′
∗(z)−Ψ∗(z) =

z8 −20z6 +8z4 +48z2 +16
(z4 +4)3 , z ∈ D∗. (41)

Общее решение уравнения (40) можно записать, например, по формуле

Ψ+(z) =C+
1 ch((1+ i)z)+C+

2 sh((1+ i)z)+
i
4
.

Свойства вида (33) для двух симметричных относительно действительной оси функций, образующих
фундаментальную систему решений однородного уравнения (41), сведутся к четности одной и
нечетности другой функции; такими функциями будут соответственно chz и shz. Формула (35)
примет вид

Ψ∗(z) =C∗
1chz− chz

w z

0

ζ8 −20ζ6 +8ζ4 +48ζ2 +16
(ζ4 +4)3 shζdζ+

+shz
w z

0

ζ8 −20ζ6 +8ζ4 +48ζ2 +16
(ζ4 +4)3 chζdζ.

Оба возникших интеграла можно вычислить:
w z

0

ζ8 −20ζ6 +8ζ4 +48ζ2 +16
(ζ4 +4)3 shζdζ=

chz
z4 +4

+
4z3shz
(z4 +4)2 −

1
4
,

w z

0

ζ8 −20ζ6 +8ζ4 +48ζ2 +16
(ζ4 +4)3 chζdζ=

shz
z4 +4

+
4z3shz
(z4 +4)2 ,

и тогда после упрощений получим

Ψ∗(z) =
(

C∗
1 +

1
4

)
chz− 1

z4 +4
.

Очевидно, что для выполнения условия (7) следует взятьC∗
1 =−1

4 , поэтому записывать соответству-
ющую систему (36) нет необходимости. Наконец, по формуле (19) приходим к решению примера (38):

φ(t) =C+
1 ch((1+ i)t)+C+

2 sh((1+ i)t)+
i
4
+

1
t4 +4

, |t −1− i|= 1
2
,

где C+
1 , C+

2 – произвольные комплексные постоянные.

6. Заключительное замечание

Отметим наличие произвольных комплексных постоянныхC+
σ в формуле (37) общего решения

исходного уравнения, что нетипично для линейных уравнений, содержащих наряду с неизвестной
функцией ее комплексно-сопряженное значение. Этому факту можно дать следующее объяснение.
В формуле (19) произвольные комплексные постоянные содержатся лишь в выражении для Ψ+(t).
При подстановке такой функции в интегралы с φ(τ) в исходном уравнении получим

w

L

Ψ+(τ) dτ
(τ−εm− jt)mk+1 =

w

L

Ψ+(τ)dτ
(τ−ε jt)mk+1 .

Для t ∈ L ε jt ∈ D−, j = 0,m−1, поэтому функции Ψ+(z)
(z−ε jt)mk+1 будут аналитическими в области D+

и по интегральной теореме Коши

w

L

Ψ+(τ)dτ
(τ−ε jt)mk+1 = 0.

Следовательно, при подстановке решения в виде (19) в левую часть исходного уравнения наличие или
отсутствие интегралов с φ(τ) не влияет на вычисления, связанные с Ψ+(t), из-за чего постоянные
C+
σ остаются произвольными комплексными.
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Аннотация. Рассматривается сеть массового обслуживания (СеМО) с отрицательными
задачами с однолинейными узлами и ограничением на время пребывания задач в узлах.
Если в момент поступления отрицательной задачи в узле имеются положительные зада-
чи, то одна из положительных задач мгновенно исчезает из сети. Если же в этот момент
в узле отсутствуют положительные задачи, то поступающая в этот узел отрицательная
задача пропадает, не оказывая в дальнейшем никакого влияния на поведение сети.
Положительные задачи, время пребывания которых в узле закончилось, мгновенно и
независимо от других положительных задач перемещаются по сети в соответствии с мат-
рицей переходных вероятностей, отличной от матрицы маршрутизации обслуженных
положительных задач. Доказывается нечувствительность стационарного распределения
к форме распределения длительностей обслуживания задач, при фиксированных первых
моментах.

INVARIANCE OF THE STATIONARY DISTRIBUTION OF G-NETWORKS WITH BOUNDED
SOJOURN TIMEWITH RESPECT TO SERVICE TIME DISTRIBUTIONS
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Francisk Skorina Gomel State University, Gomel, Belarus
e-mail: stas.evmenenko@yandex.ru

Received: 03.09.2025 Revised: 18.09.2025 Accepted: 15.12.2025
Keywords: queueing theory,
stochastic processes, probability
theory, Gelenbe networks, net-
works with negative customers,
Markov processes.

Abstract. We consider a queueing network with negative customers, single-server nodes,
and constraints on the sojourn time of customers in nodes. If, at the moment a negative
customer arrives at a node, there are positive customers present, one of the positive customers
instantly disappears from the network. If, however, no positive customers are present in
the node at that moment, the incoming negative customer vanishes immediately and has no
further effect on the network’s behavior. Positive customers whose sojourn time in a node has
expired instantly and independently of other positive customers begin routing according to
a transition matrix that differs from the routing matrix used by positively served customers.
The insensitivity of the stationary distribution to the shape of the service time distribution
given fixed first moments is proven. The conditional distribution of customer sojourn times in
nodes is exponential.

1. Введение

Сети массового обслуживания представляют собой один из ключевых объектов исследования
в теории вероятностей, прикладной математике и инженерии. Они служат мощным аппаратом
для описания, анализа и оптимизации процессов обслуживания заявок в различных прикладных
системах: от компьютерных и телекоммуникационных сетей до логистики, систем управления,
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биологических процессов и облачных вычислений. Классические модели, такие как сети Джексона
и Баккета не учитывают важные эффекты взаимодействия между задачами, характерные для
современных высоконагруженных и распределенных систем.

В ответ на эти ограничения была предложена модель сетей с отрицательными заявками,
впервые систематически исследованная Э. Геленбе (G-networks) [1]. Такие сети расширяют тра-
диционные СеМО, вводя в рассмотрение так называемые деструктивные (отрицательные) задачи,
которые, в отличие от обычных (положительных), не обслуживаются в традиционном смысле,
а взаимодействуют с другими задачами, удаляя их из сети. Это позволяет описывать такие явления,
как вытеснение задач из очереди, отмена операций, репликация и восстановление. Благодаря
этим возможностям сети Геленбе нашли применение в моделировании отказоустойчивости, систем
с перегрузкой, а также в нейроморфных вычислениях и биоинформатике.

Одним из важнейших направлений в теории СеМО с отрицательными заявками является
изучение стационарного режима функционирования сети, т. е. такого состояния, при котором
вероятностные характеристики системы становятся стабильными во времени. Особое внимание при
этом уделяется временам пребывания задач в узлах сети [2], поскольку они отражают ключевые
показатели эффективности системы: среднее время отклика, задержки, потери и загрузку ресурсов.
Для широкого класса систем с положительными задачами давно установлено, что стационарное
распределение времени пребывания в узлах может обладать определенной инвариантностью –
устойчивостью к изменениям в структуре маршрутизации, начальным условиям или отдельным
параметрам. В [3] был получен результат для сетей Геленбе с экспоненциальным ограничением
на время пребывания задач в узлах, и где распределение времен обслуживания задач в узлах
является экспоненциальным.

В условиях присутствия отрицательных задач, обладающих возможностью удалять другие
задачи, вопрос об инвариантности стационарного распределения времен пребывания приобретает
особенно острый и нетривиальный характер. В [4–7] получены фундаментальные результаты по
инвариантности стационарного распределения по отношению к закону распределения времен об-
служивания задач в узлах. Деструктивные взаимодействия могут существенно изменить динамику
системы, вызывая эффекты нелинейного характера, что делает невозможным прямое применение
традиционных методов анализа. Тем не менее, наличие структурной инвариантности в стационарных
характеристиках таких сетей может служить ценным инструментом как для теоретического анализа,
так и для практического проектирования и управления. В первую очередь, это связано с тем, что
в реальных сетях распределение продолжительности обслуживания обычно отличается от пока-
зательного, а доказательство инвариантности стационарного распределения позволит применять
методы исследования ТМО к реальным сетям обслуживания.

В [8; 9] представлены некоторые современные результаты по сетям с положительными и
отрицательными задачами. В работе [10] для открытой СеМО с дисциплиной обслуживания LCFS
Preemptive Resume доказана инвариантность стационарного распределения по отношению к рас-
пределениям длительностей обслуживания при фиксированных первых моментах. В [11] доказана
инвариантность стационарного распределения для открытых и замкнутых СеМО с обходами узлов
задачами. Ранее Гомельской школой по мультипликативным сетям был получен результат по
инвариантности стационарного распределения для СеМО с отрицательными задачами [12].

Цель настоящей работы – доказательство инвариантности стационарного распределения
относительно времен обслуживания задач в узлах сети массового обслуживания с положительными
и отрицательными задачами и экспоненциальным ограничением на время пребывания задач в узлах,
при условии, что их первые моменты (математические ожидания) остаются фиксированными.

Практическая значимость результатов связана с возможностью использовать полученные
свойства для упрощения моделирования и анализа сложных распределенных систем, не прибегая
к трудоемкому вычислению конкретных переходных вероятностей и временных характеристик
для каждой конфигурации сети.
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2. Марковский случай

В сеть массового обслуживания, состоящую из N однолинейных экспоненциальных узлов
с интенсивностью обслуживания µi для i-го узла, поступает 2N независимых простейших потоков
задач, причем в i-й узел поступают два потока: поток положительных (обычных, требующих
обслуживания) задач, поток отрицательных задач (i = 1,N). Состояние сети в момент времени t
задается вектором n(t) = (n1(t), . . . ,nN(t)), где ni(t) обозначает количество задач в i-м узле в момент
времени t. Число мест для ожидания в каждом из узлов бесконечно. Если положительный запрос
поступает в узел, свободный от запросов, он сразу начинает обслуживаться. Если положительный
запрос поступает в узел, в котором уже есть запрос, то он вытесняет запрос, находящийся на приборе,
и сразу же начинает обслуживаться, а вытесненный с прибора положительный запрос становится
в начало очереди (дисциплина LCFS Preemptive Resume). При поступлении отрицательной задачи
в узел удаляется положительная задача, стоящая последней в очереди (если такие имеются), а если
прибор занят, а в очереди нет задач, то удаляется задача, находящаяся на приборе. Пусть Λi и λi

соответственно – интенсивности потоков положительных и отрицательных задач, поступающих
в i-й узел извне. Будем предполагать, что промежутки времени между моментами поступления
задач извне в сеть, времена их обслуживания и времена их пребывания в узлах суть взаимно
независимые между собой случайные величины, а Λi > 0, λi > 0 для всех i = 1,N. В момент
окончания обслуживания положительной задачи в i-м узле эта задача: с вероятностью p+i j переходит
в j-й узел, оставаясь положительной задачей, с вероятностью p−i j переходит в j-й узел, превращаясь
в отрицательную задачу, с вероятностью pi0 покидает сеть (i, j = 1,N,∑N

j=0 pi j = 1, где pi j = p+i j +

+ p−i j для j ̸= 0). Если задача покидает узел за счет окончания времени пребывания, эта задача:
с вероятностью r+i j переходит в j-й узел, оставаясь положительной задачей, с вероятностью r−i j
переходит в j-й узел, превращаясь в отрицательную задачу, с вероятностью ri0 покидает сеть
(i, j = 1,N,∑N

j=0 ri j = 1, где ri j = r+i j + r−i j для j ̸= 0).
Длительности обслуживания задач в узлах имеют произвольную функцию распределения

Bi(t), причем

(µi)
−1 =

w
∞

0
[1−Bi(t)]dt. (1)

При рассмотрении марковского случая будем предполагать, что время обслуживания положи-
тельной задачи единственным прибором i-го узла имеет показательное распределение с параметром
µi(i = 1,N), т. е. Bi(t) = 1−exp{−µit}(t > 0). Время пребывания задачи в i-м узле является случай-
ной величиной, условное распределение которой (если в i-м узле находится ni задач) показательное
с параметром νi

ni
. Другими словами, условная вероятность того, что пребывания каждой задачи

в i-м узле закончится в промежутке [t, t + h), если в момент t в узле находилось ni задач, равна
νi
ni

h+o(h) при h → 0, а условная вероятность завершения пребывания хотя бы одной из этих
задач равна νih+o(h). В таком случае, процесс n(t) представляет собой однородный марковский
процесс с непрерывным временем и фазовым пространством состояний, которое является не
более чем счетным.

Обозначим через λ+i и λ−i соответственно интенсивности потоков положительных и отрица-
тельных задач, поступающих в i-й узел (извне и из других узлов, i = 1,N) в стационарном режиме.
В [3] показано, что в стационарном режиме выполняется следующий закон сохранения:

λ+i = Λi +
N

∑
j=1

(µ jρ j p+i j +ν jρ jr+i j ), (2)

λ−i = λi +
N

∑
j=1

(µ jρ j p−i j +ν jρ jr−i j ), i = 1,N, (3)

где ρi =
λ+i

µi+νi+λ−i
– загрузка i-го узла сети. Уравнения (2) и (3) назовем уравнениями трафика.

В [3] для данной сети массового обслуживания доказано, что при λ+i
µi+νi+λ−i

< 1, i = 1,N, цепь
Маркова, описывающая количество задач в сети в момент времени t, эргодична, а ее единственное
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стационарное распределение имеет форму произведения. Приведем из [3] уравнения глобального
равновесия для марковского случая

p(n)
N

∑
i=1

Λi +(µi +νi +λi)I{ni ̸=0} =
N

∑
i=1

p(n− ei)ΛiI{ni ̸=0}+
N

∑
i=1

p(n+ ei)(µi pi0 +νiri0 +λi)+

+
N

∑
j=1

N

∑
i=1,i̸= j

p(n+ e j − ei)(µ j p+ji +ν jr+ji)I{ni ̸=0}+

+
N

∑
j=1

N

∑
i=1,i̸= j

p(n+ e j + ei)(µ j p−ji +ν jr−ji)+ p(n+ e j)(µ j p−ji +ν jr−ji)I{ni=0}.

Здесь ei-единичный вектор i-го направления.

3. Немарковский случай

Теперь будем предполагать, что времена обслуживания задач в узлах имеют произвольную
функцию распределения Bi(t), причем математическое ожидание фиксированно с помощью (1).
В этом случае процесс n(t) не является марковским. Далее докажем, что для такого процесса
справедлива следующая теорема.

Теорема. При λ+i
µi+νi+λ−i

< 1, i= 1,N, процесс, описывающий количество задач в узле в момент
времени t, имеет финальное строго положительное распределение в форме произведения p(n) =
= p1(n1) . . . pN(nN), с множителями

pi(ni) = ρi
ni(1−ρi), ni = 0,1, . . . ,

где {λ+i ,λ
−
i , i = 1,N} – решение уравнения трафика (2) и (3).

Доказательство. Пусть τik(t) – остаточное время обслуживания положительной задачи в i-м
узле с момента t до момента окончания времени обслуживания, а τi(t) = (τi1(t),τi2(t), . . . ,τini(t)) –
вектор, описывающий остаточное время обслуживания задач в i-м узле; где k – номер позиции,
на которой находится задача от «хвоста» к прибору. Поскольку, вообще говоря, n(t) не является
марковским процессом, рассмотрим марковский процесс ζ(t) = (n(t),τ(t)), добавляя к n(t) непре-
рывную компоненту τ(t) = (τ1(t); . . . ;τN(t)). Пусть выполнено условие λ+i

µi+νi+λ−i
< 1, i = 1,N, т. е.

в случае, когда n(t) – марковский процесс, существует стационарное эргодическое распределение
n(t), а, следовательно, в общем случае и процесса ζ(t), так как ζ(t) получается из n(t) добавлением
непрерывных компонент. Положим, что

F(n,x) = F(n,x11, ...,x1n1 ,x21, ...,x2n2 , ...,xN1, ...,xNnN ) =

= lim
t→∞

P{n(t) = n,τi1(t)< xi1, ...,τini(t)< xini , i = 1,N}.

Введем обозначения: [x̃i] – вектор, все элементы которого совпадают с элементами вектора
x1, . . . ,xN , а на месте i-го элемента находится элемент x̃i, [x̃i, x̃ j] – вектор, все элементы которого
совпадают с элементами вектора x1, . . . ,xN , а на месте i-го и j-го элемента находятся элементы x̃i и
x̃ j соответственно.

Для F(n,x) справедлива следующая система дифференциально-разностных уравнений:

F(n,x)
N

∑
i=1
λiBi(xi,ni)Ini ̸=0 +F(n,x)

N

∑
i=1

Λi +F(n,x)
N

∑
i=1
νiBi(xi,ni)Ini ̸=0+

+
N

∑
i=1

(
∂F(n, [xi,1, . . . ,xi,ni−1,0])

∂xi,ni

− ∂F(n,x)
∂xi,ni

)
Ini ̸=0 =

=
N

∑
i=1

F(n− ei, [xi,1, . . . ,xi,ni−1])Ini ̸=0Bi(xi,ni)Λi +
N

∑
i=1

∂F(n+ ei, [xi,1, . . . ,xi,ni ,0])
∂xi,ni+1

pi0+
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+
N

∑
i=1

F(n+ ei, [xi,1, . . . ,xi,ni ,+∞])νiri0+

+
N

∑
j=1

N

∑
i=1

∂F(n+ e j − ei, [x j,1, . . . ,x j,n j ,0], [xi,1, . . . ,xi,ni−1 ])

∂x j,n j+1
Bi(xi,ni)p+jiIni ̸=0+

+
N

∑
j=1

N

∑
i=1

F(n+ e j − ei, [x j,1, . . . ,x j,n j ,+∞], [xi,1, . . . ,xi,ni−1 ])ν jBi(xi,ni)r
+
ji Ini ̸=0+

+
N

∑
i=1

F(n+ei, [xi,1, . . . ,xi,ni ,+∞])λi+ +
N

∑
i=1

N

∑
j=1
j ̸=i

∂F(n+ e j + ei, [x j,1, . . . ,x j,n j ,0], [xi,1, . . . ,xi,ni ,+∞])

∂x j,n j+1
p−ji+

+
N

∑
i=1

N

∑
j=1
j ̸=i

F(n+ e j + ei, [x j,1, . . . ,x j,n j ,+∞], [xi,1, . . . ,xi,ni ,+∞])ν jr−ji+

+
N

∑
i=1

N

∑
j=1
j ̸=i

∂F(n+ e j, [x j,1, . . . ,x j,n j ,0])
∂x j,n j+1

p−ji −
N

∑
i=1

N

∑
j=1
j ̸=i

∂F(n+ e j, [x j,1, . . . ,x j,n j ,0])
∂x j,n j+1

Bi(xi,ni)p−jiIni ̸=0+

+
N

∑
i=1

N

∑
j=1 j ̸=i

F(n+e j, [x j,1, . . . ,x j,n j ,+∞])ν jr−ji −
N

∑
i=1

N

∑
j=1 j ̸=i

F(n+e j, [x j,1, . . . ,x j,n j ,+∞])ν jBi(xi,ni)r
−
ji Ini ̸=0.

Разобьем уравнение (5) на уравнения локального равновесия, приравнивая члены слева и справа, не
содержащие множителя Ini ̸=0, а затем члены, содержащие этот множитель:

F(n,x)
N

∑
i=1

Λi =
N

∑
i=1

∂F(n+ ei, [xi,1, . . . ,xi,ni ,0])
∂xi,ni+1

pi0+

+
N

∑
i=1

F(n+ ei, [xi,1, . . . ,xi,ni ,+∞])νiri0 +
N

∑
i=1

F(n+ ei, [xi,1, . . . ,xi,ni ,+∞])λi+

+
N

∑
i=1

N

∑
j=1
j ̸=i

∂F(n+ e j + ei, [x j,1, . . . ,x j,n j ,0], [xi,1, . . . ,xi,ni ,+∞])

∂x j,n j+1
p−ji+

+
N

∑
i=1

N

∑
j=1
j ̸=i

F(n+ e j + ei, [x j,1, . . . ,x j,n j ,+∞], [xi,1, . . . ,xi,ni ,+∞])ν jr−ji+

+
N

∑
i=1

N

∑
j=1
j ̸=i

∂F(n+ e j, [x j,1, . . . ,x j,n j ,0])
∂x j,n j+1

p−ji +
N

∑
i=1

N

∑
j=1 j ̸=i

F(n+ e j, [x j,1, . . . ,x j,n j ,+∞])ν jr−ji ;

F(n,x)
N

∑
i=1
λiBi(xi,ni)+F(n,x)

N

∑
i=1
νiBi(xi,ni)+

N

∑
i=1

(
∂F(n, [xi,1, . . . ,xi,ni−1,0])

∂xi,ni

− ∂F(n,x)
∂xi,ni

)
=

=
N

∑
i=1

F(n− ei, [xi,1, . . . ,xi,ni−1])Bi(xi,ni)Λi+

+
N

∑
j=1

N

∑
i=1

∂F(n+ e j − ei, [x j,1, . . . ,x j,n j ,0], [xi,1, . . . ,xi,ni−1 ])

∂x j,n j+1
Bi(xi,ni)p+ji+

+
N

∑
j=1

N

∑
i=1

F(n+ e j − ei, [x j,1, . . . ,x j,n j ,+∞], [xi,1, . . . ,xi,ni−1 ])ν jBi(xi,ni)r
+
ji−
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−
N

∑
i=1

N

∑
j=1
j ̸=i

∂F(n+ e j, [x j,1, . . . ,x j,n j ,0])
∂x j,n j+1

Bi(xi,ni)p−ji−−
N

∑
i=1

N

∑
j=1 j ̸=i

F(n+e j, [x j,1, . . . ,x j,n j ,+∞])ν jBi(xi,ni)r
−
ji .

Нетрудно убедиться, что неотрицательным абсолютно непрерывным по x решением уравнений
локального равновесия, а следовательно, и уравнения глобального равновесия является

F(n,x) = p(n)
N

∏
i=1

ni

∏
k=1
µi

w xik

0
[1−Bi(u)]du, (4)

где p(n) – стационарная вероятность состояния n в процессе n(t) в марковском случае. Подставив (4)
в первое уравнение локального равновесия, умножив обе части полученного равенства на p(n)

F(n,x) ,
получим первое уравнение локального равновесия для марковского случая из [3]. Затем, подста-
вив (4) во второе уравнение локального равновесия, умножив обе части полученного равенства

на p(n)
r xi,ni

0 [1−Bi(u)]du
F(n,x)Bi(xi)

, получим второе уравнение локального равновесия СеМО для марковского
случая из [3]. Сложив уравнения локального равновесия, учитывая, что Ini=0 = 1− Ini ̸=0, получим
уравнение глобального равновесия открытой СеМО для марковского случая (4), и с учетом, что
F(n,+∞) = p(n), теорема доказана.

В заключение автор выражает глубокую благодарность профессору Ю. В. Малинковскому за
постоянное внимание к работе и неоценимую помощь, оказанную в подготовке статьи.

4. Заключение

Основным теоретическим вкладом данной работы является строгое доказательство инвариант-
ности стационарного распределения по отношению ко времени обслуживания задач в обобщенных
G-сетях, учитывающих как положительные, так и отрицательные заявки. В отличие от классических
моделей, в которых взаимодействие между заявками отсутствует или сводится к пассивному накоп-
лению, здесь рассматривается механизм удаления задач из очереди. Получено фундаментальное
свойство: форма стационарного распределения времени пребывания сохраняется при изменении
закона распределения времени обслуживания задач в узлах.

Таким образом, результаты исследования представляют собой значимый шаг в развитии
теории сетей массового обслуживания, углубляя понимание структуры стационарного режима
в условиях наличия разрушительных взаимодействий и подтверждая наличие универсальных
инвариантных свойств, устойчивых к усложнению сетевой архитектуры и динамики.
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