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KuroueBbie caoBa: koHeuHass AmHotamust. [Tycts G — rpyIma 1 MHOXeCTBO IpocThix urce T(G) = Unt(G : M) mst mo6oit
TpyINIa, p-CHWJIOBCKMI HOpMa- MaKCHMaJbHOW moarpymnms! M u3 G. [Ij1 HemycToit HIIbIoTeHTHOH (popmarun X gokas3aHo,
M3atop, cyOHOpMasbHasl MOA-  4TO rpymmna G MMeeT HWIBIIOTEHTHBI X-KopaJrKal TOra ¥ TOJIBKO TOra, Koraa X-KopaauKann
rpymma, popMarus, KOpaaquKkai, —p-CHIOBCKOTO HopManu3atopa cyoHopMaseH B G st moboro p u3 T(G).
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Keywords: finite group, p- Abstract. Let G be a group and the set of primes T(G) = Urt(G : M) for any maximal subgroup
Sylow normalizer, subnormal M of G. For a non-empty nilpotent formation X, it is proved that a group G has a nilpotent
subgroup, formation, residual, X-residual if and only if the X-residual of the p-Sylow normalizer is subnormal in G for every
supersolvable group. p from t(G).

1. BBegenne

B 3ameTke mof cJI0BOM TpyIa MoHUMaeTcs KoHeuHas rpymma. [1ycts p — poctoe uncio. s
KPaTKOCTH Oy/ieM Ha3blBaTh P-CUAOECKUM HOPMAAUZAMOPOM HOPMATIM3ATOP CUIIOBCKON p-TIOATPYTIIBI
TPYIIIBI U CUAOBCKUM HOPMAAUZAMOPOM HOPMATIM3ATOP CHIIOBCKOM NOArpyIis! rpyrmsl. B 1986 1. B [1]
ObLIa yCTaHOBJICHA HUJIBIIOTEHTHOCTh I'PYIIIbL, BCE CUIOBCKHE HOPMATU3aTOPhl KOTOPOil HUJIBIIOTEHTHBI.
B 1999 r. A. bamiecrep-bonunmie u JI. A. lllemeTkoB [2] moka3anu, yto rpynna G HAJIBIIOTEHTHA TOTA U
TOJIBKO TOT/Ia, KOTJIa p-CUJIOBCKUI HOPMaJIM3aTOp IpyHibl G SBISETCS p-HUWIBIIOTEHTHBIM 7151 JTIOOOTO
p € 1(G). 3nech 7t(G) — MHOXECTBO BCeX MPOCTHIX [EIUTelel mopsiaka rpymis G.

B paborax [1-5] uzyvanuce HachlllieHHbIe (DOpMAIIVH §, COAepKaIlre TPYIIIbl, BCE CUIOBCKUE
HOPMAaJTM3aTOPbI KOTOPBIX SABJIAIOTCA F-rpymmamu. OpHako OONBIIMHCTBO KJIACCHUYECKUX (hopMaruit
HE OTHOCHTCS K TakuM hopManusiM. B 4acTHOCTH, B CHMMETPHUECKOH IpyIIe CTereH: 4 Bce CUIIOBCKUE
HOPMaJIM3aTOPBl CBEPXpa3pellMBbl, HO caMa I'pyIIa He SBJISETCS CBEPXpa3peluMON.

B nanpHeitmem 1 — popmarysi BceX HUIBIMOTEHTHHIX Tpymil, 2 — (popMarysi BceX abeieBbIX TPYIIIL.
Jlna dopmamuu X yepes G obo3Hauaerca X-kopaduxan Tpymmsl G, T. €. HAMMEHbINAS HOPMAJIbHAS
noxrpynmna rpynmnst G, 1ist Kotopoii G/ G* € X; G™ — munpnotenTHBIH Kopaaukan G.
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B pab6ore [6] ObuUM HaliieHBI HEOOXOAUMBIE M JOCTATOUHBIE YCIIOBHS, TIPU KOTOPHIX IPyIIa cO
CBEpXpa3pelMMbIMUA (METAHUIBIIOTEHTHBIMH, MEIONIMMU HUJIBIIOTCHTHBI KOMMYTAHT) CHJIOBCKMMH
HOpMAaJIM3aTOpaMH CBepXpa3penrMa (COOTBETCTBEHHO, METAHWIBIIOTEHTHA, UMeeT HUJIBIIOTEHTHBIN
KOMMYTaHT). B Teopeme A [6] ObLJIO ycTaHOBJICHO, YTO AJis HerycToi popManyu X, cocTosiimeit u3
HWJIBIIOTEHTHBIX T'PYI, HEOOXOAMMBIMU U JOCTATOYHBIMH YCJIOBUSAMH TPUHAICKHOCTU Tpyrmbl G
opmanun X ABAAIOTCA pa3pelIIMOCTh P-CUIOBCKOTO HOPMaIU3aTopa U cyOHOPMaJIbHOCTE B G €ro
X-kopagukana i modoro p € 1(G). B Teopeme B [6] Obl10 JOKa3aHO, YTO [UIsl HACJIEACTBEHHON
HachIlleHHOU (popmanuu § Takoi, yto I C § C 4, Torga u TojibKO Torma rpymmna G € §, Korma p-
CWJIOBCKMII HOPMAJIM3ATOP MPUHAJICKHUT § U ero HWILIOTEHTHBII Kopaaukan cyOHopManieH B G [1st
moboro p € 11(G). [pumeHsist OTMedYeHHBIi Bbiiie pe3yabTar A. Bamnectepa-Bomunine u JI. A. [llemeTkoBa,
B padore [7] ObUIO YCTAHOBJIEHO, YTO B JIOCTATOYHBIX YCJIOBUSIX TEOPEMBI A pa3peluMOCTh CUIIOBCKUX
HOPMAJIM3aTOPOB MOXHO OTOPOCHUTb.

B [8] st rpymmbt G uepe3 T(G) 0603HaY€HO MHOXKECTBO BCEX MPOCTHIX YUCEN p TaKKX, 9TO B G
HaiijieTcs MaKCUMaJTbHast oarpynma M, st kotopoii p nemat |G : M|, 1. e. T(G) = Un(G : M) nust mo6oi
MakcUMasbHOM roarpysl M u3 G. MuoxectBo T(G) He Bcera coBnaaaeT ¢ MHOxkecTBoM 71(G), Kak,
Harpumep, st rpynnsl G = PSL(2,7), B To ke Bpems eciim G — pasperumas rpymma, To T(G) = 7(G) [8].
Onnako u3 T(G) = 7(G) He Bceraa cieyeT pa3peimMocTs rpymmbl G. B kayecTBe mpumepa BhICTYNAeT
3HaKOIepeMeHHast rpymmna As crenenu 5, st kotopoit T(As) = {2,3,5} = m(As).

B [8, Teopema 1.2] Ob1J10 ycTaHOBJIEHO, UTO NPUBEICHHBII Bhillie pe3yabTat A. bannectepa-bommniie
u JI. A. lllemerkoBa BepeH isi modoro p € T(G). DTO UCHONIB3YeTCs] B HACTOSAIIECH 3aMeTKe MpH
JIOKa3aTeJIbCTBE CJIeAYIOIINX Pe3yIbTaToB.

Teopema 1.1. [lycmv X — nenycmas popmayus u X C N. Tozda caedyroujue ymeaepicoenus
9KEUBANEHMHDL.

(1) I'pynna G € NX.

(2) JTiobas nodepynna epynnwt G, codepacawascs 6 G*, seasemes cyérnopmanvioii 6 G.

(3) H* cybropmanen 6 zpynne G oaz ao6oii nodepynnvt H uz G.

(4) X-xkopadukan p-cunosckozo Hopmaauzamopa cyoropmanen 6 epynne G oas aobozo p € t(G).

Teopema 1.2. I[lycmo X — nenycmas gpopmayus, § — HacaredCmeenHas HACblUleHHAs popmayust
maxkas, umo X CN C§ CNX. I'pynna G € § mozda u moavko mozoa, K02oa p-CUAOBCKULL HOPMAAUIATNOP
epynnwvt G npunadaedxcum § u X-kopaoukan p-cun08ckozo Hopmaauzamopa cyoropmaner 8 G 045 1100020
p € 1(G).

Ipusenem neckonbko cieacteuid. s X =91 u X = 2 u3 teopemsl 1.1 nomyyaioTcs Takue
pe3yJIbTaThl COOTBETCTBEHHO.

CaencrBue 1.3. Caedyrouue ymeepicoenus 3K8UEANECHNHDL.

(1) I'pynna G memanunvnomenmua.

(2) JIobas nodepynna, codepicamasicsi 8 HUALNOMEHMHOM Kopadukane zpynnol G, 564semcsi
cybropmanvroli ¢ G.

(3) Huavnomenmmuoiii kopadukan aoooii noozpynnut 2pynnvt G cyoropmanen é G.

(4) Hunonomenmmwiii KOpaoukan p-cunogckozo Hopmaauzamopa epynnvt G cyéropmanen ¢ G 04
aobozo p € 1(G).

CaenctBue 1.4. Caedyrowue ymeepocoenus SK8UBANCHMHDL.

(1) I'pynna G umeem HUABROMEHMHBIL KOMMYMAHM.

(2) JIobas nooepynna epynnet G, codepacawasics 6 G, seasemcs cyonopmanvroii 6 G.

(3) Kommymanm ao6oit nooepynnwt epynnet G cyornopmanen 6 G.

(4) Kommymanm p-cunosckozo nHopmanuzamopa epynnol G cyornopmanen 6 G oas aooozo p € T(G).

Tak kak mepeceyeHue HACJIEACTBEHHBIX HACHIICHHBIX (DOpMAIIWii SIBJISIETCS HACJeICTBEHHOM
HachllleHHO! hopmanueil, u3 teopem 1.1 u 1.2 BeITeKkaeT

Caencrsue 1.5. Ilycmo X — nenycmas goopmayust, § — HacredcmeeHHAs HACbIWEHHAS hopMauus U
X CNCF. I'pynna G npunadaexcum § NNX mozda u moavko mozoa, Kozoa p-CUNOBCKUL HOPMAAUSAMOD
epynnot G npunadaexcum § u X-xopadukan p-cunroéckozo Hopmaauzamopa cyornopmaner 8 G 045 11006020
p € 1(G).
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CaencrBue 1.6. [Tycmov § — Hacaedcmeennas Hacvuyennas gopmayus u N C §. I'pynna G
npuHadaedcum § u umeem HUAbLNOMEHMHbIIL KOPAOUKAA M020d U MOALKO Mo20d, K020d p-CUNOBCKUTL
Hopmaauzamop epynnvl G npunadsexcum § u HUALIOMERMHbBIE KOPAOUKANA P-CUAOBCKO20 HOPMAAU3AMOPA
cyonopmanen ¢ G 0as ao6oz0 p € tT(G).

CaencrBue 1.7. [lycmov § — Hacaeocmeennas Hacvuyenuas gopmayus u N C §. I'pynna G
npuxaoaexcum § u umeem HUAbNOMEHMHbI KOMMYMAHIM Mo20d U MOAbKO Mo2od, K020d P-CUAOBCKULE
Hopmaauzamop zpynnvi G npuHadsexcum § U KOMMYmanm p-cUA08cK020 HOPMAAU3AMOPA CYOHOPMALeH
¢ G 05 mo6oezo p € T(G).

2. IlpeaBapuTeJibHbIE CBE1€HUS

B 0003HaueHMSIX U OIpeesieHusIX Mbl IpuAepkuBaeMcsi MoHorpaduwmii [9; 10].

Teopema 2.1 [8, Teopema 1.2]. I'pynna G nuavnomenmna mozoa u moavko mozoa, K02oa 04s A000-
20 p € T(G) Hopmaruzamop Kaxcooil cunoeckoil p-nooepynnwl 2pynnvi G 6A5€mMcs P-HUAbROMEHMHBIM.

Jlemma 2.2 [10, temma A.8.6(a)]. Ilycmo G — 2pynna u 7 — MHOMCECMB80 npocmulx uucen. Ecau
K — cyonopmanvras noozpynna epynnvt G u K — m-epynna, mo K < Ox(G).

Jlemma 2.3 [9, Teopema 2.4]. JTrobas chopmauusi, cocmosiuias u3 HUNbNOMEHMHbIX 2DYNN, A6ASeMCS
HacaedcmeeHHoll ghopmayueil.

Jlemma 2.4 [9, aemma 1.2]. I[lycmo § — Henycmas opmayusi, K — Hopmanvhas nodepynna
epynnvt G. Toz0a cnpasedaugwl caedyoujue YymeepicoeHuUs.:

(1) (G/K)S = GSK/K;

(2) ecau G = HK 0as nooepynnet H uz G , mo HSK = GSK;

(3) ecau G = HK u K < G, mo HSK = G5.

[IpuBeremM m3BECTHBIE CBOMCTBA KJIacca TPYII ¢ HUJIBIIOTEHTHBIM §-KOPaAUKaIoM (CM., HalpuMmep,
[9, c. 36; 10, IV.3, IV.4]).

Jlemma 2.5. ITycmo § — nenycmas popmayusi. Toeda NF = (G | G/N € § 0as nekomopoit N <G
uN€N)=NoF = (G| G € N) — nacviwennas gopmayus. Ecau § s6asemes nacaredcmeennoii, mo u
NS s6asemest HACAeOCMEEHHOI.

Jlemma 2.6. ITycmo § — Henycmas gpopmauus u epynna G € Ng.

(1) Jliobas nodepynna uz G, codepucawasics 8 GS, seasemes cybrnopmanvioii 6 G.

(2) Ecau § — nenycmas nacaedcmeennas gpopmauusi, mo H S — cybropmanvnas nodepynna é G
045 mob6oii noozpynnst H us G.

Joka3zaTeabcTBO. B HUIBIIOTEHTHO rpyTie mobasi oArpyIa sBiseTcs: cyoHopMaisHO#. [1o-
stomy yTBepxkaeHue (1) cienyeTt u3 HIIbIOTEHTHOCTH GSu HOPMAJILHOCTH GSBG.

(2) s HaciencTBeHHON (opMmanuu § u mo6oit noarpyrmsl H n3 G umeem HS < GS. Tlo
yTBepkaenuio (1) HS — cy6HopMasbHas noarpymnmna B G. O

Jlemma 2.7. Ilycmo § — nenycmas gpopmayusi, N — Hopmanvhas nodzpynna zpynnvt G. Ecau
§-kopadukan p-cunrogckozo Hopmaruzamopa epynnet G cyonopmaner ¢ G oas aooozo p € 1(G), mo
§-kopadukan g-cunosckozo nopmaauzamopa zpynnel G /N cyérnopmanen ¢ G/N 0as ao6ozo g € T(G/N).

Hoxka3zarenbcrBo. Ilycts g € T(G/N) u Q/N — cunosckas g-noarpyima uz G/N. Torna Q/N =
= G4N /N s HexoTopoii cusosckoit g-noarpynmst G, u3 G. o [10, reopema A.6.4(a)] Ng/n(Q/N) =
= Ni(G4)N/N. Tlo nemme 2.4 umeem N n(Q/N)¥ = (Ng(Gy)N/N)S = Ng(Gg)¥N/N. Tak xak g €
€ 1(G/N) C 1(G), Ng(G,)® cybrnopmanen B G. I3 CBOHCTB CyOHOPMAIBHBIX TIOATPYII CJIELYET, UTO
Ng/n(Q/N ) — cy6HOpMabHas noarpyrma & G/N. O

3. JokazareancTBa Teopem 1.1 u 1.2

VCTaHOBHM CIIpaBeUIMBOCTh TeopeMbl 1.1.

HokazareanctBo. [lo nemme 2.3 X — HacnenctBenHast popmarusa. Beuny nemmsbl 2.6 nveem
(1) = (2) = (3). OueBuzHo, uto u3 (3) cremyer (4).

Hokaxem (4) = (1). Ilycts G — rpynna HaMMeHbLIETO NOPAIKa, 4 kKoTopoit Ng(G,)* cyoHopMma-
neH B G 11 modoro p € 1(G), a G € NX.
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1. G - npocTas rpynna. U3 cyonopmansoctu Ng (G, ) B G s p € T(G) cnenyer, uto Ng (G, )~ = 1.

Torna Ng(G,) € X C 91 u o Teopeme 2.1 nomyyaem nporusopeune G € 9N C NX.

II. G e aBnserca npoctoi rpynmoii. [lycts N — MUHIMaIbHas HOpMasbHas MoArpymnmna rpymnmsl G. U3
seMMmsl 2.7 criedyer, uto yTBepxkaeHue (4) Beimonnsiercst ais G/N. o Beidopy G 3akmodaem, uto G/N €
€ MX. Tak kak NX — HacneCTBeHHAs HAchleHHas: hopMmanust, umeeM P(G) = 1 u N — equHCTBEHHASI
MUHMMaJIbHasl HOpMaJlbHasl oarpymnmna rpymmsl G. B rpynne G cyniecTByeT MakcumabHast oarpymnmna M
¢ Coreg(M) =1 u G = NM. PaccMOTpuM JiBa Clrydasi.

1. G — pazpemmmas rpynma. Torma N — aGesneBa p-rpynma mjisi HEKOToporo mpocroro p. ITo
[10, Teopema A.15.6] N = C5(N) = F(G), MNN =1u 0,(M) = 1. U3 G ¢ N crenyer, uro |7(G)| > 2.

[Mokaskem, uto F (M) sBisietcst p’-xosuiooit moarpymmoi rpymist G. UsM =2 G/N e MXu G ¢ NX
crenyer, uto 1 # M* € M. Tlostomy M* < F(M). Ecu p € 7t(F (M), To cClOBCKast p-TIOATPYTINaA U3
F (M) nopmainbHa B M, a ciefoatesibHO, copepxurcsa B O,(M). U3 O,(M) = 1 3akmovaem, 410 p ¢
¢ n(F(M)), 1. e. F(M) — p'-rpymma. I3 M/F (M) = M/M*/F(M)/M* € X C 0 cneayer, uto M
UMeeT HOPMAJIbHYI0 p'-XOJUIOBY TOATPYIIITY, KOTOPYIo 0003HaunM yepe3 H. Otmerum, uto H sBjsieTcst
p'-xom10Bo# noarpymmoii B G.

Bosbmem moboe g € m(H) u cuioBckyio g-nioarpyrmy H, u3 H. Torna H, fBIseTCs CUIOBCKON
g-noarpynnoii B G. U3 g € m(G) = t(G) cnenyer, uro Ng(H,)* — cy6nopmanbhas noarpynna s G. Beumy
Toro, uro H, NNg(H,)* <ANg(H,)*, noarpynna H, N\ Ng(H,)* cy6nopmansha B G.

To nemme 2.2 H, NNG(H,)* < 0,(G). U3 q # p u O4(G) = 1 cnenyer, uro Ng(H,)* - ¢'-rpynna.

O6o3HaunM S = NG (Hq)x. Ecim Ng(Hy) = H,S, T0 S SIBIsSIeTCs HOPMAIIBHOM ¢ -XOJLIOBO# TOATPyYTI-
noit 8 Ng(H,). Honyctum, urto Ng(H,) # H,S. Otmetnm, uto Ng(H,)/S € X C M. Torna Ng(H,)/S =
=H,S/SxLi/Sx---xL,/S, tne L;/S — cunosckas ri-noarpymia B Ng(Gy)/Suri#q,i=1,...,n.
Ortciona cienyert, uto Li - - - L, HopmanbHa B NG (G) U ABIsieTCs ¢'-rpynmoi.

Tax kak Ng(H,) uMeeT HOpMasbHYyI0 ¢'-x0/ut0By nogrpymiy, Ny (H,) = Ng(H,) N H umeet Hop-
MaJIbHYI0 ¢'-XOJLIOBY HOArpyITy. 9TO 03HayaeT, uto Ny (H,) ABIACTCS g-HWIBIIOTEHTHON IO PYIITION
st moodoro g € i(H) = t(H). o teopeme 2.1 rpynna H aunbniotertHa. Cnenosarensto, H = F(M).

3naunt, M < Ng(H,). 3 makcumansHocT M B G 1 Coreg (M) = 1 3akmovaem, uto Ng(H,) = M.
Torna Ng(H,)* = M* — aunbnorentHas rpynna u cyonopmanbha B G. o nemme 2.2 M* < Orm)(G). Tak
Kak N — e/IMHCTBEHHAst MUHMMAJIbHAsl HOPMaJIbHasl IoArpyma rpynibt G u N — p-rpynma, Oy (G) = 1.
[Tonyuywnu npotusBopeune ¢ M x # 1.

2. G ue sBisiercs: paszpemmmoit. Torma |71(G)| > 3. U3 paspemmoctu G/N cnenyer, uro N
He SBJIsIeTCs a0esIeBOi TPyTIo.

BosemeMm mob6oe g € T(G) u cunoBekyio g-noarpymny G, u3 G. Torna Ng(G,) # G.

Homnyctum, uro Ng(G,)* # 1. O603nauum R = G, N Ng(G,)*. Torna R < Ng(G,)*. U3 cy6Hop-
masioctn Ng(G,)* B G cnenyer cyGHopmasHocTs R B G. TTo nemme 2.2 R < 04(G). Beuay Toro,
4yro N — eIMHCTBEHHAsi MUHUMaJIbHasl HOpMaJlbHasI oArpymma rpynmnsl G u N HeaOesneBa, 3aKIo4aeM
0,(G) = 1. Torna R = 1 u Ng(G,)* — ¢/-rpynma. U3 Ng(G,) /NG(G,)* € X C DN caenyer, uro Ng(G,)
MMeeT HOPMAJIbHYIO ¢'-XOJLIOBY rpymmy, T. €. Ng(G,) g-HHIbIIOTEHTEH.

Ecmu Ng(G,)* = 1, 1o Ng(G,;) HubrioTeHTeH.

ITo Teopeme 2.1 nomyuyaem npotuBopeure G € D C HX, KOTOpoe 3aBepiIaeT JOKa3aTenbCcTBO. [

Hoxkaxem teopemy 1.2.

HJoka3zarteabctBo. Heooxomumocts. Ilycts G € §. st mo6oro p € T(G) U3 HACAeJCTBEHHOCTH §
crexyet, 4to Ng(G)) € §. ITo nemme 2.6(2) NG(G,,)}: — cyObHOpMasbHast noarpynmna B G.

Hocrarounocts. IIpeanonoxum, 4to yTBepxaeHue HeBepHO. [IycTh G — rpynmna HaMMEHBIIEro
nopsika Takas, uto Ng(G,) € §, Ng(G,)* — cyonopmanbhas noarpynna B G s modoro p € ©(G), a
G ¢ §. o teopeme 1.1 rpynma G € NX, a 3HAYUT, pa3perinma.

ITycts N — MuHMManbHAsE HOpMasibHas oarpynma u3 G. 13 91 C § crenyer, urto G He sBIsIeTCS
LMKJIMYECKO# TPYIIOM, MOPSJOK KOTOPOM eCTh MPOCTOE YMCIIo. 3HAuUuT, N — abesieBa p-rpymna Jyis
HEKOTOPOro mpoctoro p. st modoro g € T(G/N) u cunoBckoii g-noarpynmst Q/N w3 G/N Haiigetcs
cunosckas g-noarpynna G, u3 G takas, 4ro Q/N = GyN /N. Tak kak g € T(G/N) C 1(G), no ycnosuio
Ng(G,) € §. Otkyma Ng/n(Q/N) = Ng(G,)N/N = Ng(G,)/NG(G4) NN € §. Beuny nemmer 2.7 nns
G /N Bce ycioBusi TeopeMbl BIonHeHs!. 110 BoiGopy G monydaem, urto G/N € §.
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Tak Kak § — HacbllleHHas1 popMalus, 3aKmodaeM, 4to N — e JUHCTBEHHAss MUHUMaJIbHasl HOpMaJlbHas
noxarpymmna u3 G u ®(G) = 1. Torna G = NM 1715t HeKOTOpor MakcuMatbHO# B G moarpymsl M. Tak Kak
G paspemmma u Coreg (M) = 1, no [10, Teopema A.15.6] N =C(N) =F(G), MNN=1u0,(M) = 1.
Beuay HusnotentHocTH G umeem G* < F(G). Ecu G* = 1, 10 G € X C §. DTo NIpOTHBOPEYHT
BeIGOpY G. 3Haunt, G¥ = N. Torna G/N = M € %X. Ecu p € (M), To B M cuioBckas p-HOATpyIIa
ABJIICTCSA HOPMaJIbHO# U coepxutcs B O,(M) = 1. D10 NpOTUBOpEUNE MOKa3bIBALT, UTO p & T(M).
Toraa N — cunoBckast p-nioarpynmna B G. Tak kak G paspemmma, p € 71(G) = 1(G), no Bei6opy G meeM
G = Ng(N) € §. lony4eHHOE IPOTHBOPEYHE 3aBepIIIaeT JOKA3aTEIbCTBO TEOPEMBI. O

4. 3akmoyenue. CBsi3b ¢ H3BECTHLIMHU pe3yJbTaTaMu

Teopemsi 1.1 u 1.2 ayist pa3abix popmanuit X v § TO3BOJSIOT MOTYyYaTh KAK HOBBIE, TAK 1 U3BECTHHIC
pe3ynbTaThl. Teopema 1.1 yOupaeT B JOCTaTOYHBIX YCIIOBHAX TeopeMbl A u3 [6] pa3permmmMocTb CHIIOBCKOTO
HOPMAaJIM3aTOPa M YMEHbIIIAET YUCIIO CHIIOBCKHX p-TOATPYII, pacCMaTpUBast UX TOJIbKO st p € T(G).
Tak kak T(G) C 7t(G), u3 Teopemsl 1.1 nomyyaoTCs CIeayOIMe Pe3yIbTaTHI.

Caencteue 4.1 [6, Teopema A]. Ilycmo X — nenycmas popmavus u X CN. I'pynna G € NX
mMo2oa u Mmoabko moezod, Ko20d p-CUN08CKULI HOPMAAU3amop paspeutum u X-kopaoukan p-cuno8ckozo
Hopmaauzamopa cyonopmaner 8 G oast aooozo p € m(G).

Caenctsue 4.2 [7, Teopema 1]. Ilycmo X — nenycmas gpopmavyus u X CN. I'pynna G € NX
moezoa u moavko moezoa, kozda X-kopaouxan p-cuno8ckozo Hopmanuzamopa cyornopmaner ¢ G oas
amobozo p € T(G).

Beuny Toro, uro 1(G) C 1(G), u3 Teopems! 1.1 BhiTekaeT Teopema 2 u3 [11].

IMonoxus X = M, coorBeTcTBeHHO X = 2, 3 Teopemsbl 1.2 cIeAyIOT ABa TaKUX pe3yabTaTa.

Caencreue 4.3. ITycmy § — nacaedcmeennas nacviujennas gopmayus u N C § € N2 Ipynna
G € § moz0a u moavko mozoa, K020a p-CUN0BCKULL HOPMAAUZAMOP NPUHAONEHCUMN § U HUANOMEHMHbLIL
KOPAOUKAN P-CUN0BCKO20 HOpmaauzamopa cyoropmanen ¢ G 0as aobozo p € T(G).

CaencrBue 4.4. [Tycmo § — nacaedcmeennas nacvtgennas gpopmavus u N C § C NA. I'pynna
G € § mozoa u moavko moezoa, Ko20a p-CUNOBCKULL HOPMAAUZAMOP NPUHAONEHCUM T U KOMMYMAHM
P-CUN0BCK020 HOpMaauzamopa cyonopmaner ¢ G oast aooozo p € T(G).

O603HauuM 4depe3 © dopmarmio Bcex aucnepcuBHbix Mo Ope rpymn. Tak kak ® sBIsSeTCS
HaCJIeICTBEHHON HACBIIIEHHOH (popmanueii, u3 ciaelcTsus 1.5 BhTekaer

Caencrue 4.5. [lycmo X — nenycmas ghopmayus, § — Hacre0CmeeHHAS HACbIWEHHAS PopMAUUS U
XCNCFCD. I'pynna G € FNNX mozda u moavko mozoa, Koz0a K0z2oa p-Cun08CKULL HOPMAAUZAMOP
npunadaexcum § u X-kopaoukan p-cunoéckozo nopmaauzamopa cyoropmanen ¢ G oas aooozo p € 1(G).

W3 npuHapieskHOCTH D BCeX CHJIOBCKMX HOpManM3aTopoB u3 G He Bceraa cieayert, uro G € O [7].

CaenctBue 4.6. [Iycmv X — nenycmas gopmayus u X CN. I'pynna G € D NNX mozda u
MOABLKO M020a, K020a p-CUA08CKULl Hopmaauzamop oucnepcuser no Ope u X-kopadukan p-cunoeckozo
Hopmaauzamopa cyonopmaner ¢ G oas a6ozo p € t(G).

Tak kak 91 C U C ONA C N> qns popmaruu Ll BceX CBEpXpaspelidMbiX rpym, Teopema 1.2
SABJISIETCS Pa3BUTHEM CJISIYIOIIEero pe3yJsibTaTa.

Caencrsue 4.7 [6, Teopema B]. ITycmo § — nacaredcmeennas nacviugennas gpopmavus u N C § C
C Ml I'pynna G € § mozoa u moavbko mozoa, K020a p-CUN08CKULL HOPMAAUZAMOP NPUHAOAEHCUM § U
HUALIROMEHMHBLIL KOPAOUKAA P-CUNOBCKO20 HOpMausamopa cybropmaner ¢ G oas mobozo p € 1(G).

Ecmu § = 4, To u3 Teopemsl 1.2 nmonyvaercs

CaenctBue 4.8. Ecau X — nenycmas gpopmayus u X CN, mo epynna G cgepxpaspeutuma mozoa
U MOABLKO M020a, K020a P-CUAOBCKULI HOPMAAUZAMOP C8epXpaspeium u X-Kopaoukan p-cuno8ckozo
Hopmaauzamopa cyonopmaner ¢ G oas a6ozo p € t©(G).

Orcioma iput X =9 1 X = 2 COOTBETCTBEHHO BBHITEKAET

CaenctBue 4.9. I'pynna G ceéepxpaspewuma mozoa u moavko mozod, K02od p-cun08CKull Hopma-
AU3AMOP C8EPXPAZPEUUM U HUABNOMEHMHDIL KOPAOUKAN (KOMMYMAHM) P-CUNOBCKO20 HOPMANUZAMOPA
cyonopmanen ¢ G oas ao6ozo p € T(G).

Hccnenoanuisi epBoro ¥ BTOPOro aBTOPOB BBITIOJHEHBI ITPY Mofepkke MUHUCTEPCTBA 00pa3oBa-
Hus Pecriy6nmku Benapyck (rpant Ne 20211750 «KonBeprenuus-2025»), uccieioBaHUS TPETHETO aBTOPa
BHINIOSTHEHH! Tipy noagepxke BPOPU (npoext P23PHOM-63).
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AnHoTamus. B pabore paccMarpuBaloTCsi CBOWCTBa MHOTOWIEHOB C KO3(unueHramu
B KoJIbl[ax ¢ AeseHueM. [TomydeHa TeopeMa o pa3iokeHN MHOTOUIeHa ¢ KO3 dunmueHTaMmu
B NMPOU3BOJILHOM KoJblle C JesieHneM. [loka3aHo, 4TO eciii HELEHTPalIbHBI IEMEHT He
SBJIIETCS] KOPHEM MHOTOWIEHA HaJl MPOU3BOJBHBIM KOJIBLIOM C JIeJIeHHEeM, TO B KJlacce
CONPSIKEHHOCTH 9TOrO JIeMEHTa GECKOHEYHO MHOT'O 3JIEMEHTOB, He SIBJIAIOIMXCS KOPHAMU
3TOro MHorowieHa. Takxe B paboTe MOJTyYeHbl OLEHKH JJIsl KOJIMYECTBA Pa3JIMUHbIX KJIACCOB
CONPSIKEHHOCTH c(pepriecKrX KOpHEl IJIs1 HEKOTOPHIX TUIIOB MHOTOWIEHOB HaJ anredpamu
KBaTEPHHOHOB.
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Abstract. We consider properties of polynomials with coefficients in division rings. A theorem
on the decomposition of a polynomial with coefficients in an arbitrary division ring is obtained.
It is shown that if a non-central element is not a root of a polynomial over an arbitrary division
ring, then the conjugacy class of this element contains infinitely many elements that are
not roots of this polynomial. The paper also contains estimates for the number of different
conjugacy classes of spherical roots for some types of polynomials over quaternion algebras.

1. BBe1enue n npegBapuTeJibHbIe Pe3yJbTaThl

ITycTh R — HEKOMMYTAaTUBHOE aCCOIMATHBHOE KOJIBIIO C JIeJIeHUeM, R* — ero MyJIbTUILTUKATUBHASI
rpynmna. R[x] 0603HaYaeT KOJIBIO MHOTOYWIEHOB OT MEPEeMEeHHOM X ¢ KoaddulieHTamu B R, cuuTaem,
YTO MEepeMeHHasl X KOMMYTUpPYeT ¢ jieMeHTaMu Konblia R. Takum 06pa3oM, BCSIKWUH MHOTOUICH U3

R[x] umeer BUA

P(x) = apX" +ay1X" "+ +aix +ay,

ey

ap,...,a, €R.

CrokeHre ¥ yMHOXEHHEe MHOTOWICHOB 13 R[x| onpenensieTcst ectecTBeHHBIM 00pa3oM. CTerneHb
MHoOrowieHa Buia (1) Takxe onpejesnsieTcs MPUBBIYHBIM 00pa3oM M paBHa n, eciu a, # 0. B xomnbue
R[x] nMeeT MecTO TeopeMa O JIeJICHHH CIIPaBa MHOTOWIEHOB C OCTATKOM, IIPH 9TOM JIJIsl MHOTOYWIEHOB
P(x),S(x) € R[x] onpenenen nx Hanbonbimii o6mmii npasetii gesmreas HOII(P(x),S(x)) (em. [1]).

OCHOBHBIE CBOIICTBA MHOTOYJIEHOB HaJ KOJbLaMu ¢ JaenenueM onucansl B [2, Ch. 5, §16] (cm.

takxke [3;4]).

B [5] mokazana cnemyromas
Teopema 1.1. Ilycmoe Q — anzebpa keamepHuonog c oeneruem Hao nonem K. Tozoa ecsikuil

mrozounen P(x) € Q[x] modcem Gvime npedcmasaen eOUHCMEEHHLIM 0OPA3OM 8 8U0e NPOU3EEOEHUS.
P(x) = cG(x)H(x), 20e c € Q" — cmapwuii koagppuyuenm mrozounena P(x), H(x) — ynumaphoiii
MmHOozouneH ¢ KoapPpuyuenmanu 6 K u G(x) € Qx| — ynumapnwiii mnozounen, He 0eAsuuiics cnpasa Hu
Ha Kakoil HekoHcmanmuwlii muozounen uz K[x|. Boaee mozo, ecau Q|x] paccmompems kax c60600nHblil
Mmooyaw panza 4 nao K(x| co cmanoapmmuvin 6azucom 1,i, j,k, mo H(x) — smo naubonrowuii oousuii
Oeaumens (6 K[x]) koopounam mnozounena P(x) ¢ amom 6azuce.
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OpnHOM U3 1eJieil JTaHHOM CTaThH SABISIETCs 0OOOIIEHHE STOM TEOPEMBI Ha CITydail JTIOOBIX KOJell
¢ peneHueM (CM. TeopeMy 2.4 HIIKE).
HInst a € R onpenemm P(a) Kak s7eMeHT

P(a) = aya" +a, 1d" ' +---+aja+ay.

HasoBem anemeHT a € R (ipaBbiM) KOpHEM MHOrowteHa P(x), eciu P(a) = 0. 3BecTHO, 4t0 @ € R
SIBJISIETCS] KOPHEM MHOTOuWIeHa P(x) Toraa u TOJNbKO TOT/A, KOTJIA X — a SIBJISIETCS MPABbIM JIeJTUTENIeM
P(x) B R[x] ([2, mpeqnoxenue 16.2], 1. e. P(x) = H(x)(x — a) st Hekotoporo MHorowieHa H (x) u3 R[x].
3ameTum, uto u3 paBeHcTBa P(x) = H (x)S(x) € R[x| ne cnenyer paseHcTBo P(a) = H(a)S(a). BuactHocty,
ecJii a — KopeHb MHOrowieHa H (x), To @ MOXeT He ObITh KOpHeM MHOrowieHa P(x).

Knacc conpsikeHHOCTH 37ieMeHTa a € R, KoTopslii Oynem 0003HaYaTh Yepes [a], COCTOUT U3 Bcex
3IEMEHTOB BU/Ia gaq ™', The g — IPOU3BONbHBIN HeHy/eBoil 3neMeHT u3 R. Konblio R pacmamaercs Ha
HerlepeceKaIIuecst Kiaccel conpsikerHoctr. Yepes R(¢) Gynem 0603HauaTh MHOXKECTBO BCEX SMEMEHTOB
13 R, KOMMYTHPYIOLIUX C JIEMEHTOM ¢ € R. R') sBjsieTcs MOAKOMBLIOM C e/eHHeM B R.

B cirygae MHOro4IeHOB Haj MOJISIMH BCSIKMI MHOTOYJIEH CTETICHU 1 IMeeT He OoJiee 1 KOpHEi.
B cnyvyae MHOrowieHoB ¢ Ko3(puIMeHTaMHu B KOJbLAX C JIeJeHHeM CUTYalus Apyrasi, MHOTOWIEH
CTEIIeH! 1 MOXeT UMeTh OeCKOHeuHO MHOTO KopHel. Teopema [opmona—MonkuHa [2, Teopema 16.4]
FOBOPHT, YTO MHOTOUJIEH CTENEeH! 1 U3 R[x| MOXeT MMeTh KOpHH He GoJiee YeM B 71 KJIACCaX COMPSIKEHHOCTH
kombia R. Kpowme Toro, eciu P(x) € R[x] uMeeT jiBa pa3iMvHbIX KOPHS B KJIACCE COMPSDKEHHOCTH, TO
P(x) umeeT GECKOHEYHO MHOTO KOpHeil B 3ToM KJjacce (cM. [2, teopema 16.11 u 4, npeanoxenue 3]).
B ciyuae anreOpsl KBaTepHHOHOB Q TIOTydaeTcsi, 9yto ecyim P(x) € Q[x] umeer [1Ba pa3IMdIHBIX KOPHsI
B KJIaCCe COMPSDKEHHOCTH, TO BCAKHIA JIEMEHT U3 3TOrO KJIacca sIBJIseTCS] KOpHeM MHorouwieHa P(x). 1o
O3HAyaeT, YTO Y MHOTOWIEHOB HaJ| airedpamMy KBaTEPHUOHOB C JeJIEHUEM CYLIECTBYIOT TOJIBKO J1Ba TUIA
KOpHeii: n30MpoBaHHblil 1 ceprueckuii. KopeHb ¢ MHorouneHa P(x) HasbiBaeTCst CheprHIecKUM, eciu g
He MPUHAICIKUT LIEHTPY aareOpsl i Jo0oii a1eMeHT d € [g] Takke sIBJIseTcsl KOpHeM MHorouieHa P(x).
KopeHb g Ha3bIBaeTCS M30JMPOBAHHBIM, €CJIU KJIACC COMPSIKEHHOCTH [g] CONEPKUT TOJBKO OJIMH KOPEHb
mHorowieHa P(x). OmHako B ciiydae, KOrjla MUHUMAJIbHBIA MHOTOUWIEH KJIACCa COMPSI)KEHHOCTH UMEeT
cTeneHb OOJbIIIe YeM /IBa, CUTYaIUsl MPUHLIMITNAIBHO Apyras. B [6] mis mo6oro kiracca conpsnkeHHOCTH
C MUHMMAaJIbHBIM MHOTOWIEHOM CTETIeHH > 2 TIOCTPOEH KBapaTUYHbIl MHOTOWIEH, UMEIOIH OECKOHEYHO
MHOTO KOpHEHl B 9TOM KJjacce, NMpHU 3TOM B JAaHHOM KJIacCe COMNPSIKEHHOCTH MMeeTCsl OECKOHEYHO
MHOT'O JIEMEHTOB, HE SIBJISIOIIMXCS KOPHSMHU TaKOrO MHOTOY/IeHa. B 1aHHOI cTaThe Mbl TOKAa3bIBACM,
YTO €CJIM HeIIEHTPAJIbHBIIA 2JIEMEHT ¢ He SBJISIeTCS KOPHEM MHOTOWIEHA HaJl IPOU3BOJIBHBIM KOJIBIIOM
C JIeNIeHHeM, TO B KJ1acce [¢] 6ECKOHEYHO MHOTO 3JIEMEHTOB, HE SIBJISIOIIMXCS KOPHSIMU 3TOTO MHOTOYICHA
(cm. Teopemy 2.5 Hmxe). Takke B CTaThe MONYYEHBI OIEHKM I KOJIMYECTBA PA3TUYHBIX KJIACCOB
COMPSKEHHOCTH C(heprUUeCcKUX KOPHEH 7151 MHOTOUJIEHOB Haj anredpamMy KBaTEPHUOHOB.

2. MHoro4jieHbl Ha/1 MPOU3BOJLHBIMH KOJBIIAMH C JIeJIeHHEM

ITycTb R( — MOAKOJIBLIO € JeNieHneM Komblia R, {¢; }ic; — 6a3uc mpaBoro BEKTOPHOTO MPOCTpaHCTBa R
Haj Ry. Torna Besikmii MHOTOWIeH P(x) € R[x] eAMHCTBEHHBIM 0OPa30M MOKHO MPEACTABUTD B BHIE

P(x) =Y cibi(x), )
il
e bi(x) € Ro[x] nouTtn Bce paBHbI Hy0. MHOrOWIeHs! b;(x) MOTy4anTCs clieayonmm oopasom. Pac-
cMoTpuM MHorowieH P(x) Buaa (1). Paznokum Kaxaplidi KoadduimeHT MHOrowieHa a;,i = 1,...,n, 1o
oasucy {c;}ic;. Torma

P(x) = Zc,‘an,i x”+ ch'an,u Xn_l R Zciau X+ Zcia(),i
iel iel icel iel
— Zc,-(am,-x" —|—an,17,~x"7l +...t+aix+ag;),
iel

e ai; € Ro,k=0,...,n,i €I
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Takum obpasoM, b;(x) = a, X" +an,1,,-x”_l +...+ayix+ap; B paznoxenuu (2). OtmeTum, 4TO
HOYTH BCE 3T MHOTOWIEHH! paBHbl 0. B 0003HaYeHHsIX BHIIIE IMEET MECTO CJIEAYIOIIast TeOpeMa.

Teopema 2.1. 1. Muozounen h(x) € Ro|x] seasemcs npasvim 0eaumenem mnozounena P(x) € Rx]
moz0a u moavko mozoa, kozda h(x) sieasemcs. 0OuUM nPagelm Oeaumenem MHo2ouaeHos bi(x), i € I.

2. Mnozounen h(x) € Rylx] sieasiemest npagvim deaumenem naubonvuteti cmenenu u3 Ro[x] mrozo-
unena P(x) € R[x] mozoa u moavko mozoa, kozoa h(x) = HOIT/J(b;(x),i € I).

3. Daemenm « € Ry sigasemcs Koprem mHozounena P(x) € R]x] mozoa u moavko moeoa, koeda x —
00wuil Koperv MHozouNeH08 bi(x),i € I.

4. Ecau muozounen h(x) € Ro[x| sieasiemes npasvim Oeaumenem naubonvuteti cmenenu us Rolx]
mHozounena P(x) € R[x|, mo aio60ii kopenv uz Ry mrozounena P(x) sieasemcs koprem mrozounena h(x).

Hoxa3zarennbcrso. 1. Ecim h(x) menmt cripaBa Kaxaslit MHOrowieH b;(x), To h(x) memur crpa-
Ba u P(x).

ITycts Teneps P(x) = G(x)h(x) anst Hekotoporo MHorowieHa G(x) € R[x]. st muorowrena G(x)
CYLIECTBYET paszjioxkeHue Buaa (2):

G(x) =Y cidi(x),
icl

rae di(x) u3 Ro[x]. Toraa

P(x) = Zcidi(x) h(x) = Zcid,-(x)h(x).
icl icl
Takum o6pasom, b;(x) = d;(x)h(x) nns Beex i € I. CiieqoBaTesbHO, h(x) SBISETCS OOIIUM JeUTeIeM
MHOTO4IEHOB b;(x), i € I.

2. Cnenyet u3 1.

3. Cremyer u3 1, Tak Kak o — KOPeHb MHOTOWIEHa P(x) TOria M TOJBKO TOTZA, KOrga X — o —
npaBblil JeauTesb MHOrowieHa P(x).

4. Crnenyet u3 2 u 3. JleficTBUTEIIbHO, eciii & € R( — KOpeHb MHOrowIeHa P(x), TO X — & sIBISETCS
OOIIMM IpaBBIM JEJIMTEIeM MHOTOWIEHOB b;(x), i € 1. Toraa x — « sBJISIETCs MPaBbIM JEJUTEIEM X
HaUOOJIBIIIErO MPABOTr0 OOIIEro NeIUTEIIs. |

3ameuanue 2.2. Ecau 6 ycaosusx npedvloyuseli meopemobl paccmompems anzedpy ¢ 0eaeHuem,
mo ece KOpHU MHOzouneHa P(X) modcHo uckame kak KOpHU MHO20UAEHO8 U3 NOONoAeli danzeOpsl
(hanpumep, kopenwv a nexcum 6 noonone F(a)). Takum o6pazom, 3a0aua noucka KoOpHeti MHO20UAEHA
¢ K03ppunuenmamu 8 HeKOmopoii anzebpe c600UMCs K 3a0aue NOUCKA KOpHeli 8 NOONOASIX.

3ameuanne 2.3. [lokadicem, umo ymeepoicoenue, oopamuoe k nyukmy 4 uz meopemvt 2.1, Hegepro,
m. e. ecau a060i Koperv u3 Ry muozounena P(x) 6yoem kopruem u mnozounena h(x) € Rox], deasuezo
cnpasa P(x), mo ne oosizamenvno h(x) — mnozounen naubonvweii cmenenu uz Ro|x|, deasuuii cnpasa
P(x). Hanpumep, nycmo P(x) = (x* +1)x € H[x], 20e H — anzebpa zamurvmonoswix keamepnuonos. Tozda
06011 Kopenv mrozounena P(x) uz R seasemces kopnem mnozounena h(x) = x. Ho h(x) ne sieasemcst
MHO2ouNeHOM Hauborbuteli cmenenu u3 R(x|, oeasuyum cnpasa P(x).

B kauecTBe cielcTBUs B 0003HAUEHUSAX TeopeMbl 2.1 monydyaem

Teopema 2.4. Besikuii mnozounen P(x) € R[x] moxcem 6vims 00HO3HAUHO npedcmasnen 8 gude

P(x) = ¢G(x)H (x),

20e ¢ € R* — cmapwuii kosgppuyuenm mnozounena P(x); H(x) — ynumaphelii MmHozouren ¢ Ko3ghphu-
yueHmamu 8 nookonvye ¢ oeneruem Ry; G(x) € R[x| — ynumapnoui mrozounen, ne umeroujuii npagwix
HekoHcmanmuvix deaumeneii us Ro[x]. Boaee mozo, H(X) sieasiemcsi HAUGOALUUM OOUWUM NPAGLIM
Oeaumenem mrozounenos bi(x), i € I.

Teopema 2.5. I[Tycmo R — koaviyo ¢ deaenuem, P(x) € R[x]. [Ipednonodicum, umo c¢ ne sieasiemcs
uenmpanervim anemenmom u P(c) # 0. Tozeda 6 kaacce conpsidicennocmit [¢| 6eckoHeuno MHO20 aneMeHmos,
He AGNAIOUAUXCSL KOPHAMU MHO20uAeHa P(x).

Hoka3zatesbcrBo. Teopema XepcreiiHa ([2, Teopema 13.26]) roBOpHT, YTO MHOKECTBO [c| sIBIsIETCS
OeckoneuHbiM. Takum 06pa3zom, eciu P(x) b0 He uMeeT KOpHe# B [c|, MO0 UMeeT KOHEYHOE YUCIIO
KOpHeii B [c], TO B KJ1acce CONPSIKEHHOCTH [¢] OECKOHEYHO MHOTO JIEMEHTOB, HE SIBJISIOIIMXCST KOPHSIMU
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mHorouneHa P(x). [Tpeanonoxum, uto P(x) uMeeT GeCKOHEYHO MHOTO KOpHe# B [c]. W3 [4, npepioxenue 2]
cJle/lyeT, uTo MHOKeECTBO Beex y € R* ¢ yesosueMm P(ycy ') = 0 coBnajiaeT ¢ MHOKeCTBOM

n
V:={yeR| Za,-yci =0}.
i=0
Toraa V — GecKOHEYHOE MHOKECTBO, IMOCKOJIbKY P(Xx) MMeeT GeCKOHEYHO MHOrO KOpHeH B Kiacce
comnpsikeHHOCTH [c|. 3ametm, uto V U {0} siBisieTcst HpaBbIM BEKTOPHBIM HPOCTPAHCTBOM HaJl KOJIBLIOM
¢ nesienmem R(¢), Tak Kak ¢ He sABJIi€TCA KOPHEM MHOTrOUJIEHa P(x),to 1 ¢ V.Torna 1 +y ¢ V ans mo6oro
y €V, cnepoBatenbHo, (14 y)c(1+y)~! ne smnsercs kopuem Muorouiena P(x) s Besikoroy € V.
Iycth y1,y2 €V, y1 # y;,. TlokakeM, 4to

(L+yn)e(l+y0) ™ # (T+ya)e(1+y2) 7"
Heitcteutensho, ec (1+y1)e(1+y1) ™t = (14+y2)c(1+y2)7L, To
(1+y2) "M +y)e=c(l+y2) " (14+x1).
CrenoBaresbHo, z = (1 +y)7 (1 +y1) € R u 1+y; = (1+4y;)z. Torma
1= (nz—y)(1-2)~".

Yrto npotuBOpevUT TOMY, uto 1 ¢ V.
Takum 0Gpa3oM, NoMydyaeM GECKOHEUHO MHOTO Pa3MuHBIX 31eMenToB Buja (1 +y)c(l1+y)~!,
NpUHAIIEKAIIUX [c] U He SBJSIOMIUXCS KOPHSAMHU MHOTOWIeHa P(x). O

3. Cpepuyeckne KOPpHH MHOTOYJIEHOB HAJl aJredpaMu 0000IeHHbIX KBATEPHHOHOB

Iycts Q — anreOpa 0600IIEHHBIX KBATEPHUOHOB C JeseHreM Haj nosiem F. Ham notpebyercs
crenyomas

Jlemma 3.1 [2, niemma 16.17]. ITycmo Q s6asiemcs anzebpoii 0000uieHHbIX K8AMEPHUOHO8 C dene-
HueMm Hao uermpom F, u nycme B — knacc conpsicennocmu anzebpol Q ¢ MUHUMANbHBIM MHO20UNEHOM
A(x) Hao F. Ecau P(x) € Q[x] umeem déa kopusi ¢ B, mozoa P(x) € Q[x]A(x) u P(x) oopawaemcs ¢ 0 na
A000M 3nemenme u3 B.

HanomHum, 4T0 KOpeHb g MHOrOuIeHa P(x) Ha3biBaeTCs chepruuecKuM, eCiii ¢ He MPUHAICKUT
LEHTpy anreOphl U 000 2meMeHT d € [g] Takke sBIseTCsi KOpHeM MHorowieHa P(x). B kauectBe
cieacTBus jJemmbl 3.1 momydaem

Jlemma 3.2. Ecau mnozounen P(x) euda (1) ¢ kosgppuyuenmamu ¢ Q umeem cghepuueckue kopHu
Cly- -, Cm (M < 1), N€dNCAUUE 8 PABAUUHBIX KAACCAX cOnpsidicenHocmu, mo P(x) deaumcsi na npousgedenue
MUHUMANBHBIX MHOZOUNAEHO8 3MUX KOPHEI.

oka3zareabcTBo. [JokaxeM HHIYKIMEN [0 YKCITy KiaccoB cepuueckux kopaeil. ITycts fi(x) —
MHHHUMAJIbHBI MHOTOUWIEH 3IeMeHTa ¢;, | < i < m. V3 nemmsl 3.1 cienyer, uro P(x) nenutcs Ha f(x).
[IpeamonoxuMm, 9To yTBEpXkIeHUE BepHO IS k KopHe#. Torma

P(x) = Py (x) fi(x) ... f1(x)
aast Hekotoporo Py(x) € Q[x].
JokaxkeMm yTBepxkaeHue s k + 1 kopreit. Tak kak fi(x)... fi(x) € Flx], o
P(b) = Pi(b)f1(b)... fi()

17151 moboro b € Q. JIioOoi 3MeMeHT U3 KJ1acca [y 1] ABIAETCS KOPHEM MHOrowieHa P(x), HO He SIBJseTCs
KOpPHeM MHOrowieHa fi(x) ... fi(x), MOCKONBKY C1, ..., Ck+1 JIEKAT B PA3IMYHBIX KJIACCAX COMPSIKEHHOCTH.
Toraa ¢y siBsIeTCst cheprIecKuM KopHeM MHorodwieHa Py (x). VI3 nemmst 3.1 cienyer, uro P (x) =
= Py(x) fr4+1(x) muis HekoToporo MHorowieHa P (x) € Qlx]. Otkyna

P(x) = Po(x) fier1 () fi(x) . . f1 (x). O

llanee TOJIYYMM OLICHKY JJI KOJIMYECTBA PA3JIMYHBIX KJIACCOB C(pepI/IquKI/IX KOpHCfI B 3aBUCUMOCTH
OT CTCIICHW MHOI'OYJICHA.
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Teopema 3.3. Mrozounen
P(x)=x"+a, X" '+ +ax+ap

¢ Koagppuyuenmamu @ anzeope 060ouwerHbIx Keamepruoros Q nao yenmpom F umeem ne 6onee n/2
PABAUMHBIX KAACCO8 CONPSINCEHHOCmuU cpepureckux kopreil. Ecau cmenens mnozounena P(x) uemnas
u ecmo n/2 pasauuHbIX KAACCO8 CONPSNCEHHOCMU CHEPUUeCKUX KOpHell, mo 6éce Koddpuuuermol
MHO2OUNeHa nedcam 8 yenmpe. Ecau jice cmenens n neuemnas u ecmo (n— 1) /2 pazauuneix kaaccos
CONPSIHCEHHOCMU ChepuUecKux KopHell, mo éce Ko3ghuyuenmol aexcam 6 00HoM noonone anzeopuvl Q.
oka3aTteabcTBo. [Iycth crenenb MHOrowieHa P(x) detHast. [To nemme 3.2 mHorowieH P(x)
JeNUTCSI Ha IPOU3BEICHHE MUHUMAIbHBIX MHOTOUWICHOB CBOMX C(heprueckux KopHeit. [I0CKOIbKY cTereHb
KaXI0r0 TAKOr0 MUHAMAJIBHOI'O MHOTOWIEHA PaBHA 2, MAKCUMAJIbHOE KOJIMYECTBO MHOKHTENCH B TAKOM
npou3BeIeHIH PaBHO 71/ 2. [109TOMY U pa3iMUHBIX KJIACCOB COMPSIKEHHOCTH ChepHUeCKHX KOPHEH He MOXKET
ObITh GosbIite, YeM 71/2. Ecii ke pasiiniHbIX KJIACCOB COMPSIKEHHOCTH C(hepHUIeCKUX KOPHEe! POBHO 1/2,
TO P(x) paBHsieTCsI IPOU3BEICHHUI0 MHOTOWICHOB 13 F[x], a 3HaunT KoaddunmeHts P(x) nexar B F.
ITycTs Teneps cTeneHs MHOrowIeHa P(x) HedeTHast. AHAJOTMYHO, 110 JieMMe 3.2 MOy YaeM, YTO KOJTH-
YeCTBO KBA/IPATHBIX MHOXHTEJIEH (MUHUMAJIbHBIX MHOTOUWICHOB) MHOrOWIeHa P (x), a 3HAYUT U Pa3IMIHbIX
KJIACCOB COMPSIKEHHOCTH chepruuecKux KOpHeil, He nmpeBocxoauT (n — 1) /2. Eciim npeanoaoxuTs, 4To
Pa3JIMYHBIX KJIACCOB CONPSDKEHHOCTH C(hepruecKux KopHer poBHO (n — 1)/2, nonyuum, uro P(x) umeer
Bun P(x) = (x —a)f(x), rae f(x) € F[x] — mpousBe/ieHNe MUHUMAJIbHBIX MHOTOYWICHOB C(heprUIecKux
KopHeii MHOrowteHa P(x), a € Q. Torna koadduimentsl MHOrowIeHa P(x) nexart B noanone F(a). O
JIJ1st MHOTOUJIEHOB TPEThEl CTENeHH TOJTyYaeM MPOCTOe JOCTATOYHOE YCIOBUE OTCYTCTBHs ce-
PUYECKHX KOpHEil.
Caencreue 3.4. Ecau kosgppuuuenmot muozounena P(x) = x> + ax* + bx +c € Q[x] ne nexcam
8 00HOM noonone anzeopvl Q, mo y mHozounena P(x) ne moscem Gvimov cgpepuueckux Kopheil.
Joka3areabcTBo. [Tycth MHOTOWIEH P(x) umeet ceprdeckuii kopess. Torna, cormacHo semme 3.1,
oH umeeT Bua P(x) = (x —a)A(x), rae A(x) — MHOro4JIeH BTOPO#i cTeneHu Hal F (MUHUMAJIbHBIA MHOTOUJICH
sToro cpepudeckoro kopHs). Otcoaa cienyer, 4ro P(x) € F(a)x], T. e. Bce K03 bHUIMESHTH MHOrOUICHa
P(x) nexat B opnose F(a). O

4. Chepnueckne KOPHH MHOTOYJIEHOB M3 AJIreOpbl raMIJIbTOHOBBIX KBATEPHHOHOB

N3BectHO (cMm. [2, Teopema 16.14]), 9TO BCIKUI HEKOHCTAHTHBI MHOTOWIEH ¢ KO PUITUEHTaMI
B ayire0pe raMuiIbTOHOBBIX KBaTepHHOHOB H nmeeT kopens B H. Kpome Toro, kopens siBisieTcst MO0
M30JIMPOBAHHBIM, JINOO cheprueckiM. B 3TOM paszesnie mpuMeHNM pe3yIbTaThl IPedbI Ty X Pa3aeioB s
aHaJIM3a CYIIeCTBOBaHMUS C(hepUUECKUX KOPHEH HEKOTOPHIX THIIOB MHOTOWICHOB ¢ Koaddunuentamu B H.

Jlemmad4.1. Ecau x| — cpepuueckuii koperv mrozounena P(x) € Hx|, mo 6 kasxcdom maxcumanvhom
noonone anzeopuol H aesxcum xopenv mrozounena P(x) uz kaacca conpsicennocmu [xy].

Jloka3aTeJbCTBO. DNEMEHT X JIEKHUT B MakcuMasibHoM mojmose R (x; ) anre6pst H. Bee makcumars-
Hble oamnos anredpsl H nzomopdrbl oo komrutekcHbix uncen C. Torma no Teopeme Cronema—Hetep
[7, § 12.6] Bce MakCUMaIbHBIC TOATIONS COMPSIKEHHL, T. €., eclii K — MakCUMaJIbHOE MOAIoNe, To K =
= gR(x1)g~! mna nekoroporo g € H, g # 0. Torna gx;g~ ' — kopen» MHorounena P(x) u3 kiacca [xq],
Jnexanuii B K. O

3ameuanue 4.2. Ecau mnozounen P(x) € Hx] ne umeem kopreil 6 Hekomopom MakcumanbHom
noonone K C H, mo e6udy aemmot 4.1 amom muozousen He umeem cihepuueckux Kopreii. AHanrozuunbslii
n00X00 0151 AHAAU3A CYUECTNBOBAHUSL ChePUUEeCKUX KOPHETI MHO20UAEHO8 MONCHO UCNOAb308AMb @ CAYHUAE
anzebp K6AMEPHUOHOE C OeNeHUEM, 8 KOMOPbIX UMEENICS AU KOHEYHOe YUCAO KAACCO8 UBOMOPBHOCMU
MAKCUMANBbHBIX noonoaeli. Hanpumep, 6 cayuae keamepruoHubix anzedp HAO NOKANLHbIMU NOASIMU.

B o6mem cinyuae HaxoxIeHe KOPHEU MHOTOYJICHOB ¢ KO3 UIIMeHTaMu B ajiredpe raMuIbTo-
HOBBIX KBATEPHUOHOB SIBJISIETCSI CJIOKHOM 3a7a4eid (CM., Hapumep, [8—12]), oqHako 1J1sI MHOTOWICHOB
CIIENUAILHOTO BUA MOXXHO JIETKO TIOTYYHTh OLIEHKY ISl YMCiIa KIacCoB c(hepuIecKuX KOpHEN.

Teopema 4.3. Paccmompum makoii MHozouneH

P(x)=x"+a, 1 X" '+ . +axr+ . 4 a4+ .. 4 ax+ay € Hx,
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umo 6ce €20 KOIPPuuuenmol, Kpome, 03MONUCHO, O8YX Ay U Ay, Aedcam 8 R (o3modicen cayuaii m = 0).
Tozoa

1. Ecau 00un uz koagpgpuyuenmos ay unu ay uz R, a emopoii — nem, mo mnozounen P(x) ne umeem
cipepuueckux Kopuer;

2. Ecau 06a koagppuyuenma ay u ay, ve uz R, no aesxcam 6 oonom noonone, mo muozounen P(x)
umeem ne oonee (k—m) /2 pazauunvix kaaccos cgpepuueckux kopreii (6 uacmmocmu, ecau k =m—+ 1,
mo P(x) He umeem chepuueckux KopHeii);

3. Ecau 06a koagppuyuenma ay u a,, He nexcam 8 00HOM noonoae, mo mMHozounen P(x) ne umeem
chepuueckux KopHeii.

HMoka3zareanctBo. 1. ITyctsb a,, ¢ R. Haitnem kopHu MHOrouwiena P(x), Jexaliye B MAKCHMaIbHOM
noanose K, K # R(a,,). B kadectse 6a3uca anreopst H Hax nmosem K BossmeM 1 u a,,. Torna

Px)=1("+ap 1 X" "+ . +axr + . A ap X" T L aix 4 ag) + apx™ =
= lbl (x) +amb2(x),

rie by (x) u by(x) u3 R[x] C K|[x]. TTockonbky by (x) = x™ 1160 He umeeT KopHeit, eci m = 0, 1100 umeeTt
e/IMHCTBEHHBIA KOpeHb, paBHsiii 0, ecm m # 0, To 1 MHOrOWIeH P(x), cormacHo Teopeme 2.1, B mone K
He MMeeT JPyrux KopHeil, Kpome, Bo3MoxkHO, 0. CiieoBatesbHO, 1o temme 4.1 B 3ToM ciiydae y P(x)
HeT cepruuecKux KOpHeil. AHAIOTMYHOE paccykaeHue, ecin ai ¢ R.

2. Haiinem kopHi MHOrowieHa P(x) B MakcumaibHoM nioamnone K # R(a,, ). B kayectse 6asuca H
Hag K MOXHO B3ATh 1 U a,,. Tak Kak a; € ]R(am), TO ax = u+ vay, tae u,v € R. Torga npu pa3ioxeHun
MHorowieHa P(x) no 6asucy 1 u a, nomydaem

by (x) ="+t ap 1 X+ g T udr g K L apaxX™T g X L+ arx - ao,

by (x) = X 4+ vxk. Vmeem, by (x) = x™ + va¥ = ¥ (1 +vx¥=). Takum 06pa3om, KopHE MHOTOUTeHa P(x)
B nonte K — 310 160 0, 1160 KopHU MHOrowieHa x* " +1/v. Ecmu y MHorounena x*~ + 1 /v ecTh KopeHsb
B R, TO 3TOT KOpeHb He ABAETCA cheprueckKuM KopHeM MHOrouneHa P(x). [Tockombky X 4-1/v € R[x],
TO Uil BCSKOTO KOPHSI @ 9TOr0 MHOTOWICHa, He Jiexaliero B R, conpsikeHHbI KBATEPHUOH d TaKkKe
sABsIeTCs1 KOpHEM. [TOCKOMBbKY @ ¥ d HPUHAIEKAT OHOMY KJIACCY CONMPSIKEHHOCTH, TO KOPHEH Y JaHHOTO
MHOTOYICHa, JIeKAIUX B Pa3HBIX KJaccax CONPsDKEHHOCTH, He Ooinee (k — m) /2. Takum obpazom, P(x)
umeet He Gosee (k —m)/2 pa3nmMYHBIX KJIACCOB C(HepPUUECKUX KOPHEIl.

3. Bynem uckatb KopHu MHOrowieHa P(x) B one R(a,, ). Bozsmewm 6a3uc 1 u a; anre6pst H Hax
noneM R(a,y, ). Torna P(x) = 1by(x) 4 axba(x), tae b (x) = x* u by (x) — HexoTopwIit MHOrOUEH U3 R (a,,) [x].
ITockonbky by (x) umeet Tosbko kopeHs 0, To B nosie R(ay,) y P(x) He MoxeT ObITh JPyrux KOpHEii, Kpome,
BO3MOKHO, 0. Torna coriacHo nemme 4.1 y P(x) HeT cpepuuecKux KOpHEH B 3TOM cliydae. U

Jlaee paccMOTpPYM CJTy4ail MHOTOYIEHOB TpeTheii cTerneHn. OTMETHM, YTO ISt MHOTOYJICHOB BTOPOi
CTENeHH sIBHbIC (POPMYJIBI ISl HAXOXKICHHsI KOPHE B Cllydae anreOpbl raMAJIbTOHOBBIX KBATEPHHOHOB
nonyyeHsl B [9].

CaencrBue 4.4. Muozounen

P(x) =x* +ax? +bx+c € H[]

8 3a8UCUMOCTU OM KOIPPUUUEHMOE UMeem

1. He 60nee 00nozo kaacca cghepuneckux kopHeil, ecau aubo a) a,b,c € R, aubo 6) a,c ¢ R,b €
€ R,a € R(c), aubo 6) a,b,c ¢ R,a,c € R(b);

2. Toavko uzonupogarmvie KOPHU 8 OCMANbHBIX CAYUASIX.

HokazaTeabcTBo. 1. OneHKa 171 KOJIMYECTBA KJIacCOB C(PEpPUIECKMX KOpHEW MOTydyaeTcs U3
Teopembl 3.3.

2. Ecnit He BHITIOJTHEHH! YCIIOBHS Ha KOG (DHUIIMEHTH MHOTOUIEHA U3 TIEPBOTO MYHKTA, TO BO3MOXKHBI
clenyolye CiyJau:

a) oquH K03 PpurmeHT He JiekuT B nojie R, a octaabHble KO UIMEHTH puHaAIekaT R;

0) aeR, b,c¢R, beR(c);

B) c€R, a,b ¢ R, a € R(b);

) KO3(p(PUIMEHTH MHOTOYIEHA He JIEXKAT B OJTHOM Mojmnoie anreopst H.
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B cnyyae a) orcyTcTBUe cpeprueckux KopHeli clieiyeT u3 myHkTa 1 teopemsl 4.3. B ciryyae 6) u B)
OTCYTCTBHUE C(pepuuecKrX KOpHEH clieayeT U3 myHKTa 2 Teopemsl 4.3. HakoHelr, OTCYTCTBHe chepruecKux
KOpHEl B Cilyyae I') Iody4aeTcs U3 cieacTBus 3.4. O

IIpumep 4.5. PaccMOTprM HECKOJIBKO MPUMEPOB KYOUUYECKUX MHOTOWIEHOB ¢ KO3 pUIIMeHTaMHu,
YAOBJIETBOPSIIOLIMMH YCJIOBUSIM M3 ITyHKTa 1 ciencteus 4.4.

Muorounen x(x> — 1) He uMeeT cpepruecKux KOpHeii, a MHorowes x(x” + 1) umeet cpepuyeckuii
KOpEHB 1.

Y MHOrousnena

F =i —xti=(x—i)(x*—1)

HeT c(hepUUIECKUX KOPHEil, a y MHOrOU/IeHa
K- fx—i=x—i)(x*+1)

i ABMNIsETCS ChepUIECKUM KOPHEM.
MHorouieH

P4+Q2-i)?+(1=2x—i=(x—i)(x*+2x4+1) = (x—i)(x+1)*
He uMeeT chepuyecKX KOpHeil, Tak Kak MHorouneH (x -+ 1)% umeet kopuu B R, a y MHOrousiena
CrA=D)t (1 =i)x—i=(x—i)*+x+1)

ecTh chepudecKuii KOpeHb — 3TO KOpeHb MHOTOUIeHa x> + x + 1.

Takum 00pa3oM, B Cilydae BBIIOJIHUMOCTH YCJIOBHUH U3 yHKTa 1 cneacteus 4.4 Tpebyercs Oosee
TOHKOE PacCyXkJEeHHUe ISl OTBETa Ha BOIPOC O CYLIECTBOBAaHUU C(hepPUUECKOr0 KOPHS y KyOHUUecKoro
MHOTOWIEHA.

Pa6ora BeimosnHeHa B pamkax HUP «Pa3paboTka ajre6po-reoMeTpuuecKix 1 MpeacTaBlIeHuYeCKUX
METO/IOB MCCJIEIOBAHMS KOHEUHOTIOPOXKIEHHBIX TPy, KOHEYHOMEPHBIX aJIreOp 1 KBaAPATUIHBIX (DOPM»,
roCcyIapCTBEHHOH NporpaMMbl HayYHbIX uccieaoBanuii «Konseprenuus—2025», Ne I'P 20212390.
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Keywords: special linear group, ~ Abstract. Modular secret sharing in the group SL;(Z) was recently proposed by Yanchevskiy,

congruence subgroup, funda- Matveev, and Govorushko. In this paper we have constructed in explicit form the entire

mental domain. fundamental domain under the action of left shifts of the principal congruence subgroup on
the group SL,(Z), which presents additional possibilities for constructing schemes, since the
domain is the space of stored secrets of the secret sharing scheme.

MonynsipHoe paszenieHue cekpera B rpyrme SLy(Z) ObUIo HegaBHO mpeuioxeHo B padote [1].
CrenuanbHas JuHeWHast rpynmna SLy(7) — 3TO MaTpULbl HaJ KOJBLIOM IIEJIbIX YHcesT pa3mepa 2 X 2
C eJMHUYHBIM OINpeJieuTeNeM. B KauecTBe MpocTpaHCTBa KI0Yel M XpaHUMOTO KJTIoYa MCIIONb3YeTC s
(dbyHaaMeHTabHASA 0OJIACTD TIPY JASHCTBUU JICBBIMH CIBUTAMH [JIABHON KOHIPYIHII-TIOATPYIINBI HA TPYyIINe
SL(7Z). OmHako MOCTPOUTH BCIO (PyHAAMEHTAIBHYI0 001aCTh HaM He yaaaock. [IocTpoeHa JIUIIb YacTh,
MIPUrOAHAS JJIsS PeasN3alliy aJITOPUTMa pa3desieHHs] CeKpeTa.

[NonbiTKM NOCTPOUTD BCIO (DYHIAMEHTAIbHYI0 00JIaCTh IPEANPUHUMAIIUCH U paHee [2], BHe CBsA3U
C pasjieJieHHeM CeKpeTa, T. €. 3Ta 3aj1aya MHTepecHa 1 YUCTO ¢ aNreOpanyecKoil TOUKHU 3peHus. Y MeCcTHO
OyIeT HalmoMHUTb, 4TO B KHHre [3, §7.1, c. 438—439] oTmMeuaeTcsi HETPUBHUAJIBHBII XapakTep 3aJauu
MOIbeEMA PEIlIEHUI YPAaBHEHU s 110 HEKOTOPOH cucTeMe MOayJIel 10 1ieJ0unciieHHoro peienus. C Haiei
TOUKH 3pEHUs 3a/1aua TOoIbeMa PElIeHHI — 9TO B TOYHOCTH aJITOPUTM BOCCTAaHOBJIEHHS cekpeTa. Bmecte
¢ TeM B paborax [1;4] noka3zaHo, 4To 3HaHUE (PyHAAMEHTAIbHOUN 00JIACTU 3HAYUTENILHO O0JierdyaeT
BOCCTaHOBJICHHE CEKpeTa.

B HacTostmeii paboTe HaMu IOCTpOEHa B IBHOM BUJIE BCsl (PyHIaMEHTaJbHAsE 00J1aCTh IPH JIeHCTBUM
JIeBBIMH C/IBUTAMU [IABHOM KOHIPYIHI-TIOATrPYIIIIBI Ha rpyrne SLy(7), 4To NpeACTaBIsIeT AOMOIHUTEIbHbIE
BO3MOXXHOCTHU IJIs1 pa3fieJieHusl CeKpeTa B 3TOH rpymre.

IMycth m # 1 — 1lesioe MONOXUTENbHOE YKCcI0. HanoMHM omnpejieieHus1 KOHTPYSHII-TIOATPYIIIT
B rpymne SLy(Z):

{2 ) (¢ (s ) ).
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({2 s (2 2)=(3 Y mam)

3zech U Jajee CPaBHUMOCTb MATPHII [0 MOAYJIIO 71 O3HAYAET UX MOIEMEHTHYI0 CPABHUMOCTS. 3BeCTHO,
uro I'o(m) u I'(m) peiicTBUTEILHO MOATPYIIIBL U CIPABEAMBBI BKITIOUCHHST

I'(m) C Toy(m) C SLy(Z).

[Moxrpynma I'(m) Ha3siBaeTCsI IJIABHOM KOHTPYHI[-MOATPYIIION O MOIYJIIO /1.

['aBHas KoHrpysHi-noarpymnmna I'(m) neiicTByet JieBbiMu capuramu Ha rpymmnax ['o(m) u SLy(Z).
CucTema npejcTaBuTeliell OpOUT HasbiBaeTCs (pyHAaMeHTaIbHO# 001acTeio. Umeem I'(m) <1 SLy(Z) [5,
§ 2.1]. IBe marpuubt A u A’ npuHaiexar ogHoi opoure, eciu AL'(m) = A'T'(m). 10 paBeHCTBO YI0GHO
TPaKTOBaTh MHAYE.

Jlemma 1.1 [1]. Yeaosue AT (m) = A'T'(m) sxeusanenmro ycaosuio A =A'(mod m).

B cBoto ouepenp rpymma ['g(m) peiicTByeT JieBbiMu caBuramu Ha rpymmne SLy(Z).

Jlemma 1.2. /[as mampuy,

b LY
A= (i d) A = (‘C’, d,) € SL,(Z)

ycaosue ALo(m) = A'Ty(m) sxeusanenmmno ycaosuio ac’ = d'c (mod m).
JToka3areabcrBo. Haiie ycioBre o3Hauaet

_ d —b\ [(d bV
ATA = <—C a > <C’ d’) Ero(m),

4TO PABHOCHIILHO cpaBHeHMIo ac’ = a'c (mod m). O

Jlemma 1.3. ITycmo uucao m cocmasnoe u m = aa) — HEKOMOPOe €20 PA3NONCEHUE HA HEMPUBUANb-
Hble MHodcumenu. [as 106020 yenozo uucaa c, 0 < ¢ < ay, (c,a,a1) = 1, cywecmeyem edurcmeenroe
yenoe uucno ¢y < (at’;l) maxoe, umo (cy,a) =1 ucy =c (mod ay).

Jloka3ateabcTBo. [1o KUTACKOI TeopeMe 00 OCTaTKax CYIIECTBYET eJMHCTBEHHOE 11eJI0€ YHCIIO
ﬁ, nist kotoporo ¢; = ¢ (mod aj) ucy =1 (mod p) mist MOGOro MPOCTOro YMca p Takoro, YTo
p | au pfa;. BossmeM Teneps J060€ IPOCTOE YUCIO p CO CBOMCTBaMU p | au p | a;. Tak kak (c,a,a;) = 1,
10 p 1 c. [Tockonbky ¢; = ¢ (mod p), To p 1. Otciona cienyer, 4to (ci,a) = 1 ¥ ¢| ABIAETCS UCKOMBIM.
TpeaiokeHre JOKA3aHo. O

Caencrsue 1.4. Ecau m = pX, 20e p npocmoe, mo ¢ = c.
PaccMOTpuM MPOM3BOJIBHBII COCTABHON MOAY.Tb 1. [L1st moGo# mapsl (a,¢), Tae a — HeTPHUBHUAIIBHBIIA

AenuTens uucna m, m = aay, 0 < ¢ < ay, (¢,a,a;) = 1, onpegenum MaTpuily

M(a,c) = <a

c1 <

b
C1 d) € SLy(Z),

I7ie ¢] Takoe Xke, Kak B Jiemme 1.3. Takue MaTpHIlpl CymIeCTBYIOT (XOTS U OIpeesIeHbl HEOIHO3HAYHO).
JlelicTBUTENLHO, MOCKOJBKY (a,¢1) = 1, TO MOXHO HAWTH LIEJIOYKCIIEHHOE pas3liokeHue az + ciw = 1
HO[a. ITonoxkus d := z u b := —w, nosty4aeM UCKOMYyI0 Matpuity. [lyist Kax1oi mapst (a,c) ¢pukcupyem
OJIHYy TaKyl0 MAaTpHILy.

Jlemma 1.5. Ecau (a,c) # (d',c"), mo M(a,c)To(m) # M(d',¢")To(m).

Joka3zarenabcTBo. Bynem nokaseiBate OT mpotuBHoro. Ilo smemme 1.2 uz M(a,c)[o(m) =
= M(a,c"\T'o(m) cremyer, uro ac = ac; (mod m), a 3Haumr, ¢} = c¢; (mod a;). ITo mocTpoeHuO
umces1 ¢ u ¢y, ¢/ = c (mod a;), otkyna noiydaem ¢’ = ¢, mockonbky 0 < ¢’,¢ < aj.

Iycts teneps M (a,c)lo(m) = M(d',¢')Ty(m) npu a # a'. Torna acy = d’c¢; (mod m). Be3 orpauu-
YeHHs OOLIHOCTH MOKEM CUMTaTh, 4TO a { @’ . VI3 pebIayIiero CpaBHEeH s OJTydaeM, 4to acy = a’cy +mk
JUIS1 HEKOTOPOTO k € Z. 3Hauut, a | d'cy. Tlockonbky (a,c1) = 1, 1o a | d'. Tlony4eHHOE TIPOTUBOpEUrE
JI0Ka3bIBAET JIEMMY. O

ITonoxum
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JI1 IPOU3BOJILHOTO m # 1 ONpeseiM MHOKECTBO
M={M,N(c), 0<c<m, M(a,c), m=aay, a,a; #1,0<c<ay, (c,a,a;) =1}.
3aMeTuM, 4TO €CJIM m TPOCTOE, TO
M={M,N(c), 0 < c<m}.

Teopema 1.6. ITycmo m — nekomopblii ueaouucaenuwiii Mooy, Tozoa mrosxcecmeo M cocmasasiem
Ppynoamenmanvhyro oonacmo epynnvt SLy (7)) omnocumenvro nodzpynnet Lo(m).

Jdoxa3atenabcTBo. CHauana MoKkaxeM, YTO CMEKHBIE KJIACCHI 111 BCEX THUX MATPUI] pa3IMYHBL.

Byznem mokaseiBaTh OT npotiBHOro. Bocnomns3yemest iemmoii 1.2. Eciu MT'o(m) = N(c)To(m), T0
0 =1 (mod m) umsl nonyyaem nporuBopeune. U3 MT'o(m) = M(a,c)I'o(m) cneayet, uro 0 = a ( mod m),
¥ CHOBa NpuxoauM K nporusopeunto. U3 N(c)To(m) = N(c')To(m) Bbitekaer ¢ = ¢’ (mod m), a 3Hauwr,
c=c.Ecm N(c)['oy(m) =M(d',c")To(m), To ¢} = d'c (mod m), uro Bieder d’ | ¢, HO B TO *e Bpems
(c},a") = 1, nomy4aem nporuBopeune. Hakower, no temme 1.5 u3 M (a,c)lo(m) =M (d',¢')[o(m) cnenyer,
aro (a,c) = (d',c).

VcTaHOBUM Terepsb, YTo Jio0ast MaTpHIia

/ b/
Al = <‘cl, d,) € SLy(Z)

JIEXMT B CMEKHOM KJIaCCe JUIs OJHON U3 STHX MATPHIL.

1) OeiictButensro, ecim @' = 0 (mod m), To mo nemme 1.2, A'Ty(m) = MTy(m).

2) Hyctb (a’,m) = 1. Toraa cymectByeT nenouuciennoe pasnoxenre HOa a't +my = 1. Tonoxum
¢ =t (mod m). Torna ¢ < m, d'c =d'ct =(1 —my) = (mod m) u no nemme 1.2, A'Ty(m) =
= N(c)To(m).

3) B ocTasibHbIX Ciiydasx nonoxum a := (a',m) > 1. Toraa CyImecTByIOT LieJIble YUCa f U Yy, 115t
KOTOPHIX @'t +my = a. OTciona cieayer, 4To %/t +ayy =1, a3Hauwnr, (t,a;) = 1.

3ametrM, 4TO B JaHHOM ciydae b’ # 0, Tak Kak uHave |A'| = d'd' # 1. Ecmd’ = 0, To u3 |A'| = 1

cuenyer, uro ¢/ = 1, b’ = —1, mubo ¢/ = —1, b’ = 1. B oboux ciyuasx (a’,c’) = 1. Ecim xe d’' # 0, 10

(d',c") =1, nockomeky |A’| = d'd' — b'¢’ = 1. 3uauur, Bo Becex ciyvasx (a',c’) = 1, oTKyna BbITeKaeT
/

(a,d)=1.

Orpeenum 1ieioe Ynciio ¢ u3 paBeHctra ¢ := ¢t mod a;. [lycTs p | ¢, a ¥ a; AJIs1 HEKOTOPOTO
npocroro p. Torna p | ¢t, a3uauur p | ¢/ 6o p | 1. B oboux ciyuasx nonyyaem nporusopeure. Ecim p | ¢/,
10 npoTrBOpeune ¢ (a,c’) = 1, mockonsky p | a. Eciu p | £, To nporuBopeuwe ¢ (ay,f) = 1, ockonbky p | aj.
CrnenoBateibHo, (c,a,a;1) = 1 1 AJ1st Takoit mapsl (a,c) MOXHO noctpouts Matpuuy M(a,c) € SLy(Z).

[MockonbKy ¢ = 't +aik, k € Z, To

/ / /
ciad =c'(d't) + mk% = (a—my) +mk% =ca +m(k% —yc').

U3 nemmer 1.2 Boitekaet, uro M(a,c)lo(m) = A'Ty(m). O
Bameuanmne 1.7. H3zgecmno, umo

1
[SLZ(Z):ro(m)}:mH<1+). ()
plm p
B [5, npemnoxkenue 2.1.1] smom undexc naiiden kax uacmrnoe undexcog [SLy(Z) : T'(m)]/[To(m) : T'(m)].
U3 meopemol 1.6 caedyem ewye 00HO, HenocpeocmaeHHoe, 00KA3ameAbCmeo 3Mmozo axma.
Hoka3zareabcTBo. Ecium = pk , k> 1, o no Teopeme 1.6 u cneactauio 1.4

k—1
. k\1 _ k k—i k—i—1\ __ _k k—1
[SLy(Z) : To(p)] = M| =1+ p*+ Y (= p )y =p'+p
i=1
" MBI HOquHHH HNCKOMOC.
HyCTL Tel‘lepb YUCJIO m UMEECT CJIeI[yIOH_[ee KAaHOHHUYECCKOEC pa3JIO>KeHI/Ie Ha HPOCTLIC MHOXUTCIIN:

— €l e
m=p, ...pr’.
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OHO I/IHJIYI_[I/IpyeT C€CTCCTBCHHOC 0T06pa>KCHI/IC MHOXKECTB CMCKHbBIX KJIACCOB
W : SLo(Z)\Lo(m) — SLa(Z)\To(p{') x ... x SLa(Z)\Lo(pf?),

3apaBaemoe (opmyioit ALg(m) — (ALy(p{'),...,ALo(psr)).
OrooGpaxenue P siBisieTcs Ouekiyei. JeficTBUTEbHO, PACCMOTPUM [[BE MATPHULIBI

b Y
A= (‘C’ d> VA = (‘Cl, d,) € SLy(Z).

Ecmu ATy(p;") = A'To(p;") mmst moboro i,1 < i < r, To o nemme 1.2 ac’ = d'c (mod p;"). Ilpumensis
KHUTAiCKyI0 TeopeMy 00 OCcTaTKax, monydaem, uto ac’ = d’c ( mod m). CnenosarensHo, ALy (m) = A'Ty(m)
1 oToOpaxeHue 1) UHbeKTUBHO.

JokaxeM cClopbeKTUBHOCTD 1. [TycTh

(A1To(p%), ., A, To(p%)) € SLa(Z)\Lo(p$') % ... % SLa(Z)\To(p%).

IIpumeHsist KUTAliCKyI0 TeopeMy 00 OCTaTKax, MOXHO Haiitn matpuiy A’ takyio, uro A'Ty(p{') =
= ALo(p;") ans Beex i. 3amernm, uto A’ He 00sA3aTENLHO NPUHALICKUT rpyIe SLy(Z), onHako u3
KUTACKOM TeopeMbl 00 ocTaTKax cieayer, uto detA’ = 1( mod m). [Tockonbky otoGpaxkenue f : SLy(Z) —
— SLy(Z/mZ) coopbextusto [5, §2.1], cymiectByer matputia A € SLy(Z) takas, uro ALg(m) = A'To(m).
Torna AI'g(m) siBIsIeTCSI ICKOMBIM ITPOOOPA3OM.

3Hauur,

[SL2(Z) : To(m)] = [SL2(Z) : To(p')] - .. [SL2(Z) : To(py)],

OTKyza nonyvaem gpopmyiy (1). 0
VKakeM Terepb MpejICTABUTENIeN CMEKHBIX KI1accoB rpyribl SL,(Z) mo moarpymre I'(m). [yctsb
@(m) — KOJMYECTBO HATYPAJIbHBIX YMCEN < m U B3aUMHO MPOCTHIX ¢ HUM ((yHKimst Ditnepa). Toraa

wm=rll(i-;)

OGo3HaYMM Bce Takue umcia 4yepes ¢; € Z, 1 < i < @(m). Torma mis o6oro €; CymecTByeT Yuciio
€; € Z Takoe, 4TO

eig; = 1 +mk;
¥ €, k; OJIHO3HAYHO ONpPENENAIOTCS BHIOOPOM €;. BBEIEM MaTpHIIbl

. . . . /
Bij= (elﬂm ¢ +/]El>,

Ciji= &+ jm kit Je;
S\t (et jm)l g+ (ki el

mei=1, ..., o(m), j,[ =0, ..., m— 1, u
—m —é!
D;: .= 1
b (s,-—i—jm ki—i-jsj.)’
rmei=1, ..., o(m), j=0, ..., m—1.
ITonoxum

B={B;ijli=1,...,9(m), j=0,....m—1},

C={Cijili=1,...,0(m), j,l=0,....m—1},

D={Djjli=1,...,¢(m), j=0,...,m—1}.
Jlemma 1.8. ITycmo m — npouseonvhulii Mooy b,

(i) B C To(m), CuD C SLy(Z).
(i) Mampuypt C; j | u D; j nonapro necpagHumbl o MoOyaio m.
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(iii) Mrosycecmeo B cocmasasiem pynoamenmanvyro oonacme epynnvt Io(m) omnocumenvho
nodepynnet I'(m).
HokasarenncrBo. (i) Onpenenurens MaTpuib C; j; paBeH

(e +jm) (e + (ki + jer)l) — (m+ (ei + jm)l) (ki + jej) =

= (ei+jm) (e + (ki + jep)l — (ki + jer)) —m(ki + jej)
= (g;+ jm)e; —m(k; + jei) = e;e; —mk; = 1.

Iockoneky B; j = C;j j 0, 0TCIofa noy4daem, uto |B; j| = 1. OueBunHo, B; j € I'y(m). Takxke O4eBHIHO, YTO
|Dij| = |Cijol = 1.

(if) Tokaxem OT MPOTHBHOTO, YTO MaTpuLlbl C; j; MONAPHO HECPABHUMBI TIPH Pa3JIMYHbIX I, j, [.
JlelicTBUTEIBHO, €CIIH i| # iy, TO

i, +jim = €;, + jom(mod m) < ¢;, = ¢;,(mod m).
Ecm i) =iy =i, HO j| # Ja, TO
ki+ jiei = ki+ jrei(mod m) & jie; = jrei(mod m) & ji = jo(mod m).
Ecmiy =iy =1, ji = j» = j,H0 l] # I, TO
m+(e;+ jm)ly = m+ (&; + jm)l,(mod m) &
& ¢gil) = €ilp(mod m) < 1) = lr(mod m).

Bo Bcex cilydasx NPUXOOUM K IPOTUBOPEYHIO. AHAJOIMYHO INOJMydYaeM, YTO MaTpHIfbl D; j TOHapHO
HECPaBHUMBI IIPU Pa3IMUHEIX i, j. Jlokaxem Teneps, uto C;, j, 1, 7# D, j, Ipu MOOLIX i1, iz, j1, j2, l1.
JIefiCTBUTENBHO, €;, + jim 7# —m, TIOCKOJIBbKY m { €;, .

(iii) dto mokazano B [1]. O

Teopema 1.9. Ecau m = p, mo muoxcecmeo CUD cocmasasiem 6cio pynoamenmanshyio oonacmo
epynnot SLy (7)) omnocumenwsro nodepynnot I'(p).

HokazaTeabcTBo. [leficTBUTENBHO, COMTACHO [S, mpeaioxkenue 2.1.1]

[SL>(Z) : T(p)] = p(p* — 1),
a 3TO B TOYHOCTH YUCIIO BeeX MaTpul D; j u C; j ;. ]
Tem caMbIM 17151 IPOCTOTO MOJAYJIS TIOJTyYeHBI TIPEACTABUTEINH (PyHAaMEHTAIBHOM 00JIacTH B BUJIE,
yAOOHOM ISl peasii3alvid B CXeMe pas3felieHUs CeKpeTa.
Teopema 1.10. ITycmo m — nexomopbwiii yeaouucaentwlii mooyas. Tozoa mampuuplt AB 0ass A € M
u B € B cocmasasiom gpynoamenmanvuyio obaacme 2pynnvt SLy (7)) no nooepynne T'(m).
Jloka3aTebCTBO. Y TBEpKEHHUE ClieayeT 13 TeopeMbl 1.6 u nemmel 1.8 (iif). O
IIpumep 1.11. [IpuBenem B sIBHOM Buje MpuMep GpyHIaMeHTaIbHO 06acTu 1 m = 6. CornacHo
npepioxenuio 2.1.1 u3 [5]

[Co(6) : T(6)] = 12, [SLy(Z) : To(6)] = 12.
p= (1), (55 449) o)
{0 LY GG EDEDC )

Torzaa o teopeme 1.10 (yHmamMeHTa BHAS 00JaCTh COCTOUT U3 IPOM3BEICHHIT MATPHI] M3 STUX MHOXKECTB.

Ha ocHoBe HaiineHHOIi (hyH/IaMEHTaIbHOM 00JaCTH MOKHO IIOCTPOUTH CXEMY pa3fiesieHHsl CeKpeTa
¢ GOJIBIIMM MPOCTPAHCTBOM XPAHUMBIX KJTo4eil, yeM B padote [1]. 1t 3TOro yaoOHO MCIONb30BaTh
Matpuisl C, IMeoIHe XOpolyo napaMeTpu3ainio. OHI 3aHUMAIOT OOJIBIIYIO YacTh (pyHIaMEHTAIBHOIM
obsacTu rpymmbl SLy(7Z) oTHOCUTEBHO TOArpy Ll I'(111) MOCKOMBKY MX KONMYECTBO paBHO m>@(m),

Nmeem
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a npu 3ToM [5, npegnoxenue 2.1.1]

[SLy(Z) : T(m)] = mz(p(m)H <1 + 1) .
plm p
C HOMOIIBI0 3THX MAaTpPUIL TOCTPOUM B rpyrme SL;(7Z) aHanor MOAY/IAPHON HOPOrOBOI CXEMBI
pasneneHus cekpera o MunboTTy [6]. [TycTh y Hac UMeeTcs k y9acTHUKOB M pa3pellieHHbIM SIBJISICTCS
BCSIKO€ TIOAMHOKECTBO, €CJIM YUCJIO YYACTHUKOB B HEM HE MEHbIIIE, YEM .
Beibepem cuctemy m; < mp < ... < my TONAPHO B3aWMHO IPOCTBIX MOIYJEH, JJIsI KOTOPOii
BBHIMIOJIHEHO yCJIOBUE MUHBOTTA

M| =My oMy 43...m <mymy...my = Mj.

OnHoBpeMeHHO TpebyeTcsi, uToObl pa3HOCTh M) — M| Obula IO BO3MOKHOCTH OOJIBLION.

B KadecTBe OTKPHITHIX KJOYeH OepyTCs IIaBHble KOHrpysHI-ioarpymmst I'(m;y), ..., T'(my), toe
MOJLYJIM My, ..., My T€ Ke, YTO U B TIOPOrOBOI MOAYJIAPHON cxeMe MUHBbOTTA.
CekperoM sBisiercst Matpuna S =C; j; € €, tne m=my...my, i = 1,...,@(m), npuuem M; <

< g < My, My < j,l < M.

YacTUYHBIMM CEKpPEeTaMM YYaCTHUKOB SIBJISAIOTCS MOJIEMEHTHBIE BBIUETHI 9TOM MATPUIIBI IO MO-
IOyJsIM my, . .., my. HanpuMep, 9acTUYHBIM CEKPETOM NEPBOTo yYacTHHKA OyaeT oOpa3 MaTpuIbl S IpH
KaHOHMYECKOM 3MuMopdu3Me

SLQ(Z) — SLQ(Z)/F(I’H]) = SLz(Z/I’mZ),

YTO SIBJISIETCS] AHAJIOTOM OOBIYHOTO YaCTUYHOTO CeKpeTa B cxeMe MUHBOTTA.

Teopema 1.12. Cexpem S 00HO3HAUNHO 60CCMAHABAUBAECINCS NO YACIUUHBIM CEKPEmMam NOOMHO-
Jcecmea yuacmuukos A, 20e |A| > t.

Joka3zaTteabcTBO. MOyIb 1 HAXOOUTCS aBTOMATHYECKU.

ITocKkoNbKY HaM U3BECTHHI ¢; + jm = €;(mod m,), r € A, o KUTaiicKoi Teopeme 00 ocTaTKax
HaxomuM ¢;( mod [] m,). Haiinennoe peiienue B cuity BbiOOpa €; Oy/IeT OJHUM M TEM e 10 MOIYJ/ISIM

reA
[T m, mm, Tak xax ¢; < [] m, < M>.
reA reA
Pemms cpaHenue €;¢; = 1 (mod m), HaxomuMm €. HamoMHUM, 9TO BCe MOAYIIM M, . . . , My U3BECTHBI

YYaCTHUKAM.
giej—1
Yuco k; OHO3HAYHO BOCCTAHABIMBAETCA N0 (hopmyrie k; = ——L—

Hawm usBectHsl &; + jei (mod m,), r € A, Ucrionb3ys KUTACKyI0 TeopeMy 00 OCTaTKaX, HAXOAUM

ki + jei(mod [T m,). ITockomnsky (€;,m) = 1, To 3HaueHHe j mo Momymo [] m, BOCCTaHABIMBACTCS
reA reA
OIHO3HA4HO. Tak Kak j < M», oTCio[a NOIY4YaeM ;.

Ananornuno u3z m+ (&; + jm)l = ¢;l (mod m,), r € A, Haxomum ¢;/ (mod [] m,). Ucnons3ys ToT
reA
daxkr, uro (g;,m) =1 ul < My, nonydaem .

Takum o6pa3zom, MaTpuIla S BOCCTaHOBIIEHa KOPPEKTHO. L]
Pabora BhironiHeHa ripu puHaHcoBoit noaepxkke BPODU, norosop Ne ©25-012.
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1. BBegenue

[Tycth G — KOHeuHas rpymmna, A — Takas rpymmna ee aBrTomoppusmos, uto (|A|,|G|) = 1. Torna A
Ha3bIBaeTCs1 IPyNIoii konpocmolx aBTomopduamoB rpymmsl G. Ecimu Cg(a) = Cg(A) 1u1s Kakgoro anemMeHTa
a € A*, To A Ha3BIBAETCA CUNLHOUESHMPANUIYEMOIL 2PYNNOTE KONPOCTbIX ABMOMOPPU3MOE TPYTITIHL G.

3ameTuM, 9TO st |A| = p — POCTOE YKCIIO, YCIIOBHE CUIIbHOLICHTPAIN3YEMOCTH BBIMOJIHSETCSI.
Il ciyyasi, Korga rpynma A UMeeT HeueTHbIN NopsaokK B [1] copmynmmpoBaHa runoresa o ToM, 4TO
JJIS1 HETIPUBOAUMBIX KOMIUIEKCHBIX JIMHEHHBIX rpymn I' = AG mpon3BOJIHON CTENEHH /1 CIIPABEJIBO
yTBEpXKJEHHE, UTO 71 AJIUTCS Ha Takylo cTeneHb f > 1 mpocroro uucia, yro f = —1 wm 1(mod [A|).

B [2] aTa runore3a Obula IoKa3aHa MPU YCJIOBUM, YTO CUJIOBCKast 2-MOArpyIna rpynmsl G abeliera.
B [3] oHa pelieHa MOJIOKHUTEIbHO Oe3 JOMOJIHUTENBHOTO ycioBusl. Ilpu |A| = p oHa ke coBmajgaer
¢ npodaemoii, chopmynpoBaHHoOi AitzekcoMm [4] u nokaszanHoit HeloroHom [5].

N3 teopemsl 4.1 [6] BBITEKAET, UTO CTENEeHb n = 2p — 2 HEe p-3aMKHYTOM HEPUBOAUMON JTIMTHEHHOM
rpynnsl G siBsieTcs crenenblo 2. A u3 TeopeMsl 2 [7] ciiemyet, 4To ee cuiaoBcKas 2-moarpymnmna G,
He MOXeT ObITh abeseBoil. PaccMoTprM HelpuBOIUMBIC JIMHEWHbIE TPYNIbl G CTETIeH! 1, Y KOTOPBIX
cuioBcKas g-noarpynna G, sBnsgercs abeseBoid, ecimm crenenb f = g* <ng, « € N, u f = —1(mod |A]).

[Mycth 71(n*) — MHOXECTBO TAKMX MPOCTHIX JEUTENICH YUCIa 1, XOTst Obl OJHA CTereHb f > 1
KOTOPBIX ICJIUT 1 ¥ /ISl Hee BhINonHseTcs yeiosue: f = —1(mod |A|). ITpeanonokum, 4to noarpymma A
HEUYETHOTOo TOopsi/IKa, 6obiero 3, u 11 g € m(n*) cunoscekas g-noarpynmna G, rpynmsl G abenesa.

B teopeme 1.2 pst rpynmsl I v uncnia n copMyIMpoBaHO U JOKa3aHO 00Jiee CUIIbHOE yTBEPXK JEHHE,
gyem B [2], [3] u [5].

C nomompio TeopeMsl 1.2 nokaseBatorcs reopema 1.3 u Teopema 1.4. Teopema 1.3 Takxe ycuimpaer
COOTBETCTBYIOLIMIT pe3ynbTat u3 [2], [3] u [5]. Teopema 1.4 aJis1 pa3penimmeIx rpymin paHee Oblia JOKa3aHa
Pomanosckum [8].
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VYeaosue 1.1. Ckaxewm, uto s I, A, G, C, x u n BeimonHeHo yciosue 1.1, eciu I' = AG, G<T,
(|Al,]G|) = 1, A — rpynma HeueTHOTO TOpsifKa, GOMBLIEro 3, KOTOpast He ABJISETCsT HOpMabHOI B rpyre I,
Cg(a) = Cg(A) = C nna kaxporo snementa a € A*, s kaxnoro g € 7(n*) nogrpymma G, aGeneBa
u rpynna G UMeeT TOYHBIHA HENPUBOJUMBINA KOMIUIEKCHBII XapaKTep X CTENEHU N, KOTOPBIA ABIAETCS
a-MHBAPMAHTHBIM XOTS OBl [/l OJIHOTO 37eMenTa a € A¥,

Teopema 1.2. Ecau oas epynnot I, A, G, C, X u n gvinoaneno ycaogue 1.1, mo n deaumcs na
makyio cmenens f > 1 nekomopozo npocmozo uucaa, umo f = 1(mod |A|).

Teopema 1.3. Ilycmob Tt-paspewsumas ne m-zamxuymas epynna G ¢ m-xoanoeoii T 1-nodepynnoii H
HeuemHoz0 nopsaoka, boavutezo 3, umeen mouHullil HenPUGOOUMbLI KOMNAEKCHbIIL Xapakmep cmeneHu n.
Ecau 0as kasxcooeo q € i(n*) nooepynna G, abenesa, mo n deaumcs na |H| uau na maxyio cmenens
f > 1 nexomopozo npocmozo uucaa, wmo f = 1(mod |H|).

Teopema 1.4. ITycmo p-paszpewiumas ne p-zamxuymas epynna G 0as npocmozo uucaa p > 3
uMeem MmouHblll HeNPUBOOUMDILL KOMNAEKCHbLIL Xapakmep cmenenu n. Ecau oas kajcoozo q € m(n*)
nooepynna G, abeaesa, mo n 0eAumcs Ha p UAU Ha maxyto cmenens f > 1 nexomopozo npocmozo uucaa,
umo f = 1(mod p).

2. HexoTopble 0003HAYEeHUsI U IIPpeIBapUTeIbHbIE Pe3YJIbTaThl

N — MHOXECTBO HaTypaJIbHBIX uKcel; eci 1 € N U g — IPOCTOE HATYPAJIbHOE YMCJIO, TO 1 = NNy
ecim \p — xapaktep HekoTopoii rpymmbt X, To Irr(l) 0003HaYaeT MHOXECTBO BCEX HEMPUBOIMMBIX
KoMIoHeHT xapakrtepa ; 7= 7(A); ecmu X C T, o ' = (X)) \ 71; X,v — xoswioBa 70-nmoarpymnma
rpymmsl X. Eciu X <I7 v 0 — HenprBOAMMBIA XapakTep MOArPy bl X, TO YCJIOBHE, UTO (9 g-WHBAPUAHTEH
151 HekoToporo 3memenTa g € I'\ X, 3ammmem st kpatkoct B Buzge Ir(¢@) # X. Bee ocrasbHble
0003HaueHUs M OIpelesieHHs] OOBIYHBI M MX MOXHO Haiitu, Hampumep, B [9] wmm [10]. Berogy mon
XapaKTepoM IpyIIbl OyeM MOHUMATh KOMIUIEKCHBII XapakTep, a Moj IPYIIoi — KOHEUHYIO IPyIIy.

[Tycts I' = AB — rpynma, auist kotopoit oarpymma B<T, (|Al,|B|) = 1, 1. e. A — rpynna konpocmuix
asmomopgpuzmos zpynnwt B u |A| neveren. Toraa oHa ynosnerBopsiet yciosuio Teopemst 13.1 [10]. Co-
IJIACHO 3TOH TeopeMe CYIEeCTBYeT B3aMMHO-OJHO3HauHOe cooTBeTcTBHE T1(B, A) : Irrs (B) —Irr(Cp(A))
MEX Ay MHOXECTBOM BCEX A-MHBAPHUAHTHBIX HETIPUBOAKMBIX XapaKTEpOB IPyMIIbl B 1 MHOKECTBOM BCeX
HENPHUBOAUMBIX XapakTepoB noArpymisl Cg(A), KOTOpoe 001a/laeT psiIoM CBOMCTB, 3aBUCSIINX, B YaCT-
HOCTH, OT cBoiicTB moarpymbt A. Ilycts @ € Irrg(B). Torna mo nemme 13.3 [10] cymiecTByeT Takoii
€/IMHCTBEHHBIA HENPUBOMMBII XapakTep @ rpymst I, uto @p = @ u A C ker(det @ ). OH Ha3bIBaeTCH
KAHOHUUECKUM NPoooaceHuem xapakmepa © na zpynny I. B nanbHeiimeM noa @ OyaeM NOHUMATh
WMEHHO TaKOW XapakTep.

IIpuBegeM psa BCIOMOTATENbHBIX JIEMM.

Jlemma 2.1 [3, nemma 2.7]. I[lycme A — epynna xonpocmeix asmomopgpusmos epynnwvt B. Toz0a
B = [B,A|Cp(A).

Jlemma 2.2 [11, nemma 11]. ITycmo A — cuavrouenmpanusyemas epynna KORPOCMbIX ABIMOMOP-
pusmos epynnwt B. IIpeononodxcum, umo 0as nekomopoii A-uneapuanmmnoii noozpynnet By C B uucao
|B : By| ne 0eaumces na maxyio cmenens f > 1 npocmozo uucaa, umo f = 1(mod|A|). Tozoa B = B1Cg(A).

Jlemma 2.3 [3, iemma 2.9]. ITycme I' = AB — epynna, 20e B<T, (|A|,|B|) = 1, A — paspewuma u
Cp(a) = Cg(A) a5 kaxcoozo anemenma a € A*. Ecau @ € Irr(B) u Ir(@) # B, mo @ € Irra(B).

Jlemma 2.4. ITycmo T = AB — zpynna, 20e B<T, (|A|,|B|) =1 u Cg(a) = Cg(A) 015 kasxcdozo
anemenma a € A*. Tozoa A — TI-nodzpynna 6 T u, ecau @ € Irr(B) u I (@) # B, mo epynna T umeem
makoii Henpugodumbiii xapakmep @ 1 -cmenenu, umo O = @. [pynna T’ = AO (T).

Moxka3zarenabcrBo. [lo nemme 2.6 [3] A — T1-noarpynma B I'. Tlo nemme 2.3 ¢ € Irry (B). [Toatomy
CYLIECTBYET KAHOHMYECKOE MPOJIOIKEHHE (P XapakTepa ¢ Ha . SIcHO, UTO CTeneHs 9TOro xapakrepa —
70 -uncno. [ToceaHss ppasa JEMMBI OYEBHIHA. O

Jlemma 2.5 [3, nemma 2.8]. ITycmo I = AB — zpynna, 20e B<T, (|A|,|B|) =1 u Cg(a) = Cp(A)
0as Kaxcoozo anemenma a € A*. Ecau K <T" makas nodepynna, umo AK /K ne sieasiemcs Hopmanshoii
6'/K, moANK =1, aecaru AK/K< T'/K, mo B=KyCg(A).

B naspHeiiiem npyu pacCMOTPEHHH CliyvaeB, Koraa daktoprpymnmna AK /K He siBiseTcsi HOpMaib-
Hoit B I'/K s HekoTopoii HopmaibHO# moarpymmbl K B I', Mbl Oyem yuuThiBath, ut0 ANK = 1 1,
crnenoBarenbHo, |AK /K| = |[A/ANK| = |A|.
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Jlemma 2.6 [3, nemma 2.5]. ITycmo t > 5 — HamypaavHoe uucao, p — RPOCMOoe YUCAO U M — 1000e
noaodxcumenvroe uucao kpamuoe t. Tozda 045 Kax*c0020 4en020 NOAOHCUMENBHOZ0 YUCAA N CYUleCBYem
makoii npocmoii Oeaumens s uucaa P, (p™), umo s >n+1u s = 1(mod t).

3. OcHoBHAS YaCTh

3.1. Joka3aTejbCcTBO Teopembl 1.2

Tak Kak 1o ycinosuio 1.1 xapakTep X ABIAETCS a-MHBAPUAHTHBIM [ HekoToporo a € A*, To
Ir(x) # G. Hockonbky X € Irr4 (G) o nemme 2.3, To mo siemme 2.4 rpynma I” nmMeeT Takoit HeMPHBOANMBbIiT
xapakrep X, 4to (X)g = X. ScHo, uro X(1) = n.

Jloka3aTeapCTBO TEOPEMBI MPOBEIEM MHAYKUMER no nopsaky rpymmnsl 1. ITycts I' — rpynma
HaMMEHBIIETO MOPsIKa, 1151 KOTOPOil BBINONHsETCS ycnoBue 1.1, HO B TO ke BpeMs 1 He JIeJUTCs Ha
Takylo crereHpb f > 1 mpocrtoro uncia, 4ro f = 1(mod |A|). 3ameTuM, 4TO eciii HEKOTOpasi CUIOBCKasT
noarpynmna rpynmsl I” abeneBa, To TaKMMH SBJISAIOTCS T0OBIe ee oarpynna u gakroprpymnmna. B ciyyae
MPUMEHEHUs] MHAYKLUH, 3TO 00CTOSATENBCTBO Oy/IeM YUUTHIBATS.

Jlemma 3.1. Xapaxmep X mounbiii.

JokazareanctBo. [Ipennonoxkum, uro kerX # 1. Tlockonbky xapaktep (X)g = X TOUHBIH 10
ycnosmio 1.1, to kerX C A. Tak kak A — TI-nmoarpynma B I o temme 2.4, To A< I'. T0 npoTMBOpeYnT
ycnopuio 1.1. O

Jlemma 3.2. 07 (I') =T..

JoxasareabcTBo. [IpennonoxuM npoTUBHOE, T. €. S = o~ (T") # I'. Tlo (hak TOpU3ALIMOHHOM JIeMMe
YynuxuHa [12, nemma 2.2.1]

T = Ne(A)S. (1)
ITo Teopeme Kmmmpdopaa
X)s=e) V", )
xeT

e VP € Irr(S); e — uncno, gensmee X(1) u T — MoIHOE MHOXKECTBO TIPEJICTABUTENIEH BCEX CMEKHBIX
kJaccos rpymisl I' o noarpymme I = I (). ITockonbky n = e|T [P (1), To P (1) memwr n.
Hormyctum, 4To
A = Aker/kerp<S/kerp =S.

Toraa Aker < S u, cnegoBaresnbho, (Aker) <8 mus Beex t € T. CiieqoBaTesbHO,
ﬂZ‘GT(A kerll))[ <]St == S

OTCIO)Ia nojay4aem, 4T1o
mteTAt (kerl.l))t < S

[TockoIbKY, COrTACHO BhIpaskeHuo (1), MokeM CUUTaTh, 4TO f € Nr(A), TO
mteTA (kerll))t as.

Tak kak Myer (ker)’ = ker(X)s = 1, To A< S. Buaum, uto A <I". Mbl 0Ty 9iIi IPOTHBOPEYHE C BBIOOPOM
rpymst I

Iycts Teneps A 4 S.

IMokaxem, uto 114 S, A, Sy, Cs, (A), Egﬂ, u Egn, (1) Bumonnusetcs ycnosue 1.1. 3nech 1 — ToUHbIi
HENPUBOIMMBIiA XapakTep pakToprpymis S B cMbicie Jemmbl 2.22 [10]. OueBumHO, S,y <1S.

Tokaxem, uro Cs (@) =Cy (A) nnsBeex @ € A", Iycte 5 € Cg (@1) msl HEKOTOPOTO HeeJUHIY-
Horo snemenTa a; u3 A. Torna @, € AN (A)®. TTockoibKy U3 ieMMbl 2.4 BHITEKAET, 4TO A B rpynme S u,
cresjoBaTelbHO, A B (haktoprpye S siBisiercs T1-noarpynnoi, 1o A = (A)*, 1. e. s € Ng(A). Otciona
BuguM, uto 5 € Cg  (A). Cnenosarensho, Cs (@) C Cs  (A) mus Beex @ € (A)*. Tlockonbky oGparHoe
BKJIOYCHHE OUEBHIHO, TO KEJIAEMOe PABEHCTBO YCTAHOBJIEHO.

Tak kak A A S, T0 K rpynne S u ee HopManbHOi noarpynmne K = kery MokeM IPUMEHHUTH Jlemmy 2.5.
ITo Heit ANK = 1. 3Hauut, A ~ A.
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Mockonbky (1) geswr n, 1o P (1) — 70'-uucno. Torga Bugnm, uto hs | € Irrg(Sq).

Urak, s S, A, Sy, Cs ,(A), b5, n s (1) Bemonusercs yenosue 1.1. Tak kax |S| < [T

, TO IO

unykiuu P (1) geauTcs Ha Takylo cTeneHb f > 1 HEKOTOpOro mpocToro uucia, uro f = 1(mod |Al).
[ockonbky A ~ A, To, oTciofia ¥ Toro, uto (1) AeuT n, 3aMedaeM, 4To U 1 IeJUTCA Ha TaKylo CTeNeHb
f > 1 mekoroporo mpoctoro uncia, 4to f = 1(mod |A|). [TonydeHHOEe TPOTHBOPEUNE C MUHIMATBHOCTHIO
rpymisl I” yka3eiBaeT Ha TO, YTO Hallle TIPeINoIOKeHHe O TOM, UTo S = O“/(I“) = T" onmmbouno. Crano
6bith, O™ (') =T.. O

Jlemma 3.3. Ecau L — makcumanvhas Hopmanvhas 8 G A-uneapuanmmuas nooepynna, mo L C C.

Joka3zaTeabcTB0. Mbl MOXEM MOJTOKUTH, uTO L # 1. ITo Teopeme Kiuddopna

X)r=e) V",
x€T

rie P € Irr(L), e u T coOTBETCTBYIOT 0603HaUeHUsM B Bhipakenuu (2). [To Teopeme 6.11 [10] X = P}
mtst Takoro xapaktepa \py € Irr(7), uro (), = e. Mockomery X (1) = [T : I[P (1) uX(1) =x(1)=n
SABJISIETCS 70 -4UCIIOM, TO U (1) Takke 77 -4uciio. Mbl MOXKeM Takke cuuTaTh, 4To A C I.

[peamonoxkum nonavany, 4ro I/ # I'. Tak kax | : I| gemurt n, To u3 npeamnonoxenus, aro | : /|
JeJIUTCsI Ha Takylo cTenenb f > 1 mpoctoro uucia, uro f = 1(mod |A|) BeITeKaeT, 4TO U 1 AEUTCS Ha
TaKyIo K€ CTEeTeHb C TAKMM XK€ CBOMCTBOM. B 3TOM ciydyae TeopeMa BepHa M MBI ITOJTyYMM ITPOTHBOPEINE
¢ Beibopom rpymibl I'. CrieroBatesibHO, Mbl noniaraem, uto |I: I| He menutcst Ha Takyiwo cteneb. [1o
gemme 2.2

G=I,C. 3)

Iycts, kak u panee, A = Aker; /ker| u 1 = I/ker;. Herpyano Buznets, uto xapakrep (V) I
HenpuBoauM, T. €. ()7, € Irra(ly). Torma (E);ﬂ, € Irrg(Iv). 3nech P — TOUHBIA HENPUBOLMMBIA
xapakTep (akToprpyris I B cMbicie JemMmbl 2.22 [10].

Ipeanonoxum Takxke, 4o A A 1. Kak u panee ycranasnipaeM, uto s I, A, Iy, C;ﬂ/ (A), (P, );ﬂ/ u
(W, ), (1) Bomonnsercs ycnosue 1.1.

Tak kax |I| < |[], To, coracHo MUHUMaTLHOCTH Tpynmbl I, Mbl iostyuaem, uto (1) gemmrcs
Ha TaKylo cTereHb f > | HeKOTOPOro MpOCTOro umucia, uro f = 1(mod |A|). Hockomsky (1) gemur
X(1) =n u |A] = |A|, uto cneayer u3 nemMmsbl 2.5, To BUaMM, uto f aeaut n u f = 1(mod |A|). Mul
HOJTy KT TIPOTUBOPEYNE ¢ MUHUMAIbHOCTBIO Tpy sl I .

PaccMoTpuMm Tenephb ciydail, korga A < 1. Ilockombky kery </, To mo jnemme 2.5 Iy =
= (ker1)wCr, (A). OTkyza, ¢ yuetom hopmyisi (3), mosnydaem, uto G = (ker\p; )C. IToatomy g = kc
IUIsI BCEX 3JIEMEHTOB g € G U 17151 COOTBETCTBYOIIMX UM 3J1eMeHTOB k € ker u ¢ € C. [Toatomy

[g,a} = [k,a} S (kerll)l)n/

st Beex g € G m 1uist Beex a € A. 3naunt, [G,A]| C (ker;),. [Tockompky mo npeamnonoxenuio [ # I,
1. e. (ker ) # G, 10 [G,A] # G. D10 03HaUaeT, 4T0 A[G,A| # I'. Tak Kak u3 jemmsl 2.1 BHITEKaeT, 4TO
A[G,A]<T, To MBI IOy 4NN IPOTUBOpPEUHE C JIeMMOit 3.2.

I[Tycts Teneps I = I'. Torma X, = e.

Ecimm A<AL, to L C C 1 1eMMa BepHa.

IToatomy A A AL. Jlerko 3aMETHUTh, YTO IS AL, A, L, Cr(A), Y u(1) Bemonusiercs yciosue 1.1.
Tak kax |[AL| < |I'|, To o nuaaykuum P (1) genmrces Ha Takylo cTereHb f HEKOTOPOro MPOCTOro YMCIIa,
uro f = 1(mod |A]). Torma u n AeanTCS HA TaKylo CTeNeHb f > 1 HEKOTOPOro MPOCTOrO YMCIA, Y4TO
f = 1(mod |A|). MbI BHOBb OJTyUYHIIH TIPOTUBOPEUNE C MUHUMAILHOCTBIO Ipyimsl I . O

Jlemma 3.4. L C Z(T') 0as nodepynnwt L uz aemmvt 3.3 u G = G/L — 2aasnwiii paxmop zpynnwt T.

HMoka3areascrBo. ITo temme 3.3 L C C, 1. e. A C Cr(L). Tak kak Cr(L)<T", To u3 nemmsi 3.2
cnenyert, uro Cr(L) =T". uauur, L C Z(I'). [Tockosbky L sIBIsIeTCSI MAKCUMAIbHON HOPMaIbHOM B G
A-MHBapUaHTHOH MOATPYIIIOiA, To G ABIAETCA IJIABHBIM (haKTOPOM Ipymmb I O

Jlemma 3.5. I'pynna G — nepaspewuma.

JlokazaTeancrBo. I1o nemme 3.4 G — mu60 3eMeHTapHas abesieBa ¢-Ipymma Jjisi HEKOTOPOTro
HPOCTOrO YMCIIA ¢, T. €. pa3pelmma, JUO0 sBJISeTCs MPSIMBIM IPOM3BEJEHUEM IPOCTBIX HeaOeIeBbIX
rpyIIL.
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Homyctum ona paspenmma. 13 nemmel 3.4 Boitekaet, uro, I' = AG, X Gy, tne Gy C Z (I'). Tak kak
n — 7 -unco, To 1mo teopeme 6.15 [10] 1 ABIAETCA CTENEHBIO MPOCTOIO YUCIA ¢, T. €. n = g*.

Ecm o« =0, Ton = 1. Torna rpynma I' nukmyeckasd. 3Haunt, A < I'. 1o nporrsopednt ycnosuio 1.1.

CrenoBatenbHo, & > 0. JIerko BUIETh, YTO XapaKTeP X 4G, HEMPUBOAMM M HEPUBOIMM XapaKTep

XG = 100 OH UMeeT 70 -creneHb. Torga moarpymnmna G, He aBnseTcs abeseBoi.

Homyctum, uto ¢! = —1(mod |A|) ans HekoToporo uuciaa «; < «. Toraa mo ycioBuo 1.1
noxrpyrma G, abenesa. [IporuBopeune. Otciona 1 u3 Teopemsr 1 [13] crenyer, uro ¢*' = 1(mod |A|) mra
HEKOTOPOro yucia o) < K. O

Jlemma 3.6. I'pynna G — neabenesa npocmas zpynna.

HMoka3areasctBo. ITo temme 3.3 L C C, 1. e. A C Cr(L). Tak kak Cr(L)<T", To u3 nemmsi 3.2
cnenyet, uro Cr(L) = I'. 3naunt, L C Z(I'). ockompky L sBIsSIETCS MaKCHMMAaJIbHON HOPMAIIBHOM
noarpyrnoii B I', To G siBisieTcs miaBHbIM (hakTopom rpyrms L. CoracHo Teopeme 1 [13] Mbl MoxeM
PeINOI0XUTh, uTo G HEpa3peluMa.

Tpeanonoxum, uto G He sABNsAETCA MpocToii rpynmoit. Torma G — npsiMoe npousBeieHue |A| Kormid,
M30MOP(HBIX HEKOTOPOil MPOCTON HeabesieBoil rpymme. 3Hauut, G — HEHTpAIbHOE MPOU3BeaAeHHUE |A|
n3omopdHeix rpymm. M3 nemmsl 3 [5] caeayert, yto n = mA! s HEKOTOPOI'0 HATYpaJbHOIO YKCa M.
Torna pl nenmt n ana mekoroporo mpoctoro uncna p, aensimero n. ITockonbKy 1o Teopeme Diinepa

u3 teopun ancen p®AD) = 1(mod |A|), rae @(|A|) — KOmIUECTBO HATYPANBHBIX UKCET MEHBIIEX |A| 1
B3anmuonpocThix ¢ |A|, u p® () et 1, To MBI oMY UMM TIPOTHBOPEUHE ¢ MUHUMATLHOCTHIO L. [IoaToMy
rpymia G mpocras. O

Hycts ' =T /L v Tak kak A = AL/L ~ A/ANL = A, To MO)eM 3anucath, uto [ = AG.

W3 nemmbl 3.6 1 u3 eMmbl 5 [5] BeITekaeT, uto G — pocTas rpynmna Turna JIu Hajl HEKOTOPhIM
KOHEeuyHbIM 11071eM F. ITycTb g = p™ — umcino aneMeHToB 3Toro nojs. Tak Kak Mbl MOXEeM paccMaTpuBaTh A
Kak rpymmy aBromMopduamoB mosst F o semme 5 [5], To gesaem BBIBOL, UTO |A| genut m.

ITo ycnosuio |A| > 5. Tloatomy m > 5. [pumennm nemmy 6 [5]. Tlpeanonoxum, uro g aeaut n. Torga
plAl nenur n. Panee MbI yGeaumiCh, 4TO B 9TOM CIlyyae Mbl HPHXOZMM K TIPOTHBOPEUMIO C MEHHMAJTLHOCTHIO
rpynnsl I'. 3HauuT, Kak ciaegyeT u3 JeMMbl 6 [S5], CylIecTBYIOT Takue LeJible uucia d U k, 4ro dn
nemutcst Ha Dy (q).

[Monoxwus ¢ = |A|, u3 nemmbl 2.6 moTydaeM, 9T0 dn NEIATCS HA TaKOe MPOCTOE YHCIIO S, UTO
s = l(mod |A]) u s > k+ 1.

Eciu G rpynna ne tuna A;(q) wi 2A;(q) 11 HEKOTOPOTo MOMOKUTENLHOTO yrcia [, To d He
JeJMTCsI Ha Mo0oe MPOCcToe urciio, Oonbiiee yem 5. Tak kak |A| > 5, 4TO OTMEYEHO Bbille, TO § > 5
U, 3HAYUT, S JEJIUT A.

Iycts Teneps G rpynmna tuna A;(q) wim 2A;(q). Toraa d He neauTcs Ha MOO0E TIPOCTOE YUCIIO,
6osbiiee yeMm [ + 1, 1 MbI MOXeM B3SITh YUCIIO k, OoJbIliee WK paBHoe /. B aToM ciyvae s > [+ 1 1 Mbl
BHOBb MUMEEM, 4TO § AEJHT 1. DTO NOCIEIHEee NPOTUBOPEYre JOKa3bIBaeT Teopemy 1.2.

3.2. [loka3aTejibCcTBO Teopembl 1.3

Ncnone3yem naaykuuo 1o nopsaaky rpymst G. Ilycts G — rpynia MUHUMaJIBHOTO NOPSiIKa Cpean
BCEX IPYIMIL, JIJIsl KOTOPBIX YCJIOBHME TEOPEMBI BHIIOIHAETCS, a 3aKJoueHue HeT. [IpencTapnenuio rpynmnst G
KaK HENPUBOAMMOM JIMHEAHON I'PyIIIbI CTENIEHU 71 OTBEYAET TOYHBIM HEIIPUBOAUMBIA XapakTep X.

Jlemma 3.7. H ne codepoicumcs ¢ makoii coocmeeHHol Hopmanwbroli nodzpynne M epynnvi G, umo
M umeem nopmanvhoe T-0onoanenue.

JloxazarenbcTBo. O603HaunM M = O (I") ¥ MOBTOPMM JOKA3aTEeIbCTBO JIEMMBI 3.2. O

ITockonbky rpynna G — m-paspemma v noarpymmna H — 71-MHOXeCTBO, TO CIIpaBeJIuBa

Jlemma 3.8. O (G) # 1.

Jlemma 3.9. G = HOr(G).

HokasarenbcTBo. Paccmorpum noarpymy Oy (G). o onpenesnenuio

Oﬂ’,n(G)/On’(G) = Ox(G/0w(G)).
Taxk kak rpymma G/O, (G) — T-paspenmma u coracao teopeme 6.3.1 [9] O (G/O0n(G)) =1, 10
0+(G/0x(G)) £ 1.
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[ockonbky HO (G)/Oxn (G) — x0m10Ba T-NOArpyIIIa ¢ TPUBHAIBLHBIM IiepecedeHneM B G/ O (G), 1o
07[/77-[(G) =HOy(G).

Ocranock b 3aMeTHTh, UT0 O 7(G) <G, 1 NpUMEHUTH Jlemmy 3.7. O

Tak kak 1o nemme 3.9 G = HOw(G) u Co_,((6)(h) = Co_,(c)(H) mns Beex h € H*, T0 nna G,
H, Ox(G), Co_(6) (h), TOYHOTO HENPUBOAUMOTO XapakTepa Xo,,(G) ¥ n BbIOHEHO yciosue 1.1. Ilo
teopeme 1.2 n genuTcst Ha Takywo cTerneHs f > 1 HekoToporo mpocroro uucia, uro f = 1(mod |H]).
ITonyuywnu npoTuBOpeYre ¢ MUHUMAJIBHOCTBIO TPyIIIbl G. DTO NOCIEJHEE TPOTUBOPEUME JOKA3BIBAET
Teopemy 1.3.

3.3. loka3aTejbCcTBO Teopembl 1.4

ITycTs X JaHHBIA B YCJIIOBUM TEOPEMBI TOUHBIA HEMPUBOAUMBII XapakTep rpymisl G CTENEHU A.
Jloka3aTesbcTBO TeOpeMsl IIPOBeieM MHAYKIMEH 1o nopsaky rpynms! G. Ilycts G — rpynna HauMeHbIIero
MOPSAKA, 1JIsI KOTOPOiA BHIIOIHSIOTCS YCJIOBUSL TEOpPEeMBI 1.4, HO B TO K€ BpeMs 1 He JeJIUTCS Ha p U He
JeJUTCS Ha TaKylo creneHs f > 1 mpocroro uncina, uto f = 1(mod p).

Kak B 1emme 3.2 Mbl yOexkgaemMcs B TOM, 4TO S = OP/(G) =G.

Hanee. ITockoneKy rpynmna G sBISETCSA p-pa3penmmoii, To mbo 0,(G) # 1, mibo 0, (G) # 1.

Homyctum noHavaiy, 4to O,(G) # 1. Ilycts M — Takas MakcUMajlbHasi HOpMaJIbHasl OArPYIITa
B G, 4to 0,(G) C N<G u M /N — rnasusiii paxtop rpynmsl G. 3ametuM, uto dakroprpyma G/M takske
SIBJISIETCSI TNIaBHBIM (bakTOpoMm rpyrsl G. [Toatomy G/M — p-rpymmna 6o p'-rpymma.

Iockomeky S = G, To G/M — p-rpymna. Torna M,y = Gy n |G/M| = p*, « € N. UyTs panee
MbI OTMETHJIH, uTO X (1) He aenuTcs Ha mpoctoe uucio p. Torga xapakrtep Xy HetpuBogum. I[TosTomy
HENPUBOJUM U XapakTep Xu,, [ae M| takas nogrpynmna, uro M C M <G u |G : M| = p.

W, ecim noarpymnna M He p-3aMKHYyTa, TO IO MHIYKLMHU 7 A€JUTCS HA p WM HA TaKylo CTEIeHb
f > 1 Hexotoporo mpoctoro uncia, uto f = 1(mod p). D10 npoTrBOpeyUT BHIGOPY IpyIIisl G.

Iostomy moarpymnma M) p-3amMkHyTa. Ouesumno, O,(M;) = 0,(G) n |G,| = p, G, = G,/ 0,(G).
MBI MOXEM TOJIOXKUThL, 4yTo M| = M. MBI Takxke BUAUM, 4TOo M = MPIOP(G) uMy =Gy, 1.e. M =
= Gy0,(G).

Hanomunm, uro O, (G) # 1. ITo Teopeme Kimddopna k xapakrepy X0, (G) puMeHnMa popmyia (2).
B ee o603Ha4yeHusIx o Teopeme 6.17 [10] cyriecTByeT Takoil HEIPUBOIUMBII XapakTep | MOArpynIs 7,
a0 (Y1), (6) = €W A1 HEKOTOPOro HenpuBoAMMOro xapaktepa \ rpymmst O, (G) nx = (P1)°. Otcrona
BuauM, 9to X (1) =P (1)|G : I|, m uro P (1) u |G : I| He aensarcs Ha p ¥ Ha Takylo cTerneHs f > 1
npocToro uucia, uro f = 1(mod p). CrenoBarensHo, (1) = 1 u, 3Hauut, noarpymma O,(G) abenepa.
Mbl Takke MOKeM yTBepKIaTh, yto G, C I, 1. €. G, = I).

IIpeanonoxum BHauane, uto I # G.

Iycts Gpker/kerp 4A1/kerp,. Jlerko Buaets, uto rpymma I/ ker\p; u ee TOUHbIil HeNPUBOIK-
MBblii XapakTep 11 B cMbIcie JiemMsl 2.22 [10] ynosneTBopsioT yeiaoBusiM Teopems! 1.4. Torma mo nHAYKIMN
V(1) genuTcst Ha p WM HA TaKyIo cTerneHb f > 1 mpocTtoro uucia, uto f = 1(mod p), 9To He Tak.

IMostomy Gpker\;/kerp; < I/ker\p; u, sHaunt, G, kerpy </.

PaccmoTpum paktoprpymity

G=G/0,(G)=G,M, M=M/0,(G).

MBeI BrauMm, uto rpymma G, umeeT HopsAaok p, M <G u siBsietcs p/-rpymnoii, u nostomy G, ABiseTcst
CUJIbHOLIEHTpaJIM3YeMOl IpyHIoil KONpocThIX aBTOMOP(¢pU3MOB rpymmnsl M. A nockoneky G = M1, To
TakXe Mbl BUJUM, UTO

n 4TO

ITo nemme 2.2
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IIycts
M = (m0,(G),Ime M), G, = (n0y(G),|n € G)).
Torma
Ci7(Gp) = (m € M|[m,n] € 0,(G),n € Gp)

¥, 3HAYMT,

G =ICy(G,).
Hockomsky [Cy7(G,),Gp] € 0,(G) C Gy, 10 Ciz(G,) C NG(G,) 1, Cliea0BaTENBHO,

G =ING(G,).

Tak kak G, ker < 7, To no pakropusauponnoit nemme Yynnxuna I = Nj(G,) kery. TTockonbky
Ni(Gp) € N6(Gp), 10

G = Ng(Gp)ker;.

[Mockomsky G, A G, 1o kerp; # 1.

Jonyctum, uro (ker\;), = G, Nkerp; = 1. Torma ker; C C5(0,(G)). 3amernm, uTo
Cc(0,(G))«G.

Ipeanonoxum, uro C;(0,(G)) = G. Torna O,(G) C Z(G) n, cnenosatensHo, noarpyma I = G,
YTO HE TaK MO MPEANOIOKEHHUIO.

[Mostomy C;(0,(G)) # G. Otciona u U3 TOCNeHell BbIIEJIEHHOH (OPMyYJIbl BHITEKAET, YTO
G,C(0,(G)) <G. Omnaro paunee Ml oT™eTHH, uT0 S = OF (G) = G.

CrnepnosareinbHo, (ker\y), = G, Nker; # 1. Tak kak (ker\y),<G,, 10 Z = (kery),NZ(G)) #
# 1 n nockomeky T C Ng(Gp,) u Z(Gp) <Ng(Gp), 0 Z' C Z(G,) C I mna Beex t € T. 3necy T u3
dopmyist (2). [Tostomy ans 1 # z € Z nomyyaem, 4To

X(@)=W1)%2) =) W)z =Y biz™") = [TIbi(z) = [T (1) = x(1),
teT teT
160 z € kery. 3mech (P1)°(x) = P (x), ecrm x € I u (P1)°(x) = 0, ecm x & 1. Ml IOy qIM 1Ipo-
TUBOPEUHE C TOYHOCTBIO XapakTepa X.

PaccmotpumM Teneps ciyuait, korga I = G. [TockonbKy 10 BHIOOPY TpyHIibl G YUCIIO n HE AETHUTCS
Ha p, T0 X, () = X(1)A a1st muneiiHoro nenpusoaumoro xapaktepa A noarpynmst O, (G). Torna 0, (G) C
C Z(G). Bnauur, M = My x O,(G) n, 1ak xak M,y = Gy, To Buaum, uto G = G,G,y, tae Gy <G 1
|G, : 0,(G)| = p. 3ameuaem, 4TO Xapakrep X U rpymna G yIOBIETBOPSIOT YCIOBUAM JieMMsI 2 [7].
Io 3t0ii Jlemme rpyrma G UMeeT HenpUBOAUMBIA xapaktep X' crenenu n u kery’ = 0,(G). Paccmorpum
daxroprpynny G = G/0,(G). OHa u ee TO4HbIi HENMPUBOAMMBIA XapakTep X' B CMBICIIE JEMMbI 2.22
[10] ynosneTBopsioT yciousm teopemsl 1.4. Tlockonbky |G| < |G|, To mo uamykumu X' (1) penurcs
Ha p WIM HA TaKylo crerens [ > | mpocroro yncina, uro f = 1(mod p). [Tockomeky X' (1) = n, T0o MBI
MOJTYYMIA POTUBOPEYME C BHIOOPOM Tpymmsl G.

Ocranock paccMOTpeTs ciydait, koraa O,(G) = 1. Io teopeme 6.3.2 [9] C6(0,/(G)) C Oy (G).
Homnyctum, uro O, (G) # G. Io Teopeme Kmuddopna Bce HenpuBogrMbIe KOMIIOHEHTHI XapaKTepa
X0, /(G) IMEIOT OJIMHAKOBYIO CTeNeHb, esutyio n. Ecom rpynma O, i (G) He p-3aMKHYTa, TO MBI [IPUEM
K TOMY, YTO /1 I€JIUTCS HA p WJIM Ha Takylo cTeneHs f > 1 mpocroro yucna, uto f = 1(mod p). ITockosbky
3TO NPOTUBOPEUNT BHIOOPY Ipymniibl G, TO JeaeM BbiBO, UTo rpynma O, (G) ABIAeTCA p-3aMKHYTOA.
DT10 nmpoTHBOpednT ToMy, uto O,(G) = 1.

Henaem BbiBog, uto O, v (G) = G |G : Oy (G)| = p. Mbl Bumum, uto rpymma G = G,0,/(G), G,
0y (G), COP,(G)(G,,), Xo0,/(G) ¥ n yroBietsopsiot ycnosuio 1.1. Tlo Teopeme 1.2 n nemarcs Ha Takyio
crenenp f > 1 mpocroro uucia, yro f = 1(mod p).

Teopema 1.4 noka3zaHa.

Pa6ota nopgep:xana Mucturyrom matematriki HAH Benapycu B paMkax rocyiapcTBEHHOMN Ipo-
rpammbl «KonBepreHims—2025».
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1. Introduction

All groups under consideration are finite. We adhere to the terminology and notation adopted in [1-4].

The study and classification of formations with given restrictions on the lattices of their subformations
is one of the most interesting and meaningful problems in the theory of formations of finite groups.

In 1986, A. N. Skiba [5] proved that the lattice of all formations, as well as the lattice of all local
formations, are modular. This result made it possible to apply the methods and constructions of general
lattice theory to the study of the structural structure of formations of finite groups. The study of the
structural structure of a local formation § based on the properties of its well-studied subformation was
first carried out by A. N. Skiba and E. A. Targonskii [6]. This approach was based on their concept of the
H-defect of a local formation. In the paper [6], the basic properties of the £)-defect of a local formation
were studied, and a classification of local formations of nilpotent defect < 2 was obtained. Subsequently,
this method was widely used in studying the structural structure of not only local formations, but also
formations of other types, such as T-closed multiply and totally local formations, partially saturated
and partially composition formations, etc. Moreover, §) was considered not only as the formation of all
nilpotent groups, but also other fairly well-known classes (the class of all T-decomposable, 7-nilpotent,
metanilpotent, soluble, supersoluble groups, etc.).

In this paper, we study the structural structure of T-closed o-local formations based on the ideas
and results of [2; 6]. Following [2; 6], we introduce the concept of the $)-defect of a T-closed o-local
formation, as well as the [3-length of a t-closed o-local formation, study the basic properties of the
$Hg-defect of a formation, and investigate the structural structure of t-closed o-local formations of finite
5 -defect and [3-length.
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The following main results are obtained in the paper: a description of minimal t-closed o-local not
H-formations for an arbitrary T-closed o-local o-nilpotent formation ), i. e. irreducible T-closed o-local
formations of $§-defect 1 is given; the existence of $§-critical formations for every t-closed o-local
formation § Z ) is proved; a characterization of t-closed o-local formations of 7 -defect 1 is obtained;
a description of the structure of T-closed o-local formations of $5-defect < 2 and /3-length < 3 is given.

We prove the main results of the paper in Sections 3-7 and also consider some of the most
interesting consequences of the obtained results.

2. Basic definitions and some auxiliary results

The basic concepts of the theory of o-properties of groups, as well as general properties of T-closed
o-local formations and their lattices are presented in the papers [1; 4; 7-23].

Let o be some partition of the set of all primes P, i. e. 0 = {0, | i € I}, where P = | J;; 0; and
0;No; =@ foralli# j, G be a group, and § be a class of groups. Then o(G) = {o; | 0;7(G) # @}
and 0(F) = Uges 0(G).

The group G is called [1]: o-primary if G is a o;-group for some i; o-nilpotent if every chief
factor H/K from G is o-central in G, that is, the semidirect product (H/K)x(G/Cg(H/K)) is o-primary;
o-soluble if G =1 or G # 1 and each chief factor from G is o-primary.

The symbol & denotes the class of all o-soluble groups and 915 denotes the class of all o-nilpotent
groups. For any o; € o the symbol &, denotes the class of all o;-groups.

Recall that a class of groups § is called a formation if: 1) G/N € § when G € §,and2) G/NNK € §
when G/N € § and G/K € §.

Every function f of the form f : 0 — {formations of groups} is called a formation o-function [4].
For any formation o-function f the class LF;(f) defined as follows:

LFs(f)=(G|G=1orG# land G/Oy ,(G) € f(0;) for all 0; € 0(G)).

If for some formation o-function f we have § = LF;(f), then the class § is called o-local, and f
called o-local definition of §.

Let T(G) be a set of subgroups of G such that G € T(G). Then T is called a subgroup functor [2] if for
every epimorphism @ : A — Band any groups H € T(A) and T € 1(B) wehave H® € 1(B) and T¢ ' € T(A).

The subgroup functor T is called [2]: trivial, if for any group G we have T(G) = {G}; identity, if for
any group G we have T(G) = s(G) is the collection of all subgroups of G.

A formation § is called Tt-closed, if T(G) C § for any group G € §. In particular, a formation is
called: hereditary, if it is T-closed, where T = s is a identity subgroup functor; normally hereditary, if its
is T-closed, where T(G) = s,(G) is the collection of all normal subgroups of G for any group G.

The collection of all t-closed o-local formations denote by [T. Formations from /; we call
IZ-formations. In particular, if T is a trivial subgroup functor [2], that is T(G) = {G} for all G, the symbol
T we omits and denotes by [ the collection of all o-local formations.

If f is a formation o-function, then the symbol Supp(f) denotes the support of f, that is, the set of
all o; such that f(o;) # @. A formation o-function f is called: T-valued, if f(0;) is T-closed formation for
each o; € Supp(f); integrated if f(0;) C LFs(f) for all i; full if f(0;) = &, f(0;) for all i. If F is a full
integrated formation o-function and § = LF;(F), then F is called the canonical o-local definition of §.

We also use Nje; f; to denote a formation o-function % such that 4(o;) = Njec; f;(0;), in particular,
h(o;) = (fin f2)(0;) = fi(o:) N f2(0;), for all i.

Let {fj | j € J} be a set of all T-valued o-local definitions of §. Then we say that f = Nj;c;f;
is the smallest t-valued o-local definition of §.

For any set of groups X the symbol /jform X denotes a T-closed o-local formation generated by X,
that is, /3form X is the intersection of all T-closed o-local formations containing X. If § = [jform G for
some group G, then § is called a one-generated t-closed o-local formation.

Let {§; | j € J} be some collection of T-closed o-local formations. Then we put Vi (5, | j € J) =
= I3form (U5 ). In particular, for any two [3-formations 9t and §) we set MV §§ = [form (MU SH).

For an arbitrary set of groups X and any o; € o, the symbol X(0;) [9, p. 962] denotes the class of
groups defined as follows: X(0;) = (G/0y,,(G) | G € X), if 0; € 0(X), X(0;) = @, if 0; ¢ 0(X).
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Following [24;25], by a minimal t-closed o-local not $)-formation or an §-critical formation
we mean a T-closed o-local formation § & $), all of whose proper t-closed o-local subformations are
contained in the class of groups $.

Recall [2, p. 12] that a non-empty set of formations 0 is called a complete lattice of formations if
the intersection of any set of formations from 0 again belongs to 0, and the set 8 contains a formation
M such that $ C M for all § € 6. Any formation from 0 is called a 0-formation.

For any two 0-formations 9t and ), where 2t C §), we denote by $/o9 [2, p. 168] the lattice
of O-formations X such that 9t C X C . In particular, £ /39 denotes the lattice of t-closed o-local
formations X such that 9t C X C §).

Let 0 be some complete modular lattice of formations. For any two 6-formations § and 2t [2, p. 192],

and §. Let § and $) be arbitrary 8-formations. Then the $g-defect of the formation § is the lattice length
§/e$HNF (finite or infinite) and is denoted by |§F : H N Fle.

Let Og be the zero of the lattice 8, § € 0. Then the 0-length [2, p. 212] of the formation § is the
cardinal number |§ : Og|o. In particular, the length of the formation F is the number /(F) =
length of the local formation § is the number /() = | : (1)];.

Following [2, p. 192] an $)7-defect of a T-closed o-local formation §, we will call the lattice length
§/5$9NF and denote it by | : $H N F|5. Similarly, following [2, p. 212], an [3-length of a T-closed o-local
formation § is the number [Z(F) = |F : (1)]T.

Let us also recall the concept of direct decomposition of a formation (see [2, p. 171]). Let {; | j € J}
be some nonempty set of subclasses of §; C § such that §; NF;, = (1) for any j; # jo in J. If, in addition,
every group G € §hasthe form G=A; x ... xA;,whereA; €3;,...,A; €}, forsome ji,...,j: €J,
then we write that § = ®;c;§; (in particular, § =31 ®... &5, if J = {1,...,1}).

A subformation 90t of a formation § is called complemented [2, p. 170] in § if § = form(9M U $) and
MN$H = (1) for some subformation § of §. In this case, the subformation §) is called complement of M in F.

To prove the main result of the paper, we need the following known facts from formation theory.

A special case of Theorem 1.15 [16] is the following lemma.

Lemma 2.1 [16, Theorem 1.15]. The set [} of all t-closed o-local formations forms an algebraic
modular lattice of formations.

Lemma 2.2 [26, Chapter II, §8, Theorem 16]. Let £ be a lattice of finite length. Then the following
conditions are equivalent:

(1) the modular law holds in C;

(i1) £ is upper and lower semimodular;

(iil) £ satisfies the Jordan-Dedekind chain condition and h[x| + h[y] = h[xV y] + h[x A y].

Lemma 2.3 [17, Lemma 2.1]. Let I1 be a nonempty subset of 6. Then &1 of all I1-groups and the
class N of all o-nilpotent I1-groups are o-local formations and the following statements hold.

(1) & = LFs(g), where g is the canonical o-local definition of the formation . Moreover,
g(0;) = &y for all 0; € I and g(o;) = @ for all o; € IT';

(2) Ny = LF;(n) = LF5(N), where n and N are, respectively, the smallest and canonical o-local
definitions of the formation MNy. Moreover, n(o;) = (1) for all o; € Il and n(0;) = @ for all o; € 1T,
N(0;) = &g, forall o; € 1 and N(0;) = & for all o; € IT'.

Lemma 2.4 [21, Theorem]. Let § be a nonempty formation. Then the following statements are
equivalent:

(i) § is t-closed n-multiply o-local (n > 1);

(i) 4,35, ,(0:) C J for all o; € 0(F);

(i) § = form (Ug,o(5) B, 3%, (7).

Lemma 2.5 [15, p. 2372]. Let § = @ jc 5 j, where {§ | j € J} is the set of formations such that
0(8a)N0(Fp) = @ for any a,b € J, a # b. If and only if the formation § is n-multiply o-local (n > 1), §;
is n-multiply o-local formation for all j.

Lemma 2.6 [26, Ch. I, §7, Theorem 12]. If a, b, c are elements of the modular lattice M, then if
either of the two equalities a/\ (bV c) = (aAb)V (aNc) oraV (bAc) = (aVb)A(aV c) holds, the triple
{a,b,c} is distributive.
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Lemma 2.7 is a special case of Lemma 2.6 [9].

Lemma 2.7 [9, Lemma 2.6]. Ler § = [Jform(X) = LF;(f) — T-closed o-local formation generated
by X and I1 = o(X). Let m be a formation o-function such that m(o;) = tform(X(o0;)) for all o; € Il and
m(0;) = & for all o; € IT'. Then:

(DI =0(3):

(2) m is a T-valued o-local definition of §; and

(3) m(0;) € f(0o:) N for all i.

The following lemma is a special case of Lemma 3.1 [16].

Lemma 2.8 [16, Lemma 3.1]. Ler §; = LF;(f;) for all j € J, where f; is the T-valued o-local
definition of §j, § = Njes§j, and f = Njey fj. Then:

(1) 0() = Njeso(F;) = Supp(f);

(2) § = LFs(f) is a Tt-closed o-local formation, where f is a t-valued formation o-function.

Furthermore, if f; is an integrated t-valued formation o-function for all j € J, then f is also an
integrated t-valued formation o-function.

Lemma 2.9 [23, Theorem]. Let $) be a o-local formation of classical type and h be its canonical o-
local definition. Then § is a minimal t-closed o-local non-$)-formation if and only if § = [3form G, where G
is a monolithic T-minimal non-$)-group with monolith P = G%, and one of the following conditions holds:

1) G = P is a simple o;-group such that 6; ¢ o(9) and ©(G) = {1,G};

2) P is a non-o-primary group and G is a T-minimal non-h(o;)-group with P = G") for all
o; € o(P);

3) G =P x K, where P =Cg(P) is a p-group, p € 0;, and K is either a monolithic T-minimal
non-h(o;)-group with monolith Q = K"%) ¢ ®(K), where o; ¢ o(Q), or a minimal non-h(c;)-group of
one of the following types: a) the quaternion group of order 8, if 2 ¢ o;; b) an extraspecial group of
order ¢* of prime odd exponent q ¢ o;; ¢) a cyclic g-group, q ¢ o;.

Lemma 2.10 [9, Lemma 2.1]. Ler f and h be formation o-functions and let I1 = Supp(f). Let us
assume that § = LFs(f) = LF5(h). Then:

(DI =0(3);

(2) § = (N,en® ¢ &, f(0:)) N B1. Therefore, § is a saturated formation;

(3) If every group in 5 is o-soluble, then § = (ﬂgien(‘Sglr_@mf(Gi)) NGm;

4) If 0; € I1, then &4, (f(0:) NF) = &g, (h(0;) NF) CF;

(5) § = LF(F), where F is the unique formation o-function such that F(0;) = &,F(0;) C § for
all o; € Il and F(0;) = @ for all 6; € I1'. Furthermore, F(0;) = &,(f(0;) NF) for all i.

Lemma 2.11 is a special case of Corollary 3.1 [14].

Lemma 2.11 [14, Corollary 3.1]. Let f; be the smallest t-valued o-local definition of §;, j = 1,2.
Then §1 C &2 if and only if fi < fa.

Lemma 2.12 [1, Lemma 18.8]. If a group G has only one minimal normal subgroup and 0,(G) =1
(p is some prime number), then there exists a faithful irreducible F,,G-module, where F), is a field of p
elements.

Lemma 2.13[16, Corollary 3.7]. For any o-localformations 0 and 9, there is a lattice isomorphism
MV IH/CM~H/THNM.

Lemma 2.14 [2, Theorem 4.3.2]. Let M be a nonempty subformation of §. Then if ) is the
complement of M in §, then §={AXB|A€M,Be H}.

3. Hi-defect formation

Let $ and § be 1-closed o-local formations. Following [2, p. 192] an 7 -defect of § we will call
the lattice length §/5$NF and denote it by |§ : HNF|T.

By Lemma 2.1 the following two statements are special cases (for 8 = [T) of Lemmas 5.2.8 and
5.2.7 [2], respectively.

Lemma 3.1. Let M, §, X, and $ be T-closed o-local formations, and § = MV X. Then if m, r,
and t are, respectively, % -defects of the formations M, X, and §, and m, r < oo, thent < m+r.
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Lemma 3.2. Let M, §, and $) be T-closed o-local formations, and M C §. Then | : HNM|T <
<IF:HNFE.

An element a of the lattice £ is called neutral (otherwise distributive) [26, p. 96], if for any b, c € £
the triple a,b,c generates a distributive sublattice in the lattice £.

Lemma 3.3. Let M and § be t-closed o-local formations of finite $5-defect, where §) is the neutral
element of the lattice of T-closed o-local formations. Then for the $-defect of the formation MV [§ the
Jollowing equality holds:

MVEF:HNMVIZ) e =M HNME+|F: HNF|E—MNF: HNOMNF)|5-

Proof. Let M, §, and $H be o-local formations satisfying the condition of the lemma. Let X =
=MVIE L=MNF, t=|X:9NX[, m=|M: HNML, k=|F:HNF|Fand [ = |£: HN L. By
Lemma 3.1, we have t < m+k.

Letnow X; :=XViH, M :=MVH, §1:=FViHand £ := £V H. By virtue of Lemmas 3.1
and 3.2, equality | X : HNX [T =1, | HNM[E=m, |F1:HNF1|T=kand |£: HNLT =L
Therefore, the lattice length X /(X N$H) = XV TH/TH is equal to 7. Note also that the formations 01
and § are elements of the lattice X V39 /t9H ~ X/TXN$H and an H-defect is a function of the lattice
height X/ZX N $. Therefore, by Lemma 2.2 the following holds equality

I VES HNEONVEE)|e =D HNM 5+ [T HNFs— 1D NF :HN O NF)|5 (%)

Because M VF1I = (MVEHN)VE(FVEH) =X VTN, that | VES : HN (D VEF1)|S =1. Furthermore,
by hypothesis, ) is a neutral element of the lattice of t-closed o-local formations, therefore 91 N =
=MVIHHNEFEVIH) =MNF)ViH=LViH=2.

Finally, since |£; : HN LT =1=|MNF: HN(MNF)|T, then from (%) we get

MV T HNENMVEE)|e =M HNMS+ [T HNF|c—|MNF: HNEMNF)[5. O

Lemma 3.4. Let §, M, and §) be t-closed o-local formations such that $ C IN. Then the $H§-defect

of § is finite if and only if the $%-defect of the formation M NF and I -defect formations §, in this case
[T : 90T =MAT: HNONF)[G+ [T : MNFs.

Proof. Necessity. Assume that the $T-defect of § is finite and let |§ : HNF|S = n. Then, by
Lemma 3.2, the inequality |TNF : HN(MNF)|S < |F : HNF|S. Therefore, the H-defect M N F is also
finite. Let k = |9 NF : HN (MNF)|S. By the definition of HT-defect and by Lemma 2.1, the modularity
of the lattice [T, implies that there exist chains

HNF=FoCF C...CE1 CEn =7,
ﬁﬁS:f)ﬁ(mtﬂS) =L CLC...C& 1 CLh=MmMNF
from $HNF to § and M N F respectively, which §; is the maximal T-closed o-local subformation in §;;; and
£; is the maximal t-closed o-local subformationin £, foralli=0,1,...,n—1and j=0,1,...,k—1.
Since HNF CMNF C F, then, by Lemma 2.1 from the modularity of the lattice /T It follows that there
exists achain MNF =Xy C X C... C X, C X, =§ of length r = n — k such that X; is the maximal
T-closed o-local subformation in X;11,i=0,1,...,# — 1. Therefore, the lattice § /590N F has finite length

equal to z. Then ¢t = |F : MNF|T by the definition of the T -defect.
Sufficiency. Let k = [DNF: HN(MNF)|T and t = |F : MNF|5. Then we have

MNF=XgCX|C...CX; 1 CX =37,
f)ﬂS:f)ﬂ(gﬁﬁg)ZﬂoCﬂlC...C,QkflCﬂkzmﬂg,

where X; and £; are the maximal T-closed o-local subformation in X;; and £, respectively, i =

=0,1,....,t —1 and j =0,1,...,k— 1. Therefore, there exists a maximal chain of t-closed o-local
formations of length k +7 from $ N F to §. By Lemma 2.1, the latter implies that |§ : HNF|5 = k+1, i. e.
[T :HNFe=1MAT: HNONF)[5+ [T : MNFs. O

Lemma 3.5. Let §) be a t-closed o-local formation such that (1) # $ C Ne. Then $ = Ny).



Reducible t-closed o-local formations of finite groups with a given structure of subformations 41

Proof. Let IT= o($)) and &y be the class of all [T-groups. By Lemma 2.3(1), the formation &y
is o-local. Moreover, since the formation &y is hereditary, it is T-closed for any subgroup functor T.
Therefore, the inclusion $ C & NNy = Nr.

On the other hand, in view of Lemma 2.4(ii), we have &;, C 65,97, (0;) C $ for all 0; € I1. Thus,
taking into account Lemma 2.5 we have 91 = @¢,enn®o, C $. Thus, $ = 9yg, where I1 = o(9). ]

Lemma 3.6. Every o-nilpotent t-closed o-local formation is a neutral element of the lattice [7.
In particular, the formation Ny of all o-nilpotent groups is a neutral element of the lattice [7.

Proof. Let$,§, and 2 be some t-closed o-local formations, where §) is o-nilpotent. By Lemmas 2.1
and 2.6, to prove the assertion of the lemma, it suffices to show that H N (FVIIM) = (HNF) VI(HNM).

If $ = (1), then the statement is obvious. Let ) # (1) and IT) = o($HNF) and [T, = o(HNM).
Since (HNF) VE(HNM) = [Zform((HNF) U (HNIM)), then by Lemma 2.7(1) we have

S(HNF)VIHNM)) = o((HNF)UHNM)) = 0(HNF)Uo(HNM) = IT; UIL.

Since (HNF) VIHNM) CTHN(FVIM), then o((HNF)VE(HNM)) Co(HN(FVIM)),ie ILHU
UIL Co(HN(FVM).
On the other hand, § V $9t = [Fform(F U M) and again by Lemma 2.7(1) we have

o(FViM) =o(FUM) =o(F)Uo(M).

By Lemma 2.8(2), the formation $ N (FV 590N) is a T-closed o-local formation. Now, if 0; € o($H N
N(F VM), then By, C HN(FV M) by Lemma 2.4(ii). Therefore,

o, €0(H)No(FVeM) =o(H)N(co(F)Ua(M)).
Hence, &5, C (HNF) U (HNM). Therefore,
o;€o(HNF)Ua(HNM) =11, UTL,.

Thus, o((HNF)VEHNM)) = o(HN(FVEM)). Since in this case both formations (HNF) V
VT(HNM) and H N (FV M) are o-nilpotent T-closed o-local formations, then by Lemma 3.5 we have
HNF)VeHNM) =N =HN(FV M), where IT = IT; UII,. Therefore, T-closed o-local formations
9, §, and 91 form a distributive triple in the lattice [T, and therefore $) is the identity element of /7. In
particular, if $ = 91, we obtain the second part of the lemma. O

The next lemma is a direct consequence of Lemmas 3.3 and 3.6.

Lemma 3.7. Let M and § be T-closed o-local formations of finite 5 -defect, where §3 is a o-nilpotent
T-closed o-local formation. Then, for $%-defect of the formation MV [, we have

IMVEF:HNEMVIE)|e =M HNMS+|F: HNF[5—|MAF: HNEMNF)]5-
In particular, if = Ny, then for the o-nilpotent I:-defect of the formation MMV {F we have
MV S NNV G8)[5 = [T Mo NM[G+[F : N N[5 — [MNF : Ne N (MNT) 5

4. [t -Formations of §)-defect 1

Let § be a t-closed o-local formation. Following [2, p. 200], a formation § will be called an
irreducible T-closed o-local formation (or an [3-irreducible formation) if § # [ form(U;e; X;) = VE(X; | i €
€I), where {X; | i € I} is the set of all proper T-closed o-local subformations of §. If there exist such
proper T-closed o-local subformations X and §) of §, such that § = X Vv 39, then the formation § will
be called a reducible t-closed o-local (or an [:-reducible) formation.

Since every minimal T-closed o-local non-$)-formation § is obviously an /3-irreducible formation
and its unique maximal T-closed o-local subformation is contained in $), the §§-defect of the formation §
is equal to 1. Thus, every $%-critical formation is an /-irreducible formation of $5-defect 1.

Theorem 4.1. Let § and $) be t-closed o-local formations such that § € $ C Ns. If and only if §
is a minimal T-closed o-local non-$)-formation, § = [ form G and one of the following conditions holds:

(1) G is a simple o;-group such that o; ¢ o(9) and ©(G) = {1,G};

(2) G is a simple non-o-primary t-minimal non-&,-group for any o; € 0(G), o(G) C o(9);
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(3) G =P x K, where P = C(P) is an abelian p-group for some p € o; € 0($), and K is a simple
o j-group (j # i) such that ©(K) = {1,K}.

Proof. Necessity. Let § be a minimal t-closed o-local non- $)-formation. By Lemma 3.5, we
have $) = Ny, where I1= o($)). By Lemma 2.3(2), we have 9y = LF;(n), where n is the least o-local
definition of the formation Ny and n(o0;) = (1) for all 0; € I1, n(0;) = & for all o; € IT'. Thus, $ = Nyy is
a o-local formation of classical type. Let & be the canonical o-local definition of the formation $).

By Lemma 2.9, we have § = [lform G, where G is a monolithic T-minimal non-$)-group with
monolith P = G, and one of the following conditions holds:

1) G = P is a simple o;-group such that o; ¢ o($) and ©(G) = {1,G};

2) P is a non-o-primary group and G is a T-minimal non-A(0;)-group with P = G"%) for all
o; € o(P);

3) G =P xK, where P = Cg(P) is a p-group, p € 0;, and K is either a monolithic T-minimal
non-h(o;)-group with monolith Q = K"(%) ¢ &(K), where o; ¢ ¢(Q), or a minimal non-/(o;)-group
of one of the following types: a) the quaternion group of order 8, if 2 ¢ o;; b) an extraspecial group of
order ¢* of prime odd exponent g ¢ o;; ¢) a cyclic g-group, g ¢ o;.

If condition 1) holds for G, then, obviously, G satisfies condition (1) of the theorem.

Let condition 2) hold for G. It follows from Lemma 2.3(2) that i(0;) = &, for all o; € IT and
h(o;) = @ for all o; € IT'. We show that in this case G = P is a simple non-o-primary T-minimal
non-&.-group for any o; € 0(G) and 0(G) C o ().

Indeed, since P = G"(%) for all 0; € o(P), we have h(0;) # @. Therefore, o(P) C o(£)) by
Lemma 2.10(5). On the other hand, since |o(P)| > 1, then for 0;,0; € o(P), where i # j, we have

G/P € h(O‘,‘) ﬂh(O‘j) = @Gi ﬁ@gj = (1)

Therefore, and since G is monolithic, we conclude that G = P is a simple non-o-primary group such that
0(G) C 0(9). Since By, is a hereditary formation, &, is a T-closed formation for any subgroup functor T.
Therefore, by [2, Remark 2.2.12], the T-minimality condition for G can be replaced by the T-minimality
condition. This means that G is a T-minimal non-&,-group for all o; € o(P). Consequently, G satisfies
condition (2) of the theorem.

Finally, let condition 3) hold for G. Since Q = K™(%)  then 0; € 0/(£)) and ®(K) = 1 since h(0;) = G,
is a saturated formation.

Let us show that K is a simple o ;-group, j # i. Indeed, since K € £ C N, it follows that K = Q is
a simple o-primary group due to the monolithicity and o-nilpotency of K. Consequently, K is a 0 j-group,
where j # i. Moreover, since K is an T-minimal non-®,-group, it follows that T(K) = {1,K}. Therefore,
G satisfies condition (3) of the theorem.

Sufficiency. Let § be a formation satisfying the conditions of the theorem, / be the canonical
o-local definition of the formation §). By Lemmas 3.5 and 2.3(2), we have ) = 95 and h(o;) = &, for
all 0; € 0($), h(0;) = @ for all 0; ¢ o(H).

If condition (1) holds for §, then obviously, by the condition 1) Lemma 2.9, the formation § is a
minimal T-closed o-local non- $)-formation.

Suppose that condition (2) holds for §. Since &y, is a T-closed formation, by [2, Remark 2.2.12] G
is an T-minimal non-®.-group for any 0; € 0(G). Therefore, G satisfies condition 2) of Lemma 2.9, and
hence § is a minimal T-closed o-local non-$)-formation.

Now let condition (3) hold for the formation §. We show that in this case, conditions 3) of Lemma 2.9
hold for §. Indeed, since 4(0;) = B, and h(0;) = B, it follows that K = K (%) js a monolithic T-minimal
non-h(o;)-group, o; ¢ o(K). Moreover, ®(K) = 1 and 1 = K"(®)) C K. Consequently, conditions 3) of
Lemma 2.9 are satisfied for the group G. Therefore, § = [Jform G is a minimal T-closed o-local non-$)-
formation. O

In the case where §) = 91, is the formation of all o-nilpotent groups, Theorem 4.1 has the
following special case.

Theorem 4.2. If and only if § is a minimal t-closed o-local non-o-nilpotent formation, then
§ = IZform G and one of the following conditions holds:

1) G is a simple non-o-primary t-minimal non-®,-group for any o; € o(G);
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2) G =P x K, where P = Cg(P) is a p-group, p € 0;, and K is a simple o j-group (j # i) such that
T(K)={1,K}.

In the case where T is a trivial subgroup functor, we have

Corollary 4.3 [17, Corollary 2.9]. If and only if § is a minimal o-local non-o-nilpotent formation
when § = Isform G and one of the following conditions holds:

1) G is a simple non-o-primary group;

2) G =P x K, where P=Cg(P) is a p-group, p € 0;, and K is a simple ¢ j-group, j # i.

In particular, if 0 = o! = {{2},{3},{5},...}, from Theorem 4.1 we obtain

Corollary 4.4. Let § and $) be t-closed local formations such that § Z $ C . If and only if § is
a minimal t-closed local non-$)-formation when § = t'form G, where G is one of the following groups:

(1) a group of prime order p ¢ 1($));

(2) a simple non-abelian t-minimal non-N,-group for any p € ©(G) C 7($);

(3) a Schmidt group, ™(G) C ($)).

If 7 is the trivial subgroup functor, then we have

Corollary 4.5. Let § and $) be local formations such that § € $ CN. If and only if § is a minimal
local non-$-formation, then § = lform G, where G is one of the following groups:

(1) a group of prime order p ¢ 7($);

(2) a simple non-abelian group, T(G) C 1(£));

(3) a Schmidt group, T(G) C 7t($).

Furthermore, if $ = 1 is the formation of all nilpotent groups from Theorem 4.1 we obtain
the following well-known result.

Corollary 4.6 [2, Corollary 2.4.4]. If and only if § is a minimal t-closed local non-nilpotent
formation when § = t'form G where G is either a simple non-abelian t-minimal non- N,-group for any
p € (G), or a Schmidt group.

If T is a trivial subgroup functor, then we have

Corollary 4.7 [1, Corollary 19.10]. If and only if § is a minimal local non-nilpotent formation,
then § = lform G and one of the following conditions holds:

(1) G is a Schmidt group;

(2) G is a simple non-abelian group.

The question of the existence of $j5-critical formations, in the case where $ C 91, is decided by

Theorem 4.8. Let § and §) be T-closed o-local formations such that § € $ C N Then § contains
at least one minimal t-closed o-local non-$)-subformation.

Proof. Let § and $ be t-closed o-local formations from the hypothesis of the theorem. If there
exists a oy such that oy € o(§) \ 0($), then by Lemma 2.10 we have &, C § and &, Z $. Since &, is
a T-closed o-local formation, and its only proper o-local subformation is (1) C £, then &y, is the desired
$7 is a critical formation from F.

In what follows, we will assume that o(F) C o(9).

By Lemma 3.5, we have $) = ‘ﬂg( H)- Let /& be the canonical o-local definition of $. By Lemma 2.3(2),
we have h(0;) = &, for all 0; € 0($)) and h(o;) = @ for all 0; ¢ o(). Since F < $, by Lemma 2.11
there exists at least one o; € o(§) such that f(o;) € h(o;) = B,,. We choose a group K; of minimal order
in f(0;) \ Bg,. Since the formation &, is T-closed, K; is a monolithic T-minimal non-&,-group with
monolith Q; = Ki%". Among all such groups K;, we choose a group K of smallest order. Let K := K.
Then K is a monolithic T-minimal non-&;-group with monolith @ = K ®o;,

Assume that Q is not a o-primary group and let o € 0(Q) \ {0;}. Then O, 7 (K) =1 due
to the monolithicity of K. Since K € §, then K ~ K/OGPU& (K) € f(o;). It is clear that K ¢ &, =
= h(oy). Therefore, K € f(oy) \ h(oy). If, in addition, K/Q ¢ h(oy), then K/Q € f(ok) \ h(0x). The
latter contradicts the choice of the group K, since |K/Q| < |K|. Therefore, K/Q € h(oy) = &,. Thus,
K/Q € 65;,NG;, = (1). Consequently, K is a simple non-o-primary t-minimal non-&;-group.

Now let H € ©(K) \ {K}. Then H € f(oy), since K € f(0y) and f(oy) is a T-closed formation.
Suppose that H ¢ h(oy). Then since |H| < |K|, we obtain a contradiction with the choice of |K|. Thus,
K is a simple non-o-primary T-minimal non-&, -group for any oy € o(K). Thus, the group K satisfies
condition (2) of Theorem 4.1. Therefore, £ = [JformK is the desired $)§-critical formation from .
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Now let Q be a o-primary group, i. e., a 0x-group for some k # j. Then K # Q, since o(F) C
C o(%). Moreover, Q = Og, o (K) = Og,(K) since Q is a monolith of K and k # j. Since K € §, then
K/Q=K/Og, o (K) € f(0k). Therefore, K/Q € f(0x) N &, # &. Let A be a group of minimal order in
f(0x)NBg,. Then A is a simple 0;-group and T(A) = {1,A}.

Let p € o%. Since O,(A) = 1, by Lemma 2.12 there exists a faithful irreducible F,A-module P,
where F), is a field of p elements. Let G = P x A. Then P = C(P) and the group G satisfies condition (3)
of Theorem 4.1. Consequently, £ = [Jform G is the desired $)§-critical formation from . O

In particular, if T is the trivial subgroup functor from Theorem 4.8, we obtain

Corollary 4.9 [22, Theorem 3.8]. Let § and ) be o-local formations such that § € $ C Ng. Then
§ has at least one minimal o-local non-$)-subformation.

If $ =N is the formation of all o-nilpotent groups, then we obtain the following important
special case of Theorem 4.8.

Theorem 4.10. Let § be a non-o-nilpotent t-closed o-local formation. Then § has at least one
minimal t-closed o-local non-o-nilpotent subformation.

If T is a trivial subgroup functor, we obtain

Corollary 4.11 [22, Corollary 3.9]. Let § be a non-o-nilpotent o-local formation. Then § has at
least one minimal o-local non-o-nilpotent subformation.

Recall that if 9t and $) are formations such that 91 C §. Then the formation 91 is called
a subformation of §) or, alternatively, an $)-subformation.

Theorem 4.12. Let § and $) be [ -formations such that § € § C Ns. Then and only if the $§-defect
of § is 1, when § = MV 3L, where M is a T-closed o-local subformation of $), £ is a minimal T-closed
o-local non-$-formation, such that:

(1) every T-closed $)-subformation of § is contained in MV T (L£NH);

(2) every I3 -formation X from § such that X ), has the form £V 5(XN$H).

Proof. Necessity. Let § be a t-closed o-local formation with $)5-defect 1. Since § Z $), then by
Theorem 4.8 § contains some minimal T-closed o-local not $)-formation £. By the hypothesis of the
theorem, 9T = §F N $ is the maximal /-subformation of §. Therefore, § = MV L.

Sufficiency. Let § = 9V L, where £ is a minimal t-closed o-local non-$)-formation, and 91 is
an /$-formation of §). Then, by Lemma 3.3, $5-defect of § is equal to 1.

We now show that statements (1) and (2) hold. Since £N§ is a maximal T-closed o-local
subformation of £, it follows from Lemmas 2.1 and 2.13 of the lattice isomorphism

§/c(MV(£N9H)) = (MV(E£NH) VL) /(MVG(L£NH)) ~
~£/5(EN((ENH) VM) = £/5((€NH) Ve (ENM)) = £/5LNH

we get that TV 5(£N$H) is the maximal [Z-subformation of §. Since § Z ), then every $)-subformation
of § is included in (£N$H) V 7M. Therefore, assertion (1) holds.

Let us now show that in § there are no minimal t-closed o-local non-f)-formations different from £.
Suppose that this is false, and let £ be the minimal t-closed o-local non-$)-formation in § such that
£1 # £. Since the $-defects of £ and £; are equal to 1 and £N.£; C §, by Lemma 2.9 we have

IEVEL  HN(EVL) s =1L HNLE+ L :HNE T —|E€NL, : HN(LENL)|s=2.

The latter contradicts Lemma 3.2, since £V 3£ C §. Thus, in the formation § there are no minimal
T-closed o-local non-$)-formations distinct from £.

Now let X be an arbitrary /Z-subformation of § such that X Z ). Then, by what was proved above
and Theorem 4.8, we conclude that £ C X. Since X has $§-defect equal to 1, XN ) is the maximal
T-closed o-local subformation of X. Therefore, X = £V 5 (XN $), i. e., assertion (2) holds. Ul

In the case when $ = 915, from Theorem 4.12 we obtain the following result.

Theorem 4.13. Let § be a t-closed o-local non-o-nilpotent formation. If and only if the o-nilpotent
[3-defect of a formation § is 1 when § = IV T L, where 9 is a o-nilpotent T-closed o-local subformation
of §, £ is a minimal t-closed o-local non-c-nilpotent formation, and:

(1) every o-nilpotent t-closed subformation of § is included in MV (LN Ng);

(2) every non-o-nilpotent I3-subformation X of § has the form £V 5 (X NNg).
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In the case where T = s is the identity subgroup functor, Theorem 4.12 implies

Corollary 4.14. Let § be a hereditary o-local non-o-nilpotent formation. If and only if the o-
nilpotent I3 -defect of § is 1 when § =MV {.L, where 9N is a o-nilpotent hereditary o-local subformation
of §, £ is a minimal hereditary o-local non-o-nilpotent formation, and:

(1) every o-nilpotent hereditary subformation of § is included in MV 5 (£ NNg);

(2) every non-o-nilpotent I,-subformation X of § has the form £V (XN Ny).

If T(G) = 5,(G) is the set of all normal subgroups of G for any group G, then we obtain

Corollary 4.15. Let § be a normally hereditary o-local non- o-nilpotent formation. If and only if
the o-nilpotent 13 -defect of § is 1 when § =MV ¢ £, where M is a o-nilpotent o-local subformation
of §, £ is a minimal normally hereditary o-local non-o-nilpotent formation, and:

(1) every o-nilpotent I -subformation of § is in the MV & (LN Ny);

(2) every non-o-nilpotent g -subformation of X of § has the form £V ¢ (XNNy).

In particular, if 0 = o! = {{2},{3},{5},...} from Theorem 4.12 we obtain

Corollary 4.16. Let § and $) be t-closed local formations such that § € $ C 0. If and only if the
7} -defect of the formation § is 1, when § = MMV [ £, where M is a t-closed local subformation of §), £ is
the minimal t-closed local not $)-formation, for In this case:

(1) every t-closed $HH-subformation of § is contained in MV lT(E nyn);

(2) every t-closed local subformation X of § such that X Z ) has the form £V [(XN$H).

If T is a trivial subgroup functor, then

Corollary 4.17. Let § and $) be local formations such that § € $ C N. If and only if the $);-defect
of the formation § is 1, when § =MV 1 £, where M is a local subformation of $, £ is the minimal local
not 9 is a formation, and:

(1) every $-subformation of § is contained in MV ;(£N H);

(2) every local subformation X of § such that X £ $ has the form £V (XN $).

Furthermore, if $§ = 91 is the formation of all nilpotent groups from Theorem 4.12, we obtain
the following well-known result.

Corollary 4.18 [1, Lemma 20.5]. Then precisely the nilpotent defect of a local formation § is
equal to 1 when § =MV £, where M is a nilpotent local formation, £ is a minimal local non-nilpotent
Jormation, and:

(1) every nilpotent subformation of § is contained in MV ;(LNN);

(2) every non-nilpotent local subformation X of § has the form £V (X NN).

Theorem 4.19. Let § and $) be T-closed o-local formations such that § € $ C Ng. Then if
0(F) C o(9), then the following conditions are equivalent:

D [F:HNF=1;

(2) in § each of its T-closed o-local non-9-subformation is complemented;

(3) in § each of its T-closed o-local subformations 9t with |9 : HNM|S = 1 is complemented.

Proof. Let (1) hold and 90 is a T-closed o-local subformation of §. Then if 9t  §, then by
Theorem 4.12 we have 9t = £V 5 (9N $H), where £ is the minimal t-closed o-local not $)-formation. Let
IT=0(5F), I} = o(M) and [T, = IT\ IT;. We show that Ny, is the complement of M1 in F. It is clear that
N, VM = (1). We show that form(IMUMNy,) = §.

By Theorem 4.12 we have § = £V $90t;, where 91; C §. On the other hand,

M=LViMNH) =LV N,
because M N $H C MNN; = Npy,. Now in force Lemmas 2.14 and 2.5 we have
form(fmu‘ﬁnz) = m@’ﬁnz = m\/émnz = (Svgmnl)\/;mnz = SVémn =3.

Thus, the formation 1, is the complement of 91 in §.

Clearly, if assertion (2) holds, then assertion (3) holds, since any T-closed o-local subformation of
oM with [DT: HNM|T = 1 is not an $H-subformation of .

Now let (3) hold. We will show that condition (1) is satisfied. By the hypothesis of the theorem,
$ Z $. Therefore, by Lemma 2.4, § has a minimal t-closed o-local non-$)-formation £. Let M = HNF
and §; = MV L. By Theorem 4.12, we have |§; : HNF|5 = 1.
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Therefore, by the hypothesis of the theorem, § contains a subformation 9t; such that 9t; NF; = (1)
and § = form(§; UM;). Now applying Lemmas 2.14 and 2.5, we obtain that § = §; © 91; and the
formation 9)t; T-closed and o-local.

Suppose that 1) # (1). Then if o; € o(9My), then o; € o(F) C o($) by the hypothesis of the
theorem. Therefore, by Lemma 2.4(ii), the inclusions hold

B, CNMN(FNH) SMNF = (1).

The resulting contradiction shows that 9t = (1). Therefore, § = § © 9M; = F;. Therefore,
F:HNF T =1 O

Remark 4.20. The condition o(F) C o($)) in Theorem 4.19 cannot be omitted, since the presence
of a complement in § for each of its t-closed o-local non- $)-subformations, as well as the presence of
a complement in § for each t-closed o-local subformation 9 of § with |9 : HNOM|T = 1 does not imply
the equality |§ : HNF|G = 1. Indeed, let $ = &g, and § = HV 5G4, V 8, where 0,04 € 0\ {0;},
Jj # k. Then, by Lemmas 2.5 and 2.14 we have § = $H @ QSUJ. @ &g, . By Theorem 4.1 and Lemma 3.3 we
have |§ : HNF|S = 2. However, as is easy to see, every T-closed o-local non-$)-subformation of §, as well
as every t-closed o-local subformation of § with $5-defect 1, have complement in §.

However, the following holds:

Corollary 4.21. Let § be a t-closed o-local non-o-nilpotent formation. Then the following conditions
are equivalent:

(D [§: N NFT =15

(2) in § each of its T-closed o-local non-o-nilpotent subformations is complemented;

(3) in § each of its T-closed o-local subformations 9t with |9 : N NIM|T = 1 is complemented.

In particular, if 0 = o! = {{2},{3},{5},...}, from Theorem 4.19 we have

Corollary 4.22. Let § and $) be such local formations such that § Z $ C N. Then if 1(F) C 7(9H),
then the following conditions are equivalent:

D IF:903h=1;

(2) in § each of its local non- $H-subformations is complemented;

(3) in § each of its local subformations I with |9 : HOM|; = 1 is complemented.

Moreover, if §) = 91, from Theorem 4.19 we obtain the following well-known result.

Corollary 4.23 [2, Corollary 5.2.12]. Let § be a non-nilpotent t-closed local formation. Then the
Jollowing conditions are equivalent:

(D |3 : MO =1;

(2) In § every non-nilpotent t-closed local subformation is T-complemented;

(3) In § every t-closed local subformation 0 with |9t : MNM|T = 1 is T-complemented.

5. Reducible [ -formations of bounded 7 -defect

The main result of this section is the following theorem, which describes reducible t-closed
o-local formations of finite )3 -defect.

Theorem 5.1. Let § and $) be t-closed o-local formations such that § Z $ C Ns and let § be
I3-reducible. If and only if 5 -defect of formation § is equal to k, when § satisfies one of the following
conditions:

(1) § = L£VIM, where £ is an irreducible t-closed o-local formation $5-defectt,1 <t <k—1,
and M is such a t-closed o-local formation $H-defect k — 1, such that £NIM is the maximal T-closed
o-local subformation of the formation £;

(2) = LV M, where £ is an irreducible T-closed o-local formation $5-defect k, I is such
T-closed o-local formation such that M C § and N Q £.

Proof. Sufficiency. Let § satisfy condition (1). Since £ NN is the unique maximal t-closed o-local
subformation of £, it follows that |[£NMT: H N (LNM)|T =7 — 1. Therefore, by Lemma 3.3 we have

1§ NG| =1L HNLT+[0:HAME— [LAM: HA(ENM)[E=1+k—1—(1—1) =k
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Now let the formation § satisfy condition (2). Then by Lemma 3.3 we get
IF:9NFc=1L:HNLIS+M: HNME—[LNM:HN(LNM)|[Z=k+0—-0=k.

Thus, we have |§: HNF|E = k.

Necessity. We prove the necessity by induction on k. Let k = 1 and § be a t-closed o-local formation
with $§-defect 1. Since § Z §, then by Theorem 4.8 § contains some minimal T-closed o-local not
$ is a subformation of £. Since the HHT-defect of §F is 1, M = FN$ is the maximal T-closed o-local
subformation of §. Therefore, § = £V t91 and the formation § satisfies condition (2) of the theorem.

Let k > 1 and assume that the theorem holds for £ — 1. Let 9T denote the maximal t-closed o-local
subformation of § whose $)5-deficit is k — 1.

Suppose that in § there exists an irreducible t-closed o-local subformation X such that X Z 90t
and 1 < [X:HNX|T<k—1.ThenF =MV IX. Lett = |X: HNX[T. Ifr = 1, then XN $) is the unique
maximal T-closed o-local subformation of X. Since 91 is maximal, we have 9t N $H = FN 5. Therefore,
XNH =9MN$H. Therefore, XN = XN $ and the formation § satisfies condition (1) of the theorem.

Now let 2 < ¢ < k— 1 and let any irreducible T-closed o-local subformation of § with $7-defect
less than ¢ be contained in 9. Let X; be a maximal t-closed o-local subformation of X such that
|X1: HNX|T =1—1.If X is [ -irreducible, then by assumption X; C 9t. Therefore, X N9 = X and
§ satisfies condition (1) of the theorem.

Let X; be a reducible t-closed o-local formation. Since t — 1 < k — 1, then by the induction
hypothesis for the formation X; the theorem is true. Therefore, the formation X; satisfies one of the
following conditions:

(a) X; = £; VIO, where £ is an irreducible t-closed o-local formation and |£; : H N L[5 =5,
1 <s<k—2,and M, is a T-closed o-local formation such that |9, : HOM|T =k —2 and £, NM; is
the maximal t-closed o-local subformation of the formation £;;

(b) X1 = £ VM, where My C H, and £ is an irreducible t-closed o-local formation such that
’21 If)ﬂS]’g:k— 1 and 0 € £4.

Let (b) hold. Then, by assumption, £; C 971. Moreover, since 91N $H = FN H, we have N C M
and X = £; V9 C M. Consequently, X NN = X and the formation § satisfies condition (1) of the
theorem.

Now let (a) hold. If the formation 91, is /¢-irreducible, then by assumption the formations 91; and
£ must be contained in 991. Therefore, X N2t = X and the formation § satisfies condition (1) of the
theorem.

If the formation /3-reducible, then by induction the theorem holds for it. Repeating the above
arguments for 91; and so on, after a finite number of steps (since the 7 -defect of the formations under
consideration is finite and strictly decreasing), we obtain that X N9t = X;. Therefore, the formation §
satisfies condition (1) of the theorem.

Now suppose that every irreducible t-closed o-local subformation of § with $)-defect less than
k is contained in 90t. Since § is a reducible T-closed o-local formation, it follows that § \ 9t contains
a group G such that £ = [Tform(G) # §. Then § =MV T L. By Lemma 3.2 we have d = [£: HN L[ < k.
Assume that d < k.

If £ is [-irreducible, then by assumption £ C 901, which is impossible. This means that £ is
a reducible t-closed o-local formation. But then, by induction, the theorem holds for the formation £.
Given the assumption of irreducible T-closed o-local subformations with $)3-defect less than &, and the
fact that § N H = NN $H, we again conclude that £ C M. A contradiction. Therefore, d = k.

Let © be an irreducible t-closed o-local subformation of 91 such that ©® ¢ £. By Lemma 3.2, we
have m = |D : HND|F < k. Since the formations £ and © are contained in §, we have R = LV D C §
and by Lemma 3.2 we have d = |R: H N R|T < k.

On the other hand, by Lemma 3.5 we have the equality

d=k+m—b, whereb=|£ND: HN(LND)|5.

Since ® Z £, then b < m — 1. Therefore, a > k+m — (m— 1) = k+ 1. Contradiction. Thus, any irreducible
T-closed o-local subformation of 9J1 is contained in £. Therefore, if 91 is an irreducible t-closed o-local
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formation, then 9t C £. But then § = £V {9t = £, which contradicts the definition of the formation £.
Therefore, the formation 90 is [ -reducible.

Suppose that £N§H = FNH. Since [P : HNMT =k — 1, then by induction the theorem is true for
the formation 9. Therefore, the formation 21 can be represented as (a) or (b). Given that every irreducible
T-closed o-local non- $)-subformation of 91 is contained in £, we obtain that 90t C £. A contradiction.
Thus, £N$H C FN$H. Since MNH =FNH, it follows that MNH Z £N$H.

Let £ be an irreducible t-closed o-local formation. Then, using the representation of the formation
2 in the form (a) or (b) and taking into account that any irreducible t-closed o-local formation with
$-defect less than k is contained in £ we obtain that § = £V J(9N$). Thus, the formation § satisfies
condition (2) of the theorem.

Now let £ be a reducible t-closed o-local formation. Then, since £ Z 91, by Theorem 4.8, £
contains at least one 9 -critical formation X. Since any irreducible t-closed o-local formation with
$Hg-defect less than k is contained in 9t and M N H = FN A, it follows that | X : HNX|T = k. Note also
that any irreducible T-closed o-local formation in £ with $3-defect less than k is contained in X, since
otherwise the formation § would contain an [}-subformation with $7-defect greater than k, which is
impossible in view of Lemma 3.1. Since the formation 9 is maximal, we have § = 2tV $X. Since
MNH Z LNH, then MNH Z XN $H. Therefore, given the representation of the formation YN in form (a)
or (b), we have F =MV IX =X VL(MNN).

Thus, the formation § satisfies condition (2) of the theorem. O]

In the case where $) = 91, we obtain the following special case of Theorem 5.1.

Corollary 5.2. Let § be a reducible t-closed o-local formation. If and only if the o-nilpotent
[3-defect of a formation § is equal to k when § satisfies one of the following conditions:

(1) § = LV IIM, where £ is an irreducible t-closed o-local formation of o-nilpotent [%-defect t,
1 <t <k—1,and M is such t-closedo-local formation of o-nilpotent [:-defect k — 1, such that LN is
the maximal t-closed o-local subformation of £;

(2) § =LV IM, where £ is an irreducible T-closed o-local formation of o-nilpotent [3-defect k,
M is a T-closed o-local formation such that 9N C $ and N §Z L.

In particular, if o = o' = {{2},{3},{5},...} from Theorem 5.1 we obtain

Corollary 5.3. Let § and $) be t-closed local formations such that § € $ C N and let § be reducible.
If and only if the $;-defect of a formation § is equal to k when § satisfies one of the following conditions:

(1) § =LV M, where £ is an irreducible t-closed local formation of $;-defectt,1 <t <k—1,
and M is a t-closed local formation $);-defect k — 1 such that £NM is the maximal T-closed local
subformation of £;

2) § = LV IR, where £ is an irreducible t-closed local formation of $;-defect k, M is a T-closed
local formation such that I C $ and N Q £.

Moreover, if §) = 91 is the formation of all nilpotent groups from Theorem 5.1, we obtain the
following well-known result.

Corollary 5.4 [27]. Let § be a reducible t-closed local formation. If and only if the nilpotent
[T-defect of a formation § is equal to k when § satisfies one of the following conditions:

(1) § = £V 9N, where £ is an irreducible t-closed local formation of nilpotent [*-defect t, 1 <t <
<k—1,and M is a t-closed local formation of nilpotent [*-defect k — 1 such that £\ is a maximal
T-closed local subformation of £,

(2) § = £V 9N, where £ is an irreducible T-closed local formation of nilpotent [*-defect k, I is
a t-closed local formation such that 9N C $ and N g_ £.

Let § — t-closed o-local formation. Following [2, p. 212], [3-length of § we define the number
5(3) = 15 : (15

In the case when $ = (1), from Theorem 5.1 we obtain the following result.

Theorem 5.5. Let § be a reducible t-closed o-local formation. If and only if the [Z-length of
a formation § is equal to k when § = £V 9N, where £ is an irreducible t-closed o-local formation
[3-length t, 1 <t <k—1, and M is a t-closed o-local formation [}-length k — 1, such that £ NN is
maximal t-closed o-local subformation of £.

If T is a trivial subgroup functor, then from Theorem 5.5 we obtain
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Corollary 5.6. Let § be a reducible o-local formation. If and only if the ls-length of a formation §
is k when § = £V 9N, where £ is an irreducible o-local formation of ls-lengtht, 1 <t <k—1,and M
is a o-local formation of ls-length k — 1, such that £NM is a maximal o-local subformation of £.

Let T = s is the identity subgroup functor. Then Theorem 5.5 implies

Corollary 5.7. Let § be a reducible hereditary o-local formation. If and only if the [};-length of
a formation § is equal to k when § = £V 9N, where £ is an irreducible hereditary o-local formation of
I-lengtht, 1 <t <k—1,and M is a hereditary o-local formation of I%-length k — 1, such that £NMN is
a maximal hereditary o-local subformation of the formation £.

In the case where T = s5,, from Theorem 5.5 we have

Corollary 5.8. Let § be a reducible normally hereditary o-local formation. If and only if the
1& -length of a formation § is equal to k when § = £V ¢ 9N, where £ is an irreducible normally hereditary
o-local formation I3 -lengtht, 1 <t < k— 1, and M is a normally hereditary o-local formation 13} -length
k—1, such that £NIM is a maximal normally hereditary formation o-local subformation of £.

In particular, if o = o! = {{2},{3},{5},...} from Theorem 5.5 we have

Corollary 5.9. Let § be a reducible t-closed local formation. If and only if the [*-length of
a formation § is equal to k when § = £V 9N, where £ is an irreducible t-closed local formation of
[T-length t, 1 <t <k—1, and M is a t-closed local formation of [*-length k — 1 such that £NIM is
a maximal t-closed local subformation of £.

6. Reducible t-closed o-local formations of 5 -defect 2

In this section, using Theorem 5.1, we give a description of reducible T-closed o-local formations
with $5-defect 2, and also consider some special cases and consequences of the following main result
of this section.

Theorem 6.1. Let § and $) be t-closed o-local formations such that § € $ C Ny and let § be
[3-reducible. If and only if 5 -defect of a formation § is 2 when § satisfies one of the following conditions:

(1) § =L VEL VIM, where M C §, and £1 and £, are distinct minimal T-closed o-local
non-$)-formations;

(2) T = LVIIM, where M C 9, and £ is an irreducible t-closed o-local formation $§-defect of 2,
mg L.

Proof. By Theorem 5.1, one of the following conditions holds for §:

(1) § = £V MM, where £ is an irreducible T-closed o-local formation $%-defect 1, and 91 is
a 1-closed o-local formation $5-defect 1 such that £NM is a maximal T-closed o-local subformation
of £;

(2) § = LV, where £ is an irreducible t-closed o-local formation 3 -defect 2, 91 is a T-closed
o-local formation such that 93t C £ and 9t g £,

Let § be a formation satisfying condition (1). Since £ is an irreducible T-closed o-local formation of
$H5-defect 1, £ is the minimal T-closed o-local non- $)-formation. Moreover, since £N 91 is the maximal
T-closed o-local subformation of £, it follows that £NM C 5. By Theorem 4.12 we have 9t =M, VT Ly,
where 901 is a T-closed o-local subformation of ), £ is the minimal T-closed o-local non- $)-formation.
Note also that since £ Z 21, then £ # £,. Means,

SZQ\/EWZS\/E(W] \/gﬂl) 22\/;21 Véml,

where 901 C $, a £ and £ are distinct minimal T-closed o-local non- $)-formations. Thus, the formation
§ satisfies condition (1) of the theorem.

If condition (2) holds for §, then § obviously satisfies condition (2) of the theorem. L]

Theorem 6.1 has many different special cases and consequences for specific subgroup functors T,
formations $), and partitions o. Let us consider some of them.

Thus, if T = s is the identity subgroup functor, then the following holds.

Corollary 6.2. Let § and $) be hereditary o-local formations such that § € ) C Ny and let § be an
I3 -reducible formation. If and only if $}.-defect of a formation § is 2 when § satisfies one of the following
conditions:



50 V. V. Skrundz, I. N. Safonova

(1) § = L1 VL VI, where N C §), and £y and £, are distinct minimal s-closed o-local non-
H-formations;

(2) T = LVIIM, where M C 9, and £ is an irreducible t-closed o-local formation $§-defect of 2,
mg L.

If T(G) = 5,(G) is the set of all normal subgroups of G for any group G, then we obtain the
following statement.

Corollary 6.3. Let § and $) be normally hereditary o-local formations such that § Z $ C N and
let § be I -reducible. If and only if $H -defect of a formation § is 2 when § satisfies one of the following
conditions:

(HF=LIVELVaIn, where M C 9, and £1 and £, are distinct minimal s,,-closed o-local non-
H-formations;

(2) T =LV uIM, where M C H, and £ is an irreducible s,-closed o-local formation $ -defect
of2, MZ L.

In the case where $ = 15, we obtain the following special case of Theorem 6.1.

Theorem 6.4. Let § be an [}-reducible t-closed o-local formation. If and only if the o-nilpotent
[3-defect of a formation § is 2 when § satisfies one of the following conditions:

(1) T =L VL VM, where M C Ny, and £y and £, are distinct minimal t-closed o-local
non-o-nilpotent formations;

2)§ = LVIIM, where M C Ny, and L is an irreducible t-closed o-local formation with o-nilpotent
I3-defect equal t0 2, M ¢ £.

In the case where T = s is the identity subgroup functor, Theorem 6.4 implies

Corollary 6.5. Let § be an [-reducible hereditary o-local formation. If and only if the o-nilpotent
[3-defect of a formation § is 2 when § satisfies one of the following conditions:

(1) §= L1 ViL VM, where MM C Ny, and £1 and £, are distinct minimal s-closed o-local
non-o-nilpotent formations;

2) =LV, where M C N, and L is an irreducible s-closed o-local formation $3% -defect of 2,
Mg L.

If T(G) = 5,(G), then from Theorem 6.4 we obtain

Corollary 6.6. Let § be an [y -reducible, non-o-nilpotent normally hereditary o-local formation. If
and only if the o-nilpotent I3 -defect of a formation § is 2 when § satisfies one of the following conditions:

(D F=L1VILr VI, where M C Ny, and £1 and £, are distinct minimal s,-closed o-local
non-o-nilpotent formations;

(2) T = LV EIM, where M C Ny, and £ is an irreducible T-closed o-local formation £ -defect
of 2, M SZ L.

In the classical case, when o = ¢!, from Theorem 6.4 we obtain

Corollary 6.7 [2, Theorem 5.2.19]. Let § be a reducible t-closed local formation. Then the
nilpotent [*-defect of a formation § is equal to 2 if and only if one of the following conditions holds:

(D) §=L1 VL VM, where M C N, and £ and £, are distinct minimal Tt-closed local
non-nilpotent formations;

(2) F = LVIM, where M CN, and £ is a t-irreducible t-closed local formation with nilpotent
[*-defect equal to 2, M ¢ £.

If, in addition, T is a trivial subgroup functor, then we have

Corollary 6.8 [1, Theorem 20.6]. Let § be a reducible local formation. Then the nilpotent defect of
a formation § is equal to 2 if and only if § satisfies one of the following conditions:

(D) F= L1V LV IM, where M CN, and £ and £, are distinct minimal local non-nilpotent
Sformations;

(2) § = £V M, where M CN, and £ is an irreducible local formation with nilpotent defect 2,
Mmg L.
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7. t-Closed o-local formations of /}-length < 3

Let § be a t-closed o-local formation. Following [2, p. 212], an [}-length of a formation § we
define the number [%(F) = |§ : (1)]3-

In this section, we apply Theorem 4.2 to describe T-closed o-local formations with [Z-length < 3.

Lemma 7.1. Let § = §1 © ... ® Sk, where §; is a non-identity t-closed o-local formation with
I5(8j) =mj < oo. Then I3(§) = m1 +my+---+my. In particular, if § C Ny and |0(F)| < oo, then
[5(3) = [o(3)].

Proof. We prove the lemma by induction on k. For k = 1, the lemma is true. Now let k > 1 and
assume that the lemma is true for k — 1. Then, by induction, for the formation §; ... & §r—; we have
IX(F1®...®F1) =m;+my+---+m_,. By Lemma 2.13, the lattice isomorphism

F/8k=31D...08k/o8k = ((F1® ... ®Fk—1) VoSk)/ o8k =~
D OF /B D OT ) =F 1D DTt /5(1).

Therefore, I3(F) = 15(F1D ... B Fk—1) +15(Fk) = (m1 +ma+- - +my_y) + my.

In particular, if the formation § is o-nilpotent and |0(F)| < oo, then § = &4, ©...D G, , where
{0i,...,0;,} = 0(F). Therefore, from the first part of the lemma, we obtain [(§) = |0(F)]. O

Lemma 7.2. Every t-closed o-local formation of [3-length 2 is reducible.

Proof. Let § be an irreducible t-closed o-local formation. Assume that the /3-length of § is 2. Since
T NN = Ny(z) by Lemma 3.5, it follows that [o(F)| = [5(N(z)) by Lemma 7.1. Clearly, [o(F)| > 1.
Since the formation § is /3-irreducible, it follows that ‘ﬁg(g) C §. Therefore, § contains a proper t-closed
o-local subformation of /3-length > 2. This contradicts Lemma 3.2. O

Lemma 7.3. Let § be a t-closed o-local formation. If § is an [3-irreducible formation of I:-length
3, then |0(F)| = 2.

Proof. Let § be an [}-irreducible formation of [3-length 3 and 90t be its unique maximal T-closed
o-local subformation. Then [ (9t) = 2. Now applying Lemmas 7.2 and 7.1 we have |o(9t)| = 2. Since the
formation § is /3-irreducible, any proper T-closed o-local subformation of §§ is contained in 9)t. Therefore,
o(F) = o(M). O

Theorem 7.4. Let § be a t-closed o-local formation. Then the following statements hold:

(1) IX(F) < 2 ifand only if § = N1, where |T1| < 2;

(2) IX(F) = 3 ifand only if § = N1, where |I1| = 3, or § is a minimal t-closed o-local non-o-nilpotent
formation, |o(F)| = 2.

Proof. (1) If |0(F)| = 1, then § = &, for some i. Then [I(F) = 1 by Lemma 7.1. Suppose that
§ is not o-nilpotent. Then § is not a o-primary formation, and hence there exist 0; and 0; such that
0;,0; € 0(§) (i # j). By Lemma 2.4, we have &,, &5, C §. Therefore, &5, © &5, C §. By Lemma 7.1
we have [T (&g, @ 0551.) = 2. Therefore, &y, ® &, = §. Contradiction. This means that (1) holds.

(2) Let I3(§) = 3. If § is o-nilpotent, then § = Ny, where |I1| = 3, by Lemmas 3.5 and 7.1. Suppose
that § is not o-nilpotent. Then, by Theorem 4.10, § has a minimal t-closed o-local non-c-nilpotent
subformation $). By Theorem 4.2, we have |o($))| > 2. Since NN = Ny by Lemma 3.5, it follows
that [T($HNDs) > 2. Since at the same time § Z N and [3(F) = 3, then [3($HNNs) = 2. Therefore,
I5($H) =3 and |0($H)| = 2. This means ) = F.

Let § be either a T-closed o-local o-nilpotent formation with |o(F)| = 3, or a minimal t-closed
o-local non-o-nilpotent formation and |o(§)| = 2. Then in the first case [§(F) = 3 by Lemma 7.1. In the
second case, the formation § has a unique maximal T-closed o-local subformation §N91,. By Lemma 3.5,
we have § NNy = Ny5). Therefore, |0(Ng(z))| = 2 and, therefore, [5(Ng(z)) =2 by Lemma 7.1. But
then /3 (F) = 3. O

In particular, if is a trivial subgroup functor, then we have

Corollary 7.5. Let § be a o-local formation. Then the following statements hold:

(1) I5(§) < 2 if and only if § = N, where |1 < 2;

(2) I5(§) = 3 if and only if § = N, where |I1| =3, or § is a minimal o-local non-o-nilpotent
Jormation.
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Using Theorem 4.2 from Theorem 7.4, we obtain the following description of T-closed o-local
formations of [3-length < 3.

Theorem 7.6. Let § be a t-closed o-local formation. Then the following statements hold:

(1) IX(F) < 2 ifand only if § = IZform G, where G is a o-nilpotent group with |0(G)| < 2;

(2) I5(§) =3 if and only if § = I form G, where G is either a o-nilpotent group with |6(G)| = 3, or
a simple non-o-primary group with ©(G) = {1,G} and |6(G)| =2, or G= P x K, where P =Cg(P) is a
p-group, p € 0;, and K is a simple o ;-group (j # i) such that T©(K) = {1,K}.

Proof. Let § be a t-closed o-local formation and /3 (§) < 3. Then, by Theorem 7.4, one of the
following statements holds for §: a) § = My, where |I1] < 2; b) § = Ny, where |I1| = 3, or § is a minimal
T-closed o-local non-o-nilpotent formation, |o(F)| = 2.

Suppose that § is o-nilpotent, |0(F)| < 3. And let G be a o-nilpotent group in § such that
0(G) = o(%). Then [fform G = Ny(3) = § by Lemma 3.5.

Now let § be a minimal T-closed o-local non-o-nilpotent formation,
Theorem 4.2, we have § = [jform G and one of the following conditions holds:

1) G is a simple, non-o-primary, T-minimal, non-&,-group for any o; € o(G);

2) G=P x K, where P = Cg(P) is a p-group, p € 0;, and K is a simple 0;-group (j # i) such that
(K)={1,K}.

Let G satisfy condition 1). Then if 0;,0; € 0(§) and H € T(G) \ {G}, then H € &5, NG, = (1).
Consequently, T(G) = {1,G} and the group G satisfies Condition (2) of the theorem.

If Condition 2) is satisfied for G, then obviously G satisfies Condition (2) of the theorem. ]

In particular, if T is the trivial subgroup functor, then the following holds.

Corollary 7.7. Let § be a o-local formation. Then the following statements hold:

(1) Is(F) <2 ifand only if § = I;form G, where G is a o-nilpotent group with |o(G)| < 2;

(2) () =3 ifand only if § = Isform G, where G is either a o-nilpotent group with |0(G)| =3, or
a simple non-o-primary group with |0(G)| =2, or G = P x K, where P = Cg(P) is a p-group, p € 0,
and K is a simple o j-group, j # i.

In the classical case, when o = o! = {{2},{3},{5},...} From Theorem 7.6 follows

Corollary 7.8 [2, Lemma 5.3.11]. Let § be a t-closed local formation. Then the following statements
hold:

1) I'(F) < 2 if and only if § is nilpotent and |1(F)| < 2;

2) I(§) = 3 if and only if § = T'form G, where G is either a Schmidt group or a nilpotent group
with |t(G)| = 3.
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unions of such systems, and systems close to them, in the space L., of bounded random variables.
Series over such systems do not hold the property of unconditionality: the convergence of
the series depends on the ordering of the terms. At the same time, as we demonstrate in the
paper, such systems posess a very close property of random unconditional convergence (or
RUC-property).
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Annoramus. ITycts X = {X; }}? | — noc/ieJ0BaTe/IbHOCTh HE3aBUCUMBIX CHMMETPHUUHBIX 1
OrpaHMYeHHBIX CITy4ailHbIX BeTMunH. B pabore paccmaTpupaiotcs cuctemsl Bupa {X;X;}i< ;,
{XiX;Xy}i< j<k,---» KOHEUHblE OOBETMHEHMA TAKUX CHCTEM M ONM3KME K HUM CHCTEMBI
B IIPOCTPAHCTBE Lo, OrpaHUYEHHBIX CJIyYalHBIX BEJMYMH. PAIBI 110 TaKUM cUCTEMaM He
00J1a1210T CBOHCTBOM 0€3yCIOBHOCTH: CXOAUMOCTb PAJOB 3aBUCUT OT MOPAAKA, B KOTOPOM
HYMEpYIOTCS JIEMEHTBI CUCTEMBL. B TO ke BpeMs, Kak MOKa3aHO B paboTe, TaK1e CUCTEMBbI

CJly4daiiHble BEJIMYMHBIL. 00J1/110T OYeHb OU3KUM CBOMCTBOM CJTy4aiiHOH 6€3yCJIOBHOM CXOAUMOCTH.

1. Introduction

Investigating the behavior of special sequences is a cornerstone of geometric Banach space theory
[1;2]. The properties associated with random sequences and series are particularly important [3;4].
The simplest version of such random constructions arises by applying random signs to the terms of
a series and studying norm changes of the sum under such arrangements. Another probabilistic method
can be used when the Banach space itself consists of random variables, such as the Lebesgue space
of measurable functions on the interval. Here, one studies sequences of independent random variables
or polynomial forms from such sequences [5—11]. The independence of sequence elements allows for
the application of general and strong results for sums over such terms, related to distribution estimates,
moments, and limit theorems. At the same time, these sequences provide a rich source of examples and
counterexamples that illuminate the geometry of the underlying space. By considering sums in Banach
spaces of random variables with random coefficients, we can combine these two approaches of applying
probabilistic methods to study the geometry of subspaces in such spaces.

We follow papers [12; 13], which initiated the study of sums over Rademacher chaos within the
space L«[0,1]. This space is viewed as the set of bounded random variables on the unit interval with
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the Lebesgue measure. The authors investigated the stability properties of norms for such sums under
a random arrangement of signs. Let us recall the basic concepts and formulate some results from these
works. Rademacher functions ri(t), for ¢ € [0, 1] and k € N, can be defined as follows:

n() = ()2 k=1,2,...,

where [x] denotes the integer part of the number [x]. Rademacher functions are used in a large number
of fundamental and applied problems[14—17]. The following fact was proved in [13]. For any n € N and
any real coefficients a; j, 1 <i < j < n, it holds that

Eg Z Qija,-jr,-rj = Sm—njzl Z 9ijaij”'irj =
I<i<j<n L.([0,1]) b I<i<j<n L ([0,1])
1/ 2 i 1/2 )]
= max Z < Z a%j) ’Z (Za%)
i=1 \ j=i+1 =2 \i=1

Here, r; = r;(t) are Rademacher functions, 0;; are independent signs (i. e., =1 valued random variables),
and Eg denotes the expectation with respect to these signs. The notation X < Y means that ¢1Y < X < Y
for some universal constants ¢y, cp > 0. This result establishes the random unconditional convergence
(RUC) property for the second-degree Rademacher chaos in L. and connects its norm to one special
norm of the coefficient matrix. RUC property was introduced by Billard, Kwapien, Pelczynski and
Samuel in [18]. It shows that although the system may not be an unconditional basic sequence (basis),
there holds a certain relaxation.

The nature of Rademacher random variables (we then use term rvs) gives the idea that results
concerning it can be extended to similar random variables, such as symmetric bounded random variables.
Moreover, the identical distribution of such rvs is not necessary for properties under investigation.
A primary objective of this work is to extend the aforementioned L..-norm equivalences and the RUC
property to polynomial chaos constructed from sequences (X, Xz, ...,X,,...) of real-valued independent
symmetric random variables with || X;||.. = C; > 0. We demonstrate that these extensions hold, with
the key modification being a rescaling of the chaos coeflicients by the respective bounding constants C;.
In addition, the paper shows that chaoses of different degrees can be combined while maintaining the
property of random unconditional convergence.

The paper is organized as follows.

In Section 2 we present general definitions, some results from previous works that we will rely
on, and auxiliary statements.

In Section 3 we consider systems formed by mixing the first- and second-degree Rademacher chaos.
We examine two variants of such mixing. The first, more simple variant uses three independent copies of
the Rademacher sequences {rx},{r;},{r}} and examines the behavior in Le, of sums of the form

n n n
/ !l
Ssep(t) = Z bkl’k(l‘) + Z Z a,-jrl-(t)rj (l)
k=1 i=1j=1
The index "sep" in Ssep means that we are considering separated (or decoupled) chaos, i. e. chaos constructed
from independent copies of the original sequence of independent random variables. In the second case, we
work with ordinary (or unseparated) Rademacher chaos, i. e., we study the behavior of sums of the form

n
S(t) = Z bkl”k(l) + Z aijr,-(t)rj(t).
k=1 1<i< j<n

The key property that allows us to transfer the results for homogeneous chaos from papers [12;13] to the
mixed chaos we consider is the complementedness of homogeneous chaos in mixed chaos. This property can
also be obtained from the work of [19]. We, however, also consider a direct proof of the complementedness
property, which is especially simple in the considered case of first- and second-degree chaos.

In Section 4 we extend the results of Section 3 to systems constructed from a sequence of
independent symmetric bounded random variables, not necessarily identically distributed. The main idea
is that the subspaces X := span[{X;},{X;X;}] and Y := span[{Y; }, {V;Y;}] generated by different systems
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of independent random variables are isometric to each other in the case of || X;||... = ||Yk||r., k= 1,2...:

n
Z b Y + Z ainin
k=1

1<i<j<n

n

Zkak+ Z ainin

k=1 1<i<j<n

)
L.

L.,

and the same equalities are valid for chaos of arbitrary degree. Formally, we prove this equality for
homogeneous separated chaos. The result is then extended to the unseparated chaos via the decoupling
method and finally to the mixed chaos by using the complementedness of homogeneous parts.

Rademacher chaos, discussed in Section 3, is a special case of the more general chaos studied in
Section 4. Moreover, results for the general case can be proved independently of Rademacher chaos. However,
we stress the case of the Rademacher chaos due to its particular importance for applications. Bilinear
and quadratic binary forms, equivalent to separated and unseparated Rademacher chaos, respectively,
are important in neural network models of associative memory [20-22], energy analysis of spin glasses
[23;24], and adiabatic quantum computing [25].

2. Preliminaries and auxiliary results

A sequence {x};_, of elements in a Banach space X is called basic if it is a Schauder basis for
its closed linear span span{x;}. A basic sequence {x;} is an unconditional basic sequence if for any
x = Y agxy € span{x; } and any sequence of signs €; = £1, the series }; €xarx; converges. In this case
there exists a constant C,, > 1, not dependent on x, such that

Y awx
k

The elements of the unconditional basis sequence form a basis in Span{x; } under any permutation. This
is equivalent to the property of convergence of series for all arrangements of signs, indicated in our
definition of unconditionality. For basic and unconditional basic sequences we refer to [2]. Note that
we also use the "inverse" form of the previous inequality

Zakxk Z ErarXi
k k

Equivalence follows since both inequalities must be valid for any a; and €.

It is known that the Rademacher system {r;}, as well as systems consisting of products of
Rademacher functions {r;r;}, {rirjrc} ..., is an unconditional basic sequence in L,([0,1]) for 1 < p <o
[26]. It is obvious that the Rademacher system will retain the property of unconditionality in the space
L.[0, 1], since the distribution of this system does not change when its elements are rearranged. However,
this is not the case for the system of products [27;28].

We follow ([13, Remark 1], [18]) to give the following definition. A sequence of elements {x;} in
a Banach space X is said to possess the Random Unconditional Convergence (RUC) property if there exist
universal constants such that for any finite sequence of scalars {a;}, 1 <k < n,

n
Z Gkakxk
X

<Gy
X

Z €rarXi
k X

<Gy
X

X

n

Ee = SI:EEI kz_:l Gkakxk

where {0} is a sequence of independent Rademacher signs, i. e. for the probabilities of values of random

variables 0y the condition P{0; = 1} = P{0;, = —1} = 1/2 is satisfied. This shows that the expectation

of the norm behaves like the minimum, so they are "close". We note that in definition of the RUC property

we consider finite sums only and consequently the order of elements of the sequence does not matter.
We consider Rademacher chaos polynomials. A d-th degree homogeneous unseparated Rademacher

chaos (or homogeneous Rademacher chaos) is a system consisting of functions of variable ¢ € [0, 1]

of the form

k=1

X

(rjy...rj)@)=r;(t)...r5,(t), j1<jo<...<]ja
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We then consider polynomials constructed from these functions of the form

P(l): Z ajl,‘..,jdrjl(t)---’"jd(t)7

I<ji<p<<ja<n

.....

The homogeneous multiple Rademacher system of degree d (also referred to as separated or decoupled
Rademacher chaos of d-th degree) consists of functions of d variables (1,...,t;) € [0,1]%:

(I"j1®"'®}’jd)(t],...,td):rjl(tl)...rjd(td).

A linear combination of such elements,

Psep(tla-'-ytd): Z Ajy,....jalji (tl)"'rjd(td)ﬂ

1< j15eja<n

we will call a d-th degree homogeneous multiple Rademacher system polynomial.
The Le.-norm of a function £ : [0, 1] — Ris || f||r. = Sup(, . s)efo,1¢ |f (t1; - - ta)|. For d-th degree

multiple Rademacher system polynomial Py (f1,. .. ,%4), this is equivalent to the maximum over all 2"
sign combinations € = (€j,...,€,) € {£1}™
HPSSPHLOQ = max R Z Ajiyeja€iy - €jal -
etE [1<jima<n

Analagous relation holds for Rademacher chaos polynomial, but signs may dependent in that case.
We will need the following decoupling argument.
Lemma 2.1 (Decoupling for L..-norms, cf. [13, Corollary 1; 29, Theorem 3.1.1]). Letd,n € N with
d <n.Let(&,...,&,) be asequence of bounded independent random variables, and let (Egk) ey &,(1’()), for
k=1,...,d, be d independent copies of this sequence. Suppose that coefficients d;, .. ;, are symmetric, i. e.
Ajyja = iy jmia JOT €ach multi-index (ju,...., ja) € Né:={(ir,...,ia) €{1,...,n} i, £i, if pFq}
and every permutation of {1,...,d}. Then,

Cq Z dil,...,idaﬁf)...a(") < Z di...i,&i - &y <

id
Lo(@ix..xQq) || [ia)ENG L(Q)

<[ X dosk g ,

ld

LM(Q] X...ng)

where cg is constant depending only on d, and the L.-norms are essential suprema over the respective
probability spaces Q (for &) and Q1 X ... x Qg (for &,(CJ)).

Note that the right inequality in Lemma 2.1 is elementary: the set of essential values of the
random variable }.d; ;& ...&;, is included in the set of essential values of the random variable

Ydi i 5,(11) e Efj).

Let d,n € N with 1 < d < n. Let N be the set of multi-indices J = (jjj, ..., js) such that ji € [n],
where [n] := {1,2,...,n}. For k € {1,...,d}, let J; denote the multi-index (ji,..., jk—1,Jk+1s---»Jd)s
and also denote t,/( = (t1, - tg—1,tk+1, - - - ,14). The multiple Rademacher system of degree d is {r? }JeNz’
where r;@(tl,...,td) =Trj (ll)---”jd(td)-

Then we define A? be the set of multi-indices J = (jj, ..., jgz) such that I < j; < jo < --- < jg.
The (homogeneous) Rademacher chaos of degree d is a function {r;},;ca¢, Where r;(t) =r; (t)...r;, (1),
t € [0,1]. By A? we denote the set {J = (ji, j2,---,ja) : 1 <j1 < jo <...<jq<n}

Also we use elements of the multiple Rademacher system of the form

d

Py (6 =1 (1) om0 () -7 ()
Finally, for every d,n e Nyk=1,2,...,dand [ = 1,2,...,n we put
Nk, 1) ={J = (j1,...,ja) e N9 - ju =1},
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Now we discuss the two central theorems for our paper. They establish the RUC property of the
multiple Rademacher system and Rademacher chaos of degree d in L.

Theorem 2.2 [13, Theorem 4. For every d € N the multiple Rademacher system {r§} ;cna has the
RUC property in L..(]0,1]4). More precisely, for alln € N and ay € R?,J € N¢ the following inequalities
hold:

. 1/2
‘ Y g >2%m Z( y a%) 7 )
JeN] Lw([071]d) I=1 \JeNd(k,I)
and
J 1/2
Eo| ) as0,ry <) 2~ 12( Y ) : 3)
JEN;] LN([O,l]") k=1 [ JEfo(k l)

where (0;) jeng is a system of independent random signs, i. e. P{0, =1} =P{6,= -1} =1/2,J € N4,
Theorem 2.3 [13, Corollary 71. Let d,n € N, d < n. There exist universal constant C); (depending
only on d) such that for any real coefficients (ay) jepd,

Z 0a;r; Z 0sary

Jead Jend

<G
Lo.([0,1]) L ([0,1])

where (07) ¢ Ad IS a sequence of independent random signs.

Let us briefly describe the main ideas from [13] used in proving these results. We consider the
case d = 2. For the lower bound on HZ?:l 27:1 0, jairi®r; "Lw([071]2)’ one can use Szarek’s refinement
of Khintchine’s inequality for L;-norms [30]. We choose #;, argument of the first function of products
ri®@rj=ri(t;)rj(t2), in an appropriate way, and the problem is reduced to estimating the L;-norm of
a Rademacher sum of degree 1 with respect to the remaining variable. Applying Khintchine’s inequality

then yields a lower bound in terms of L, j-norm:

1 1/2
n n 1 n n
aiiri(t)|dt > — at; .
SR @.Zl(j_zl )

Lo(012) =1

min Z ajry

Jead

; “)
Leo([0,1])

n

n
Z Z ajirir;j
i=1j=1

The Le-norm of left hand side of (2) is thus bounded below. As we have symmetry in indices i and j,
swapping them, we get another lower bound. For the upper bound (3) explanation authors use such
techniques as the symmetrization trick and Ledoux—Talagrand contraction principle. It should be noted
that the specific method of applying these techniques to obtain the upper bound was taken from paper [31].
For more thorough explanations we refer to [13]. Now, having these estimates and using Lemma 2.1,
we proceed to RUC property for Rademacher chaos, i. e. (4).

We will consider multilinear and polynomial forms constructed from systems of random variables,
which are defined on a probability space ([0, 1], ) with standard Lebesgue measure, or on products of
such probability spaces. It is easy to see that the main results remain valid when replacing the segment
[0,1] with an arbitrary probability space.

Let us agree on the terminology used.

Let X = (X;) be a sequence of independent random variables, and X (1) = (Xlgl)), X = (Xk(z)),

X = (X (d)) be its independent copies. This means that the systems X, X(1), X2 X(@) are identically
distributed and independent in the aggregate. We will call the system {X () ](22) X }j)}( J1jnseensja) ENA

a homogeneous multiple random system of degree d, and the union of such homogeneous and mutually
independent systems of degrees 1,2,...,d — a mixed multiple random system of degree d.

We will also consider systems generated by a single sequence X, without using its independent
copies. We will call the system {X;, Xj, ... X, }(j, j»....js)ca¢ @ homogeneous chaos of degree d, and the
union of such homogeneous systems of degrees 1,2,...,d — a mixed chaos of degree d.

Thus, the homogeneous multiple Rademacher system and homogeneous Rademacher chaos defined
above, which appear in Theorems 2.2 and 2.3, respectively, turn out to be special cases of a homogeneous
multiple random system and homogeneous chaos. We note that the precise ordering of elements of these
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systems is not relevant for the RUC-property discussed in the article. However, it should be noted that such
systems will form basic sequences if they are numbered using the lexicographic order on the index set [32].
Next, we will work with polynomials, by which we mean finite linear combinations of some
elements of the introduced system. To specify the underlying system for a given polynomial, we will use
a corresponding prefix. For example, a 3-degree homogeneous chaos polynomial will look like this:
P3 (X) = Z aiij,-Xij.

I1<i<j<k<n

And a 2-degree mixed multiple random system polynomial will look like this:

n n n
Suep(X M XD X =Y pxV + Y Y ayxPxl.
k=1 i=1j=1
Note also that Lemma 2.1 involves both a homogeneous chaos polynomial and a homogeneous
multiple random system polynomial. The distributions of these polynomials are different, but the lemma
shows that their L..-norms are equivalent. Along with the notations Ps(X), Ssep(X (1), X X)) as above,
in which we emphasize the dependence of our polynomials on a system of independent rvs, we will also
use notations of the form P3(t),Ssep(1,%2,13), in which we consider our polynomials as random variables
(functions) of the variables ¢ € [0,1], (t1,2,13) € [0, 1]>.
It is also worth noting that every mixed chaos polynomial Q(X) of degree d can be uniquely
represented as the sum of its homogeneous parts:

d
0(X) =) (X)),
k=1

where Oy (X) is a k-th degree homogeneous chaos polynomial (or the k-th homogeneous component of Q).
An important result of Kwapien [19, Lemma 2] states that the mean values of a mixed chaos polynomial
Q(X) constructed from a symmetric vector X dominate the mean values of its homogeneous components.

Lemma 2.4 (Kwapien, [19, Lemma 2]) . Let F be a vector space, and let ¢ : F — R™ be a convex
function such that @(—x) = @(x) for all x € F. Let Q(n) be a mixed chaos polynomial of degree d with

coefficients in F, where = (11,...,M,) is a vector of independent symmetric random variables. Let Qi (1))

denote its k-th homogeneous component, for 1 < k < d. Then there exists a constant K;, depending only
d, such that

o @ S Ele(Qx(m))] < E[@(KaQ(M))]-

We will use the following corollary.

Corollary 2.5. There is a constant K, depending only on d, such that for every mixed chaos
polynomial Q(n) of degree d, for every homogeneous component Qi (1) of this polynimial and every vector
n=M1,...,Mn) of independent bounded symmetric random variables we have

10k(M) .. < KallQ(M)] 1. (5)

Proof. The function ¢ (x) = |x|? for x € |0, 1] satisfies all conditions of Lemma 2.4. Applying the
lemma and taking the p-th root, we have

(EIQx(m)I")"? < Ky (ElQ()|P)"/7 .

Passing to the limit as p — oo, this yields the L., estimate (5). O
Remark 2.6. It is known that K can be taken as 2%, which is also cited by Kwapien.
This paper considers chaoses constructed from a sequence of independent symmetric bounded
random variables, which we will denote as (X;);>_,, such that for each k, ||Xi||.. = Cx > 0.

3. RUC property for mixed multiple Rademacher system and mixed Rademacher chaos

In this section we extend the results of papers [12; 13] about homogeneous Rademacher chaos to
the case of mixed Rademacher chaos. Thus we will consider 2-th degree polynomials of the form

St =Y b+ Y ayrit)ri(o), ©)
k=1

I1<i<j<n
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where by and a;; are real coefficients. We denote the first-degree homogeneous part of S(¢) as Py (¢) and
the second-degree part as P5(z), so S(¢t) = Py (1) + P»(1).

We also consider "separated" version of chaos, in which different degree terms are generated
by independent copies of Rademacher sequences. More precisely, we will consider mixed multiple
Rademacher system polinomials of the form

sep Z bkrk +

M:

Z 7

where r, ¥/, and v’ are three mutually independent Rademacher sequences. Note that this function has
the same distribution as following function, defined on [0, 1]*:

i=1j

n
Ssep(f0:11,12) Zbkl’k fo +Z Zalﬂ’l n)ri(t2). ()
k=1 i=1j=1

We will use this fact of equivalence of distributions in our proofs.
We first consider the simpler case of mixed multiple Rademacher system, where the components of
different degrees are generated by independent Rademacher sequences.

3.1. RUC property for mixed multiple Rademacher system

Proposition 3.1. Let Ssp(t) = Py (t) + P>(t) be a mixed Rademacher multiple system polynomial of
second degree, where

= i bkrk(t), Pz(l‘) = i i al]rl
k=1

Then
[Ssepllzfo, 1] = 1Pl zjo, ) + 1P2 ]l 2.cfo, 1) )
Proof. We use equimeasurability of Seep(f) and Sgep(#1,12,3), which follows from (7) and (8). We
know that for mixed Rademacher system polynomial of second degree their L.-norm is the absolute
value of their sum for certain signs arrangement, i. e. there exists a sign configurations (e, el, J) €

e {—1,1}" x {—1,1}" x {—1,1}" which corresponds to such ;,},#;, where maximum is attained, such
that:

n n
1P| 2..j0,17) = max | Zbkrk(fo)| = max | Z byex|
011 4= R

I()E[ )

and

P2l jo.12) = max Zzazm 1)rj(t2) |—H,13§|ZZLZU€/ ;

llj €€ i=1j=

These maxima we denote correspondingly by M; and M,. Let also s; and s, denote the sign of the sum
under the module in points £, ,#;. Now we consider the symmetry argument which later be modified to
the Rademacher chaos case. Because we choose ty independently of #,#,, we can always have s := 51 = 5.
Indeed, if these signs are different, we just take 7;* such that ri(¢5*) = —ri(t;) for all k. Such point always
exists, because it corresponds to (—e;) sequence of signs. Therefore, we change the sign of P; without
changing its absolute value. Therefore, we have

|Pi(ty) + Po(t1,15)| = [sMy + sMa| = |s(My +M>)| = M, + M,.
Taking maxima of both sides of the equation, we get
[Ssepllr.. = max |Pi(to) + P>(t1,12)| = My + M.
On the other hand,
[[Ssepllr.. = max |Pi(t0) + P2 (t1,12)| < mn}ﬁ?;z{lpl (to)| +|Po(t1,12) [} < My + M.

Combining the two inequalities, we obtain the desired equality. (9) O



RUC property for chaos of random variables in the uniform norm 61

Corollary 3.2. For mixed multiple Rademacher system polynomial as in Proposition 3.1 we have

1P|z < ISsepllLe.,
P2l < [[Ssepllz..-
From this we conclude that the following is true.

Theorem 3.3. For alln € N and a;; € R, 1 <1, j < n, we have the following two-sided estimates
with equivalence constants independent of n,a;;

EGk,Gij i ®rj = éniél ijQi T ®rj = (10)
i=1j= 1,52 i=1j=
= Z |by| + max Z Zaij ,Z Zaij )
k=1 i=1 \j=1 j=1 \i=1

where ©1 = (0x) and ®, = (0;;) are independent sequences of Rademacher signs.

As consequence, the mixed multiple Rademacher system has the RUC property.

Proof. We firstly prove the RUC property. If ©@; = (6;) € {—1,1}" and ®, = (8;;) € {—1,1}" x
x {—1,1}" are independent random sign, then we put

®1P1 = Zekbkrk, ®2P2 fZZG,]a,jr,®r]
k= i=1j=1
Now, because always Eg, @,|/®1P1 + @2P;| 1. > ming, e, ||®1P1 + O2P; ||, it is enough for us to get an
upper bound of expectation on signs:

n

Ee,.0,/@1P1 + @251, = Eg 0, HzekbkrkHL +|IZZGUCIU71®”/||L =
i=1j=

= Eo, |l Z Oxbiri||.. + Eo, || Z Z 0ijaijri @rjllL. <
i=1j=1

rrg)ln” Z Oxbiril|L. —i—CRUcrreunH Z Z 0;jaijri 7|1, <
k=1 Yoi=1 j=1

< Cryc min ([|©1Py ]|z, + [|@2P2]|1..) <
01,0,

< Cryc min [|©P; + Oy,
01,0,

where the first equality comes by taking expectations on (@1, ®,) from both sides of (9), the second equality
by linearity of expectation and independence of (®;,®,), and third inequality from symmetric property
of Rademacher system and from RUC property of second-degree homogeneous multiple Rademacher
systems (by Theorem 2.2). In fact, the L., norm of the first-degree Rademacher system with random signs
is equal to sum of absolute values by, which corresponds to symmetric property of this system in L... And
then we use known properties of minima of functions and in the final inequality we use (9) again. Thus,
the mixed multiple Rademacher system possesses the RUC property.

Now, to prove the second part of (10), we again use the Proposition 3.1 and the following simple
fact:

101Pi[|. = Y, |6kbx| = [ (Ba)]]1,- (1D
k=1

Now, if we take by = 0,by, for fixed combinations of signs @1 = (0 ), the same holds true. Then we unfix
the signs and take expectation from both sides of the equality:

Eo,©:1Pi|r. = Ee, Y, 8xbx| = |16y, - (12)
k=1
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For the second-degree homogeneous multiple Rademacher system polynomial @,P> =Y | Z?:l a;jrirj,
by Theorem 2.2, its average L..-norm is equivalent to the matrix norm:

W/ on 12 s, 1/2
E®2H®2P2H1m = max Z (Z ai) ,Z ( al-2j> . (13)
i=1 \Jj=1 j=1 \i=1
Combining relations (12) and (13) with Proposition 3.1, we obtain the right-hand side of relation (10).
O

3.2. RUC property for mixed Rademacher chaos

Now we consider the mixed Rademacher chaos polynomials, as in (6). Let S(¢) = Py () 4 P»(t) be
such a polynomial, with Py (t) = Y/_; biri(t) and P (t) = ¥ << j<n @ijri(t)r;(t). In this case, the simple
additivity of L..-norms observed in Proposition 3.1 no longer holds due to the mutual dependence between
Pi(t) and P>(). However, a crucial relationship still provides control over the norm of its components
by the norm of the total sum.

Proposition 3.4. Let

n
Pi(t) =Y brt), P(t)= Y, ari(t)rj(t),
k=1 1<i<j<n
and S(t) = Py (t) + Ps(t) is a mixed Rademacher chaos polynomial of second degree as it defined in (6).
Then,
1P| < UISNles (IP2]li < S (14)

As consequence,
[SIr.. < IPi]|L + 1Pl < 2/

Proof. Let t* be a point where |P;(t*)| = ||P1||1... Without loss of generality, assume P (*)
= ||P1||L.. = 0. Consider another point +** such that r(t**) = —r(¢*) forall k = 1,...,n. Then P, (£**)

= Lhi(—n(t7)) = —Pi(t"). However, Py(1™) = Yicjaij(—ri(t"))(—rj(t")) = Licjaijri(t*)r(t")
= P(t*). Thus, we have two values for S(¢): S(t*) = Pi(t*) + P,(t*) and S(r**) = —P,(t*) + P (¢
At least one of Py (¢*) or —P; (t*) must have the same sign as P5(t*).
If Py (t*) and P5(¢*) have the same sign, then
S| =1P(E") +B(t)] = [P () [+ |P(7)| = [P ()] = [| 21|l .-
If P (t*) and P, (¢*) have opposite signs, then

[SEH) = [=P(") +Po(e)| = [P () [+ |P(e7)| = [P ()] = || 2],

*
~—

In either case,
IS]lr.. = max|S()[ = [P r...

Thus, we get the first inequality in (14), and for the second inequality we can apply the similar argument.
Next, using inequalities (14) we get:

1Pl + ([ P2l < 21182

and by triangle inequality
81|z < 1Pyl + (12 .-

O
Corollary 3.5. Let X; =span{ry : k=1,2,3,...} be the closed subspace of first-degree homogeneous
Rademacher chaos in L. ([0, 1]), Xo =Span{ryr;j : i < j,i,j=1,2,3,...} be the closed subspace of second-
degree homogeneous Rademacher chaos in L.([0, 1]), and X, » =Span{rirj,r:i < j,i,j,k=1,2,3,...} be
the closed subspace of second-degree mixed Rademacher chaos in L«([0, 1]). Then there is an isomorphism
of Banach spaces:
X2 =X ©Xo,
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where
Xi®0Xy :={x=x1+x:x €Xi,0€Xa}, |x1+xlxex:=xlx + x|

Thus X1 and X, are complemented subspaces of X] ».
Proof. Mixed chaos is a basic sequence in lexicographic order in the space L., [32, Theorem 2].
Therefore, the space X » consists of those elements x; » € L., which can be represented in the form

xl,z(l‘) =bin (l‘) +b2r2(t) +b172r1 (l‘)l’g(l‘) +b3r3(t) —f—b173r1 (t)r3(t) —|—b273r2(t)r3(t) +..., (15)

where the series converges in the L.-norm. Similarly, the spaces X; and X, consist, respectively, of
elements which are represented as sums of the form

X1 =ain (l‘) —I—Clzi’z(l) —|—a3r3(t) +... and xp = ajph (l‘)rz(l‘) +ayzrn (l‘)l’3(l‘) —|—a2,3r2(t)r3(t) —+...

Let us consider two arbitrary elements x; € X; and x, € Xj. It is easy to see that from the convergence of
the series for x; and x» follows the convergence of the series

x1+x2=airi(t) +axra(t) +aiori (t)ra(t) +asrs(t) +aizri(t)r3(t) +az3ra(t)r3(t) + ...,

therefore X; 4+ X, C Xj 5. Then we note that convergence in L., implies convergence in L, in which the
spaces X and X, are orthogonal. Therefore X; N X, = {0}, and the space X; @ X; is well defined. Moreover,

1 +x2x,, = Ix1 +x2 .. < x|z + P2l = 1x1 +x2lx0x, -

Now let x1 » € X » and SYg be the partial sum of the corresponding series (15). Then Sg'g =sim 4

(n1) (n2)

"2) where § \ " is some finite sum according to system {ry}, and S

+5,

system {r;r;}. As n increases, new terms will be added to the sums Sg'”) and Sg”) in a certain order
determined by the lexicographic numbering of the combined system of {rx} and {r;r;}. The sequence of
sums S|' will form the series

is a finite sum according to

by (l) +b2r2(t) —i—b3r3(t) +...,
(n2)

and, similarly, the sequence of sums S, " will form the series
b1721’1 (l)rz(l‘) + b173F1 (t)r3 (l) + b2’3r2(t)r3(t) +....
Both of these series will converge. This follows from the convergence of the series for x; » and inequalities
s = syl < s = iall, and 18 =< sVE =Sl n<m,

which are valid by virtue of Proposition 3.4. Hence x1 » = x1 +x2, where x; € X;, and X1 » C X; ©X>. By
virtue of the already established continuous embedding X; & X, C Xj » and Banach’s inverse operator
theorem, embedding X » C X © X is also continuous. Moreover, passing to the limit in inequalities

sl < [Isvall,. and (S5 < 8]l n<m,
which are valid according to Proposition 3.4, we obtain

x12]lx, < lx12llxex, < 2[x2llx.,-

O
Now we prove the RUC property for mixed Rademacher chaos. We proceed similarly to Theorem 3.3.
Theorem 3.6. For alln € Nand a;j € R, 1 <i < j <n, we have the following two-sided estimates

with equivalence constants independent of n,a;;

Ee, .0, Z Orbrri + Z 0;ja;rir; = mln Z Orbrri + Z 0;ja;rir; = (16)
1<i<j<n L. 1<i<j<n L.
n n—1 n ) 1/2 n Jj—1 ) 1/2
=Y b+ maxq Y [ ) aj; Y a;; )
k=1 i=1 \Jj=i+1 j=2 \i=1

where ©1 = (0x) and ®, = (0;;) are independent sequences of Rademacher signs.
As consequence, the mixed Rademacher chaos has the RUC property.
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Proof. Let us denote

0P = Zekbkrk> Py = ), Oari(t)ri(r),

k=1 1<i<j<n

as in the proof of Theorem 3.3, we obtain

Ee,,0,/[(@1P1) + (@2P2) ||, < Eg, 0, HZekbkrkHL +1 Y, 8jaijriril.| =

1<i<j<n
= Eq,| Z OkbirellL. +Eoyll Y, Oijaijriri|L. <
=1 1<i<j<n

mmHZGkbkrkHL +CRUCHGHHH Z 0;jaijrirj||r. <

Yo Ii<j<n
< Cruc mm (H®1P1HL°° +[|@2P]|.) <
< ZCRUC®mm |©1P + OB |1..,
17 2

where final inequality comes from Proposition 3.4. From this we obtain the RU C-property for the mixed
Rademacher chaos.
To prove the second equivalence in (16), we again use Proposition 3.4. Thus we get

Ee,.0,01P1 + @21, AEekHZekbkrkHL +Eo,ll Y, Oijairirlli. =

1<i<j<n
g n n—1 n 5 1/2 n [j—1 1/2
AZ|ka—maX Z Z a;; ,Z Z )
k=1 i=1 \j=it1 -1

where we used relations (11) and (1). ]

4. RUC property for multiple random system and chaos of symmetric bounded random
variables

In this section we extend results from Section 3 obtained for second-degree mixed multiple
Rademacher system and mixed Rademacher chaos to broader class of d-th degree mixed multiple random
system and mixed chaos of symmetric bounded (a. e.) rvs.

4.1. RUC property for homogeneous multiple random system and homogeneous chaos

First we will establish equality between L.-norm of homogeneous multiple random system
polinomial and the L..-norm of homogeneous multiple Rademacher system polynomial of degree d. As
before, we will denote by X M, ..., x4 independent copies of the sequence X = (Xj).

Theorem 4.1. Let {X ](Il) X J(j)} be a d-homogeneous multiple random system formed by the

sequence X = (X;) of independent symmetric bounded random variables, and || X||., = Cx > 0. Let

1 d)y _ (1) (d)
P(xW, . XxD)y=Y ax;’. X
JeNd

is a polynomial by this system. Then,

1P, X DI, =

Y (aJHQ) ry

JeNd \  lel

L.,

where r?’ denotes the elements of the d-th degree multiple Rademacher system.
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Proof. We remind that we work on a probability space (Q,A,P) with Q =[0,1] an P = p, where n
is a standard Lebesgue measure. Let us consider an auxiliary multilinear form

Ph( M) Z ajle jd 5
JeNd

which depends on variables x{!) = (xgl), e ,xﬁll)), o xd) = (xgd), e ,x,(fl)), and each x¥), k € [d], changes
on a Cartesian product [T, [—C;,C;]. We show that the Lo.-norm of the d-homogeneous multiple random
system polynomial formed by independent symmetric bounded random variables X; coincides with the
Le-norm of this multilinear form.

To show that || Py|1.. = || Xjene asX ](11) X ](dd) || L., we proof two inequalities, which will give us the
desired equality when combined.

Firstly, we note that the inequality [|P;[[. > || Ljene @ JX}:) X J(j) || .. holds true, because the co-
domain of random variable P(X(1) ... X(@)) is included in the co-domain of P, (x(1),.. ., x(®)) almost surely.
Note that this holds for arbitrary independent symmetric bounded rvs (X;) with norm || X;||.., = C; > 0.

Now we prove the inverse inequality. By multilinearity of the form P, we have that

Z aJx ..x(d)
J1° Jd

JeNd

M= HPhHLw max

_ * *
B, =Y aCij---Cijp
X\ i

JeNd

where we note C; ; equal to Cj, or —Cj,, depending on where the maximum is attained.
We c0n51der the followmg family of sets:

Qje={weQ| X (W) ey}, ildjiel,

where by A; j, e we denote either the interval [C}; — €,C;; ] or the interval [C];,C}';. + €], again, depending

on the sign of C7 ;. By definition of essential supremum, we have that P(Qij.e) > 0.
Let us consider the set

||
T D&

n
ﬂ pive:

By independence rvs from the system {(sz )i }i» we have that
d n
=[I1IP«ij.c)
i=1ji=1
so that P(Q¢) > 0 as the product of positive measures. By definition of Q. we have inclusions
{P(X“),...,X(d)) lwe Qe} c {Ph B A,,J-l.,e} = [M—5(e),M],

with some 6(€). Moreover, 5(e) — 0 with € — 0 by continuity of P,.
From here we have that
IPXW, XD > M —5(e)

on a set with positive measure. From this we get
P, XD > lim {M —5(e)} = M.
e—

Thus,

HP(X(I), ..,X(d))HLw: sup

|x | C!k

Zajxll 'd

Y as(Cjel)) . (Cj el

= max

J1 J1 Jd Jd
eMef+1} |7
_ ) (d)
= (ml‘)IlaX Z aJHC[ € € 1
e{£l} leJ
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The last expression is precisely the L..-norm of the d-th degree multiple Rademacher system with modified
coefficients dy = a;[1;c; C;. Therefore,

1Px™, .. XDy, =

) <aJHC1> ry

JeN? leJ

Lo
O
The following statement follows from Theorem 4.1, Theorem 2.2 and averaging over cyclic
permutations of the index k in inequality (3).
Theorem 4.2. The d-degree homogeneous multiple random system formed by the sequence X = (X.)
of independent symmetric bounded rvs has the RUC property. Moreover, for alln € N and a; € R?,J € N¢
the following inequalities hold:

(Dy(2) (d)
Z a;X; ' X;," - X,
J=(j1,j2,-ja) ENE

. 1/2
1-d
> 277 max a ,
keld] 1:21 ( Zk 0 ]>

JEN (k,

L-([0,1]4)

and

Ee Y o aexx? . xl?

Jd
J=(j1,j2s-ja) ENE

i)

d 2= \yerld

Lo([0,1]4)

where (8) jene = £1 is a system of independent symmetric random signs, dy = a[1;e; C, C; = || Xi|1.. > 0.
Using the last fact for a homogeneous multiple random system and Lemma 2.1, we can establish
the RUC property for homogeneous chaos.
Theorem 4.3. The d-degree homogeneous chaos formed by the sequence X = (X;) of independent
. = C >0, has the RUC property. Moreover, the following relations are
valid with constants depending only on d

Y 6sa,X;
Jead

Y 6sa,X;
Jead

; 1/2
=y ( Y a?,> : (17)
J=1\ J=(

= (j1,j2s---,ja) EAL:
Jkeld: jr=j

= min
0

L.

where (07) Jead = £1 is a system of independent symmetric random signs, dj = aj[lie;Cr, X; =
=X\ Xj - Xy

Proof. For the proof we will use Theorem 4.2 and Lemma 2.1. Let by for J € N¢ be defined
as following:

1

yea = Eaj"l ...a‘,-gd,lf all j; are pairwise different,

where o is permutation of [d] such that jg, < jo, < -+ < jo,. and b, ;, = 0if there exists a pair (j;, , ji,)
such that j;, = j;, for ij # i>. These coeflicients satisfy conditions of Lemma 2.1, and

Z Z bj,....jaXji - Xj, = Z AjyjuXji - Xy
1= ig=1 1<i|<ip<-+-<iyg

Let by = by[1;c; C;. By Lemma 2.1 and Theorem 4.2, we get

Yo a4 XX,

1<i|<iz<-<iy

n n

Y Y byax X

=1 iy=1

\ 1/2
ch% max Z ( Z B%) =
)

keld] j53 \yend(k,j

. 1/2
(g
=1 \JeN{(1,))

WV

Z g

L. Lo

WV
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where the last equality follows from the symmetry of the system of coefficients {b;} Jend- Further, due
to the same symmetry,

7 70 7 )
Y b= ) b= Y b5 = ) as.
JeNE(1,)) JENE: j1=j J:(jlvji:‘]"vjd)ENg: J:(jl,jz[w]qu)GAZi
Jkeld: jr=Jj Jkeld: jr=j

1/2
Cq ! ~2
> =T ) ) a)
L. VA2T [T\ b et

er[d]ljk:j

S
Ul

Hence

Z ajl7---7jde1 "'de

1<ii<ip<---<iy

To obtain the upper estimate for the expectation Eg, we cannot directly use the decoupling method.
The difficulty arises because moving to separated chaos requires averaging over signs ®; by all multi-
indices J € N, not just ascending ones from A?. To overcome this, we use the reasoning following
Lemma 2.1 and establish the inequality:

Y ojaxUx® . x®

Z Osa,X; Ja
Jead

Jead

<

Lo L.

for each set of signs {0} ¢ a¢- Therefore, by Theorem 4.2, where we put d; = 0 for J ¢ Ad,

Eo Z 0,a,X;| <Eg Z OJaJX}ll)X}f)...X}j) <
Jead L. Jend L
201 & & 2 v
<—XY| L @) =
k=1j=1 \JeNd(k,j)

) n d 1/2
TUEE( x a) -
/ J:(jujzj--wjd)eAﬁi

Jk=1J

213 [ N\
<7 b L v) -
k=1 J:(jhjzj---yjd)EAif:

Jk=1]

Corollary 4.4. Let d > 2. The d-degree homogeneous chaos is not an unconditional system. This
means that there is no constant C such that for alln € N, a; € R4 and © y==x1,J € AZ, the following

inequality holds:
Y aX;

Jead

<C
Lo

Y 6sa,X;
Jead

L.,

Similary, the d-degree homogeneous multiple random system is not an unconditional system.
Proof. Without loss of generality, we can assume that || Xg||z = 1, k= 1,2,.... Let us take ay = 1.

Then
Z anJ Z XJ
Jead Jead

L.

=

no
Lo

where C¢ = ﬁid)!' This follows from the fact that for any € > 0

P(kﬁl{Xk >1-— e}> >0,



68 P. A. Slinyakov, K. V. Lykov

and from the continuity of the polynomial form
Z Xy Xp =X Xy e Xy
Jead

On the other hand, according to (17),

1/2
n
Y 0:x; <CZ< ) 12) =Cny/C],
Jend =N T = jay-nja) AL

Fkeld: jr=j

min

L.,

with some constant C that does not depend on n. Since

where the equivalence constants depend only on d, the unconditional inequality cannot be satisfied, as for

d+1
d}2wegetd>%. O

An analogous fact can be established for the d-degree homogeneous multiple system by using
a similar argument.

4.2. RUC property for mixed multiple random system and mixed chaos

We will first establish a key property for the L..-norm of mixed multiple system polynomial generated
by symmetric bounded random variables, analogous to Proposition 3.1 for Rademacher variables.
Proposition 4.5. Let

d(d+1) d(d—-1)

Srep (X, X x5y = p (XY £ Py (x @ X)) 4 py(x (T x| x (5

be a d-degree mixed multiple system polynomial, where XV, X @ . xd(d+1/2) qre independent copies
of a sequence X = (X;) of independent symmetric bounded variables. Then,

[1Ssepllz. = 1Pl + [1Pafl s 4[|t .-

The assertion follows easily from the mutual independence of the terms P;, P», ..., and the following
simple property.
Lemma 4.6. Let & and n be independent symmetric bounded random variables. Then
&+l = [[&]le. + Inll....

Proof. Let
A= ], B=|nlr..

Due to the symmetry of random variables & and 1, for any € > 0, events
Qi ={{c[A—¢,A]} and Q,.:={ne[B—¢,B]}
have positive measure. From the independence of & and 7 it follows that

P(QeeNQye) > 0.

Moreover,
(E+M)(QeeNQye) C[A+B—2¢e,A+B.
Hence
lE4+nllr. = lim(A+B—2¢)=A+B.
e—0
The opposite inequality coincides with the triangle inequality. O

Now, analogously to the proof of Theorem 3.3 from Proposition 4.5 and Theorem 4.2 we conclude
that the following is true.

Theorem 4.7. The mixed multiple random system from the sequence (Xy) of independent symmetric
bounded rvs has the RUC property. Moreover, let

d(d+1)

Seep(XW x? . xT7) @) =
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— 0,2 (XD) 1+ @, (XD X)) . 4 @up(x I+ xC+T) | x (15

where

. (1+m(m 1)) (2+m(m |)) (
®um = Z ejlj2~~jmajlj2"‘ij]1 X X

L ) C
(]1~,]2~,<--7.]111)€N:«,n

m(rr;rl))

Then

d(d+1)

EollSsep(XM, X . x5 @), = ménHSsep(X(l),X(z),... X7 0L =

9

d " 1/2
= Z max Z ( Z d%) ,
m=1 K€M 121 \ yenm(.1)

where O is the system of independent signs © = £1, a; = aj[1;e;C1, C; = || Xi||L.. > 0, and a constants in
the designated equivalences do not depend on n and real numbers {a;, j,. ;. Y% _, (but depend on d).
In the special case of mixed chaos of the second degree we obtain the following statement.
Corollary 4.8. The mixed multiple random system {X (1) (2) } from independent symmetric
bounded rvs has the RUC property, and we have the following mequalzttes

Eek7 0 Z Gkka + Z Z Gual] j ) = I/I(lln Z Gkka + Z Z Gljau j =
i=1j= L. i i=lj= Le
n ~ n n 1/2 n n 1/2
= Z |by| + max Z (Z d%) ,Z (Z@%) )
k=1 i=1 \Jj=1 j=1 \i=1

where by = Ciby,a;j = CiCjaij, Cr = || Xk||1.. > O.

To obtain an analogue of Theorem 4.7 for mixed chaos, we first note the following statement,
similar to Proposition 4.5.

Proposition 4.9. Let

S(X) = Pi(X)+Py(X) + ...+ Py(X)

be a d-degree mixed chaos polynomial, decomposed into the sum of its homogeneous components B, (X),
where X = (Xy) is a sequence of independent symmetric bounded variables. Then,

1Sl =< 1P|z + 1Pall e + - -+ [ Pal| .-
Proof. From Corollary 2.5 we obtain
1Pl + P2l 4+ | Pall., < dKql|S]] ...

The opposite estimate is obtained from the triangle inequality. O
From Proposition 4.9 and Theorem 4.3 we get
Theorem 4.10. The mixed chaos from the sequence (X) of independent symmetric bounded rvs has
the RUC property. Morever, let

S(X,0) =01~ (X)+0O:P(X)+...+O,P;(X),

where

OnPu:= Y, 0,a;X;, X;=X;,Xj,... X,
JeAn

Then
Eol|S(X,0)[l. = min][S(X,0)]. =

., 1/2
- zz( y ) 7
j J (Jl /27 /.m)eA:zn

Skeld: je=J
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where @ is the system of independent signs © = +1, day := a;[1;c;C;, C; = ||X;||r.. > 0, and a constants in
the designated equivalences do not depend on n and real numbers {{a;}jear}%_, (but depend on d).

Corollary 4.11. Let (X ) is a sequence of independent symmetric bounded rvs. We have the following
two-sided estimates

n

n
Zekkak+ Z eijainin

E9k79i.j Z 0bi X + Z Bija,-jX,-Xj = min =
k=1 1<i<j<n k0 || 1= 1<i<j<n L
noo n—1 n 5 1/2 n j—1 5 1/2
=Y bl +max g 3 |} ay)| LY | Xag )
k=1 i=1 \j=i+1 j=2 \i=1

where (0 = £1,0; j = £1) is the system of independent signs, by = Cibi,a;j = CiCjaij, Cy = || Xk||r.. > 0.

Summary

This paper investigates systems composed of products of independent random variables and their
properties related to the additive decomposition of other random variables over such systems. These
representations are closely related to the well-known Polynomial Chaos Expansion (PCE, see [33]) and
are a special case of the generalized polynomial chaos (see [34-36]), which has numerous applications
in mathematical modeling and machine learning. We show that for symmetric bounded random variables,
these product systems, while failing to be unconditional convergence systems in the space L., of bounded
random variables, nonetheless possess the closely related property of Random Unconditional Convergence
(RUC). Following the principle of moving from particular and simple cases to more general and complex
ones, we sequentially examine the cases of Rademacher random variables (in Section 3) and arbitrary
symmetric bounded random variables (in Section 4). We consider two variants of these product systems.
In the first, simpler variant, each product involves factors from different independent copies of the
generating sequence of random variables (Theorems 3.3, 4.2, and 4.7). In the second variant, each
product consists of factors from one common sequence (Theorems 3.6, 4.3, and 4.10), which creates
a more complex dependence structure between the elements of the constructed system. We also made
a transition from homogeneous systems, where all products consist of the same number of factors
(Theorems 2.2, 2.3, 4.2, and 4.3), to mixed systems, which are unions of several homogeneous systems
(Theorems 3.3, 3.6, 4.7, and 4.10).

The next stage of our research is to study the behavior of chaoses in arbitrary symmetric spaces.
The class of symmetric spaces in which the homogeneous Rademacher chaos forms an unconditional
sequence is characterized in papers [27;28]. However, even for the special case of Rademacher chaos,
a similar question regarding the property of random unconditional convergence remains open.

The work was supported by the State Research Programme “Convergence—2025" of the National
Academy of Sciences of Belarus (assignment 1.3.05).
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AHHoTausA. BBoIUTCA panyioHaNBHBI CHHTYJISIPHBIA MHTErpan [I)keKcoHa, MpeacTaBiIs-
011K cO00i1 IMHENHHYI0 KOMOMHALIMIO PAllMOHAIBHBIX MHTErPaJIbHBIX ornepaTopoB Pypbe—
YeOpImEBa ¢ COOTBETCTBYIOIIEH TPEYroJIbHON MaTpHIieil KO3 GHUIMEHTOB 1 (PUKCHPOBAHHBIM
KOJIMYECTBOM I€OMETPUUYECKU PA3/IMYHBIX IOJIIOCOB. YCTAHABIMBAETCS €r0 MHTErpajbHOE
IpeJICTaBJICHNE.

Hccrnenyorest palyioHaIbHbIe anmpokcumanun ¢yHkuuii Mapkosa Ha orpeske [—1, 1]
BBE/ICHHBIM METOJIOM. YCTAaHaBJIMBAECTCS MHTETrpajbHOE NpEeICTaB/IeHne NMPUOIKeHUH 1
OLIEHKA CBEPXY PaBHOMEPHBIX NPUOIHKEHHUII.

W3yuatorcs anmpokcrManyy ¢pyHKIMA MapkoBa ¢ aGCOMOTHO HENPepHIBHOI Mepoii, Mpous3-
BOJIHAs KOTOPO aCUMIITOTUYECKH PaBHA HEKOTOPOM cTeneHHol (yHKIuU. B aToM cirydae
Haii[IeHbl OLIEHKH CBEPXY NOTOYEUHBIX U PABHOMEPHBIX NPUOJIMIKEHUI U aCUMIITOTUYECKOE
BBIpaKEHNE MaXOPAHThl PABHOMEPHBIX MPHOJIMKESHHI.

VeraHaBIMBAIOTCS ONTUMANIbHBIC 3HAYCHHUS MApaMETPOB, TIPU KOTOPHIX 00ECIeUHBAIOTCS
HawTyyllie paBHOMEpPHbIe pUOIkeHns (pyHKIuii MapKkoBa palMoHaIbHBIMU CUHTYJISIPHbI-
mu uHTerpanamu JxxekcoHa. C 3TOH LieJblo pelaeTcsl COOTBETCTBYIOIAs SKCTpeMabHas
3amada. [Toka3aHo, 4TO NMpH CrIENUaTBHOM BHIOOPE TapaMeTpOB PABHOMEPHbIE PAIIMOHAIBHbIE
HpUOIMKEHNS UMEIOT OoJiee BBICOKYIO CKOPOCTDb YOBIBAHUS B CPABHEHHH C COOTBETCTBYIOIIH-
MU [IOJIMTHOMUAJIbHBIMU aHAJIOraMu. B kauecTBe ciieicTBUSA pPacCMOTPEHBI alllIPOKCUMAIIUU
HEKOTOPBIX JIEMEHTAPHBIX (DYHKINHA, MPEeJCTaBUMBIX (DYHKISAMU MapkoBa Ha OTpe3ke

1, 1].
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Abstract. The rational Jackson singular integral is introduced, which is a linear combination
of Fourier—Chebyshev rational integral operators with a corresponding triangular matrix of
coefficients and a fixed number of geometrically different poles. Its integral representation is
established.

Rational approximations of Markov functions on the segment [—1, 1] are investigated by the
introduced method. An integral representation of approximations and an upper bound of
uniform approximations are established.

Approximations of Markov functions with an absolutely continuous measure whose derivative
is asymptotically equal to a function with a power singularity are studied. In this case, top-
down estimates of pointwise and uniform approximations and an asymptotic expression of the
majorant of uniform approximations are found.

Optimal values of the parameters of rational Jackson singular integrals are established, at
which the best uniform approximations of Markov functions are provided by this method. For
this purpose, the corresponding extreme problem is solved. It is shown that with a special
choice of parameters, uniform rational approximations have a higher rate of decrease in
comparison with the corresponding polynomial analogues. As a corollary, approximations
of some elementary functions represented by Markov functions on the segment [—1, 1] are
considered.
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1. BBegenue

ITycts p — momnoxutesbHass OopesieBcKasi Mepa ¢ KOMIAKTHBIM HocutesneM F = suppp C R.
[IpeobpazoBanue Komm mepsr |

r—z

1@ =" e

HasbiBaeTcs (yHKmel Mapkosa. ®yukiuu Mapkosa ronomopdusl B C\F ¥ ucciieloBaHMe UX paliu-
OHAJIbHBIX AMMPOKCUMALUI SIBJISIETCS XOPOIIO U3BECTHOM Kilaccuueckoi 3amaveil. OnHON 13 nepBbIX
B 9TOM HarpaBJieHuu sijisieTcs padorta A. A. Mapkosa [1]. ITo3aHee 1aHHO# TeMaTUKe OCBSTUINA CBOU
cratbu A. A. Tonuap [2], T. I'anemmuyc [3], Ix.-E. Augepccon [4], A. A. Ilekapckuit [5]. H. C. Bsue-
cnasoB ¥ E. I1. Mouanuna [6] u3yurin annpokcumanuy ¢pyHKIuii MapkoBa B MpoCTpaHCTBaxX Xapau
H),, p € (0,400), mpu onpeeneHHbIX ycaoBusAX Ha Mepy . A. I1. Crapopoiiroseiv 1 0. A. JIaGery [7]
uisi pyHKImME MapkoBa, IOPOKAEHHOH MOJIOKUTEIbHBIMI OOPEJIeBCKUMU MEpaMK CTETIEHHOTO THUIIa,
yCTaHOBJIEHA aCHMITTOTHKA TIOBEJCHUsI CTPOYHBIX TocyenoBarebHocTel ee Tabmmuel [1ane. [Tocnennee
MO3BOJIWJIO HAWTH TOYHBIE MOPSAKY yOBIBAHUS HAWTYUIIUX NpUOIKeHuil pyHKimi MapkoBa palioHab-
HbIMU (DYHKIUSAMHU € (PUKCUPOBAHHBIM YKCJIOM MOTIOCOB. OTMeTuM HepaBHiow padoty T. C. Mapasuiko [8],
B KOTOPOI#1 UCCJIeIOBaHbl HAUTY YIIE PABHOMEPHBIE PAIIMOHAJIBHBIC TPUOJIMKEHU S YETHOTO M HEYETHOTO
NpOOKeHNs] (PYHKIMEA CO CTEEHHOM 0COOSHHOCTBIO NP oMoty pyHkimi Mapkoa. OTMeTHM, YTO
MIpY pEUICHUH YKA3aHHBIX BbIILIE 3a/1a4 HE MPUMEHSUIMCh METObI, OCHOBaHHbIE HA KJIACCUYECKUX PsAax
dypbe 1 MEeTolax UX CYMMHPOBaHUSI.

B pabote [9] nccrnenoBansl anmpokcumaryiu (pyHKImii MapkoBa B € IMHUYHOM KpyTe YacTUYHbI-
MU cymmamu psiioB Dypbe 1Mo cucteMam parmoHaIbHBIX pyHKIMH, BBeaeHHbIX C. Takenakotii [10] u
®. MansmkBucToM [11], a Takke Ha OTpe3Ke [— 1, 1] 10 CUCTEMAaM PaLMOHAJILHBIX (DYHKIIMIA, BBEIEHHBIX
M. M. Txp6amsiHom u A. A. Kurbansaom [12]. B padote [13] 311 ucciiegoBaHus ObUTH MPOAOJIKEHBI
Haii/IeHbl ACUMIITOTHYECKHE OIIEHKN PAaBHOMEPHBIX PAllMOHAJIBHBIX MPUOJIMKEHNH YKa3aHHBIMU METO/Ia-
MU 1pY (PUKCUPOBAHHOM YHCJIE TEOMETPUUECKHU PA3JIMYHBIX MOTIOCOB AMMPOKCUMUpYIOLIEH (PyHKIIUU.
OTMmeTuM, 4TO BIEPBbIE AIIIPOKCUMALIMY C OIPAaHUYEHUSIMU Ha KOJIMYECTBO T€OMETPUUECKU Pa3IMYHbIX
nosmocoB u3yvaiucek B padorax K. H. Jlynry (cm., Hamp., [14; 15]).

H. Ixexcon [16] nis peneHus 3aga4n anmmpoKCUMAIAHN 27T-NEPHOINIECKUX (PYHKIIUIA, YIOBJIETBO-
PAIOIIUX YCIOBUIO JIMMIIIUIIA, TPUTOHOMETPUYECKUMU OJIMHOMAaMU, BBOAUT CUHTYJISIPHbIA MHTET pasibHbIN
orneparop, 00pa3oM KOTOPOTO SIBJISIETCS TPUTOHOMETPUUECKHUIA TOTMHOM. DTa KOHCTPYKIIUS BIOCJIEICTBIN
MOJTy4rsIa Ha3BaHUEe CUHTYJIsIpHOro MHTerpaia IxekcoHa ¢ saapom xekcoHa. [TonrHOMUaNbHBIA TPUTOHO-
METPUYECKUI CUHTYJISIPHBIA MHTErpas JIxKeKCOHa K HaCTOALIEMY BPEMEHH JJOCTATOYHO XOPOLLIO U3yYeH
Y HalleJs MHUPOKOE NPUMEHEHHUE NPY PEelICHUH NPAaKTUYECKUX 3a7ad Teopuu armpokcumanuii [17; 18]
u apyrux HanpasieHuit [19;20]. I'. I1. CapponoBoii [21] ycTaHOBJIEHO, YTO CHUHTYJISPHBIA UHTErpaj
JI)KEeKCOHa SIBJISIETCS METOJOM CYMMUPOBAHUSI TPUTOHOMETPUUYECKOTO psiga Pypbe ¢ HEKOTOpOil Tpe-
YTOJILHOM MaTpuileil Ko3(h(pUIIMEHTOB U HAlICHO SIBHOE Mpe/ICTaBIeHre 3TUX K03 duimenTos. [Tozxe
A. K. Tlokano [22] npuMeHW1 HalJEHHOE MpEeCTaBIeHUE CUHTYJSIPHOro MHrerpaia IlxekcoHa ajis
pellieHus 3aa4 annpoKCUMAaIK Ha psiae (PyHKIIMOHABbHBIX KJIacCOB. BOCMONB30BABIINCH PE3YIbTATOM
I. I1. CacppoHoBoii, B paboTe [23] ObLIO yCTAHOBJIEHO MpeACTaBICHUE CUHTYIAPHOTO MHTErpaia JIkekcoHa
Ha oTpe3ke [—1, 1], acCOIMMPOBAHHOTO C CHCTEMOM MOTMHOMOB YeOblEBa MEPBOro poja, JIMHEUHOM
KOMOUWHAIIMEH YaCTUYHBIX CYMM MOJIMHOMUANBHOTO psina Pypre—UeObimnepa:

1 n—1 n
U (f, %)= —— | ¥ busic(f, )+ ¥ buasara (F, ) |, x€[-1, 1],
Ynt1 | k=0 k=0
rue
2(n+1)2(n+1)*+1)
Yn+1 = 3 )

=32+ @n+Dk+2(n+1), k=0,1,...,n—1,

1
K —k(2n+3)+(n+1)(n+2), k=nn+1,....2n, M

k=
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Sk (f, x) —4actiunbie cymmbl psiia Pypbe—YeObliéBa COOTBETCTBYIONIMX CTeneHei. [locieiHee mo3Bommio
HATH HOBBIE ANMPOKCUMALIMOHHbIE CBOMCTBA CHHIYJISIPHOrO MHTerpasia Jl)xeKcoHa Ha Kjaccax (pyHKIMR
CO CTEeNeHHON 0COOEHHOCThIO Ha oTpeske [—1, 1].

B. H. Pycak [24;25] BBen panroHaibHble HHTETpaJIbHBIE OMepaTophl THIA ’KeKCOHa Ha BEIeCTBEH-
HOW OCH 1 UCCJIEI0BAJI HEKOTOPbIE UX alllPOKCUMALIMOHHbIE cBovicTBa. Brocineacteuu A. A. [lexkapckuii [26]
MPUMEHWT 3TU ONIePaTOPHI 1715 MOTYYEHHS] HOBBIX OLIEHOK PABHOMEPHBIX PAIlMOHATIBHBIX MPUOIMKEHUI
HernpepblBHBIX (hyHKIMI. HanpasieHue vccnenoBanuii, CBsI3aHHOE C IOCTPOEGHUEM PaLlMOHAJIbHBIX UHTE-
TpaIbHBIX OMEPATOPOB, SBJISIOUIMXCS AHATOTAMU W3BECTHBIX MMOJIMHOMHUAJIBHBIX EPHOJUMIECKUX OIlepaTo-
poB tuna Pypwe, Deitepa, [Ixexcona, Banne [lyccena, u uayyeHueM ux anmpoKCUMAIIMOHHBIX CBOWCTB
SIBJISIETCS aKTyaJIbHBIM U IIPOJOIIKACTCSA B Tpylax Opyrux marematukoB. E. A. Poba [27] BBen pamo-
HaJIbHbIe MHTETPaJIbHbIe OMepaTophl Trna JIkekcoHa Ha otpe3ke [—1, 1] 1 momydmIt OleHKH paBHOMEPHBIX
paLMOHAIBHBIX TPUOJIMKEHNI HENPEPHIBHBIX (DYHKLMI 9TUM METOIOM B TEPMUHAX MOJYJIEi HEeIlpephiB-
Hoctu. K. A. CMmoTpuLikuii [28] n3yuns1 anmpoKCUMaIlMOHHBIE CBOMICTBA pallMOHAIBHBIX MHTET PaIbHBIX
oreparopos THmna [I)keKcoHa Ha Kjlaccax BBITYKJIbIX Ha oTpe3ke (pyHKIuiA. MIM ObIJIO yCTaHOBJIEHO, UTO
IUTsL IAHHOTO KJiacca (PyHKIMi paBHOMEpHbIE IPUOJIMKEHUS B 9TOM CIIyyae MMEIOT TOPS0K HAMITYYIIIero.
OcCHOBBIBasICh Ha pe3yabTaTax padoTsl [23], 6bu1 mocTpoeH [29] cuHryspHbIil nHTErpas [ keKkcoHa Ha
ortpeske [—1, 1], acconunpoBaHHbIi ¢ CHCTEMON palMoHaNbHBIX dyHKImiT YeObiéBa—Mapkosa ¢ ABy-
MsI TEOMETPUUYECKH Pa3IMIHBIMU MOTIOCAMU B PACLIMPEHHON KOMIUIEKCHO IVIOCKOCTH, ¥ U3Y4€HBI €ro
annpoKCUMAIIMOHHBIE CBOIICTBA Ha KJjlaccax (PyHKLMI CO CTETIEHHON 0COOEHHOCTBIO.

B 1979 r. E. A. Pos6a [30] BBe palMoHa/IbHBIA ONEPAaTOp, aCCOLMUPOBAHHBIA C CHCTEMOIA
pauroHanbHbIX (pyHKIMA YeObméBa—MapkoBa, KOTOPHI sABJSETCS 000OLIEHUEM MOJMHOMUAIBHOTO
oneparopa ®ypbre—YeObIEBa U IPpeICTABISIET COOO0I palMOHATBHYIO (DYHKITHIO TIOPS/IKA 71 C TPOU3BOJILHBIM
KOJIMYECTBOM MOMOCOB. [TyCTh 3aJaHO MPOM3BOILHOE MHOXECTBO YMCEN {ay }_ , T€ dy TH0O0 SABISIOTCS
JECTBUTENIBHBIMY | |dy| < 1, 1100 MOMapHO KOMILIEKCHO CONPsiKeHHbIME. Ha MHOKECTBE CyMMUPYEMBIX
Ha orpeske [—1, 1] ¢ Becom 1/v/1 —x? dpyHKIMiA f(X) pacCCMOTPUM PALMOHAJIBHBIA UHTETPAIHHBIA
oneparop tuna Pypre—YeoObinepa nopsaka He Boie 7 (cm. [30]):

. (v—u
| sin <2 + A (uy v)>
sn(f, x)zﬁff(cosv) T dv, x=cosu, )
-n sin 5
e
v n 2
1— |z ax
A (I/t, V): A (y)dya A (y): y k= — |Zk|<1'
" uf " " k; 1+ 2|z |cos(y — argzi) + |z |2 144/1-a?

Omeparop s, : f — R,(A), rae R, (A) — MHOXeCTBO palMOHAIbHBIX (DYHKIIMI BUA

Pn (%)
n ) pn € N7
H (1 + akx)
k=1
A — MHOXXECTBO TapamMeTpoB (dj,...,dy,), U sy(1, x) = 1. B yactHocTn, eci monokuth ay =0, k=1,...,n,

1O $,(f, X) — ecTh YacTUUHast cymma psiaa Pypbe o MHOrowieHam YeObIEBa NEPBOroO poja.

B patore [31] u3ydeHs! paroHaIbHbIe anmpokcumarmu ¢hyHKa Mapkosa Ha otpeske [—1, 1]
MHTETpaibHBIMU oniepaTtopamu (2) ¢ (PMKCMPOBAaHHBIM KOJMYECTBOM F€OMETPUUECKU PA3IMIHBIX MTOIOCOB.
B uactaocTH, Korga supp = [1,a],a > 1, Mepa p abcomoTHO HenpepbiBHA Ha [1,a],a > 1, 1 yoBIeTBOpsieT
yernoBusm: diu(t) = @(t)dt u () < (t —1)* Ha [1,a], momyyeHs aACHMITOTUYECKUE OLIEHKU PABHOMEPHBIX
NpUOJIMKEeHHIT B Clly4yae YeTHON KPATHOCTH IMOTIOCOB aNlPOKCUMUPYIOIei (pyHKIIMKU. YCTaHOBJIEHO, UTO
CHeraabHBIM BHIOOPOM MapaMeTpoB allpOKCUMUPYIOIIei (DYHKIMHN T0CTUraeTc st 6osiee BBICOKas CKOPOCTh
yOBIBaHUsI PABHOMEPHBIX MPUOJIMKCHUIT HA U3yYaeMbIX KJIACcCaxX B CPABHEHHM C COOTBETCTBYIOIIMMU
TTOJIMHOMMAJIFHBIME aHajioramu. B [32] n3ydeHs! anmpokcuMaIioHHble cBoiicTBa cyMM Abensa—Ilyaccona
pallMOHAJIbHBIX MHTETPAJIbHBIX OMepaTopoB (2) B mpubimkeHusx GpyHKIpii MapkoBa. AHaIOrMYHasI 3a/1a4a
s cymm Peiiepa u Banne [lyccena pemena B [33] u [34] cOOTBETCTBEHHO.
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[IpencrapasieT uHTEpEC UCCIeOBaTh ANNPOKCUMALIMOHHBIE CBOMCTBA CUHTYJISIPHOIO MHTErpasia
JI’KeKCoHa Kak MeTo/la CYMMHPOBAHHsI PAllMOHATIBHBIX HHTETpaIbHBIX onepatopoB ®ypre—YUeobiEna (2)
Ha KJjaccax (pyHkimii MapkoBa. B HacTosimieir pabote BBOISITCSI CYMMBI PalIMOHATIBHBIX MHTET PAIbHBIX
ornepaTopoB ®Pypbe—YeOniEra (2) ¢ PUKCUPOBAHHBIM KOJUYECTBOM I'€OMETPUUYECKU PA3JIMYHbIX MOJIOCOB,
TMIpeICTaBJISAIONINe COOOM CUHTYISPHBIA UHTerpat [ )keKCoHa, U NU3y4aloTCs ammpoKCUMAalny (PyHKIIH
Mapkosa Ha oTpe3ke [— 1, 1] aTum MeTogoM. B paboTe nosydeHs! COOTBETCTBYIOIIHE OLIEHKH PABHOMEPHBIX
MPUOIMKEHNH. YCTaHOBJIEHO, YTO BBEICHHBII PAllMOHAJILHBIN CUHTYJISIPHBINA HHTerpas [)kekcoHa mpu
oIpe/ieJIEeHHOM BBIOOPE MOIICOB 00eCTIeUNBaET CKOPOCTH PABHOMEPHBIX TPUOJIMIKEHHI Ha Kaccax (PyHKIIuiA
Mapxkoga Js1ydiye B CMBICJIE MTOPSAAKA YeM COOTBETCTBYIOLIUE MTOJIMHOMUAIIBHBIE.

2. PanoHAJIbHBIN CHHTYJISIPHBIN HHTErpaJ /[’kekcoHa

HyCTb ¢ — IIPOU3BOJIbHOE HATYpPaJIbHOE YUCJIO. Aq — €CTb MHOXECTBO IMapaMeTpOB U3 A TaKHUX, 4TO

cpemu 4mcel ay,ay, - . . ,d,, POBHO g Pa3MIHBIX U KPATHOCTh KaXIOTO IapaMeTpa paBHa m,n = mq, T. €.
Ay = (ai,a2,...,aq,...,a1,a2,...,aq). COCTABUM CyMMY
m pa3
1 2m
Unng(f, X) = —— Y bisigq(f: x), x€[—1, 1], me NU{0}, 3)
Ym+1 k=0
rae Ko3ppUIIeHTs by ¥ KoHCTaHTa JIKEeKCOHa Y41 onpesenensl B (1), sk q(--),k=0,1,...,2m, —

palMoHasbHbIe UHTerpalibHble oneparopbl Pypbe—YeObimEBa (2), 00pa3oM KOTOPHIX SABJISIOTCS pariy-
OHaJIbHBIE (DYHKIIMHU MopsAnKa kg. BelpaxxeHue (3) eCTECTBEHHO Ha3BaTh PALIMOHAIBHBIM CUHTYJISPHBIM
uHTErpaIom J[IxekcoHa.

W3 npexcrapienus (3) oueBUAHO, 4TO CyMMbl Uy, 4 & f — Ry, (Ay), e Ro,(A,) — MHOXECTBO
paloHaNbHBIX (PYHKIMI BUOa

TOn (x) _ 2Zk
(M, (1+ax) )™ I+

Ipuuem Uy y(1, x) = 1.
Taxknm 00pa3zom Oyzem BECTH pedsb 00 anmpoKCHMALNH PALHOHATBHEIMU (DYHKLMSIMHU C ¢ T€OMETpPH-
YeCKH PA3IMIHBIME TTOIOCAMH B PACIIMPEHHON KOMIUIEKCHOMN [UIOCKOCTH KPATHOCTH 2/ KX ABIH.
Teopema 2.1. [lns cuneyasiprozo unmezpana [Axcexcona na ompeske [—1, 1], accoyuuposanrozo
¢ cucmemoii payuonanvhvlx Pynkyuil Yeovuuésa—Mapkosa, ¢ q 2eomempuuecku pazauuHsIMU NOAOCAMU
8 PACUUPEHHOT KOMNAECKCHOUL NAOCKOCHIU, UMEEm MeCHIO UHMEZPANLHOE NPEOCMABACHUe

n=mg, T (x) € Py,

S Pag(u, v) o
Unnyg(f, Xx) = T8y Jf(cosv) T W ) dv, x=cosu, n=nmgq, (4)
- sin sin
2 2
20e
3A - A _
Py g(u, v) = (m+1)cos < ‘I(zu’ v) Y 5 u) —3cos ( q(z, v) v 2u> B

—(m+1)cos (A"(;" My V2”> +4cos <<m+;) A, v) + V2”> =

3 v—u
—cos <<2m+2> Ag(u, v)+ > >,

geauuuna Ay(u, v) onpedenena 6 (2).
HokazareabcTBo. Bocnoms3yemcs nipenctasnenueM (3). MzsectHo [30], 4To 11t pariioHAIBHOTO
UHTeTrpaibHOTO ornepatopa Pypre—YeobnmeBa nopsagka kg, k =0,1,2,. .., c g TeOMETPHUESCKH pa3INIHBIMU
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NOMIOCaMU UMEET MECTO UHTETPAJIbHOC IMPEACTABIICHUC

o) ()

1
Skq.q(f, X) = m ff(COSV) —& v,
rae
q
wy(y) = H Y , E=e" (=e" x=cosu. 5)

ITopcraBum mocienHee MHTErpajabHOE MpeAcTaBiaeHre B (3) U MOMEHsSEM NMOPAAOK CyMMHUPOBaHUA U
UHTErpupoBanus. Torna

1 ¢ fleosv) | 2w (N & w,(8)\F
U2n,q(f7 )C) C—«i [Ckzobk<w¢j(a)> _Ekzobk(wz(c)> ] dV,

277Ym+1 g

rae ko duiments by, k =0,1,...,2m, onpeaenens B (1).
Y4unThIBas N3BECTHBIE PABEHCTBA

n l_anrl n 1+nqn+l_(n+1)qn
Y 4 = Y kg = q#1,
k=0

: q ,
1—¢q =0 (1—q)°

Lo lg—(n+1)7q"+ (2n +2n— 1) g — n2q

Y Kd =4 . , q# L,

k=0 (1_‘])

9TOOBI MIPUITH K MPEACTABICHUIO (4) TOCTATOYHO BHIIOJIHUTL COOTBETCTBYIOINE NpeoOpasoBanus. [
OtMeTuM, YTO MHTErpajibHOE MpEeCTaBleHrne cyMM [sKeKCOHa, yCTaHOBJIEHHOE B Teopeme 2.1,
MO3BOJISIET ACCOLIMAPOBATh UCCJIEAYEMBIA METOJ CYMMUPOBAHUS C PAllMOHATIBHBIMU MHTET PAIbHBIMU
omnepaTropamu, ¥, B YaCTHOCTH, C PAalIMOHATbHBIM CUHTYJISIPHBIM UHTErpajioM [[:kekcoHa.
Caencrue 2.2. /Jas cuneyasprozo unmezpana Jocexcona na ompeske |—1, 1], accoyuuposannozo
¢ cucmemoii noauHomos Yebviuiésa nepsozo pooa, umeem mecmo uHmezpaivbHoe npedcmasaeHue
4

Lv—u)

1 7 sin
U2"7¢J(f7 )C) = = jf(COSV) — v—u dv, x=cosu.
Yn+1 s sin
2
HokazareabcTBo. locTaTo4HO B nipeacTasiaenuu (4) monoxuthb zx = 0,k =1,2,...,q. Totnan = m,

g =1, A;(u, v) = v —u n ocTaHeTCA BHIIOIHUTH HEKOTOPBIE TPUTOHOMETPUYECKHE NTpeodpa3oBanus. [
N3yunm npubnmmskerus ¢yHkimu Mapkosa [L(x) Ha oTpe3ke [—1, 1] CHHIYJISIpHBIM HHTETPaIoM
Ixexcona (3). Beegem ciieayoiiue 0003HAYECHUS:

EZn(-x’ Aq) = ]:L(X) _UZn,q(va X), PAS [_1) 1]7
EZn(Aq) = Hﬁ(x) - UZn,q(ﬁa X)HC[fl, 1)’ neN.

Bysem monarats, uto supp it C [1,+) u

du(r)
jﬁ < oo, ©6)
Teopema 2.3. ITycmwb mepa L yoosaemeopsiem ycaosuio (6), a mepa v onpedensiemcst COOmHoute-
Huem
4y? 1 1
) = 1), ye Ol no)=3 (1), Q

Toz0a das5 pasHomephvix npubaudcenuti pynxyui Maprosa {L(x) na ompeske [—1, 1] cymmamu Joxncexco-
Ha (3) umeem mecmo oyeHka ceepxy

52n<Aq) < €§n(Aq), ne N? (8)
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20e

53,1 (Aq) =

1 f (m+1) = 3wy ()] = (m+ 1) |wg ()] + 4wy ()2 — |wg () P+
Vot o, (T wg I (1—)
Joka3ateabcTBo. PaccmoTpum npubimkenus Ha otpeske [— 1, 1] yHkimit MapkoBa paruoHasb-

HBIM MHTETpaJIbHBIM oreparopoM tuna Pypre—YeOnieBa (2) B ciydyae g reOMETPUUECKH Pa3IMIHBIX
TOJTIOCOB aNMpOKCUMUpYIoIei (PyHKIUH

Org(x,44) = ((x) = 810 q(,x), x€[=1,1], k=1,2,..., 2m, n=mgq.

dv(y)|.

YMHOXUM Ha KO3(pPunmenTsl by, k = 0,1,...,2n, npaBylo U JIeBYI0 YaCTU NOCJIEJHEIO PABEHCTBA,
npocymmupyem 1o k ot 0 10 2m u pa3enaM ux Ha Y. Torma
1 2m 1 2m
Y bidig(x, Ag) = fi(x) — Y bisigq(f x) = e2n(x, Ag), x€[—1, 1], )
Ym+1 1 =) Ym+1 1 =)

rae €2,(x, Ay) — npubmkenus ¢yHkimii MapkoBa cymmamu JIkekcoHa.
C npyroii cTopoHsl, H3BecTHO [31], uTo B paccMaTpUBAEMOM Cllydae 11 NPUOIMKEHN Sy (X, Ay)
MMeeT MEeCTO OIICHKa CBEPXY

)k
f [wg ()" |dv ()]
suppv v 1—2ycosu +y
roe & = e, x =cosu, v(y) u3 (7). logcTaBuB moceaHee MpeACTaBIeHNe B COOTHOMICHHE (9), BOCIIONB30-

BaBIIHCH (POPMYJIaMHU )i KOHEUHBIX CYMM, KOTOpbIe ObUIM MPUMEHEHBI TIPU JI0Ka3aTeNbCTBe TeopeMsbl 2.1,
Y BBINOJIHUB COOTBETCTBYIOIIME Pe0Opa30BaHUsl, OTYIUM

: f (m+1) = 3wg ()| = (m+ D]y (y)? +4|wg ()2 — |wy (y) "

|0kg(x, Ag)

lean(x, Ag)| < X
NS ) (1=, O]
d
v O s (10)
/1 —2ycosu+y?
U3 mocieHEro HepaBeHCTBA OUEBUAHBIM 00PA30M ClielyeT oLeHKa (8). O

3. Ilpu6Gan:KkeHnst CHHTYJISIPHBbIM HHTerpaJiomM /[’kekcoHa
¢yuknuit Mapkosa B ciyuae Mepbl CIENUATHHOTO BH/1Aa

[Mpu uccieoBanuy NpUOIKeHUA (HyHKIMA MapKoBa 4acTo paccMaTpMBaeTCs Cilydaid, Korua
NPOM3BOHAsE MepHI 1L(¢) cJ1a00 SKBUBATIEHTHA HEKOTOPOI cTeneHHol (yHKumu [4; 5]. Penmm nogo6Hyo
3agady. [TycTs Mepa L aGcommoTHO HenpepsiBHa, supp 1L € [1, al,a > 1, du(t) ~ (t —1)Ydt,y > 0. U3yunm
OLIEHKY (8) B 3TOM cily4ae. ByneM mosarath Takske, 4To mapamMeTphl aPOKCUMUPYIOIIEN PalMOHaIbHON
bynkuun ai € [0,1), k=1,2,...,q, n s OONbIISH HATTIAIHOCTH CAENaeM 3aMeHy zx — — oy, k=1,2...

g, o €10,1), tme zx = ar/(14+4/1—a3), k=1,2,.

Teopema 3.1. ITycmo suppv € [d,1],0<d < 1,d = a—\/a2 —1,a>1,du(t)=@t)dt u () ~

~ (t—1)Y,y € (0, 1). Tozoa 6 ycaogusix meopemvl 2.3 0as npubaudiceruit pyrkyuu {L(x) cuHeyasipHoim

unmeezpanom Jicexcona cnpageonugol
1) oyenka nomoueunvix npubaUdICeHUl

A,) —v | Y)Yy~
€2 (x, YdeJ\/l—Zyx—i—y -
(mA 1) = 3|y ()] = (m+ 1]y ()P + 4 ag ()] — [ ()P
(1= Jawg(¥)])?

2) ouenKa pagHoOMepHBIX NPUOAUNCEHULL

52n(Aq) < gzn(Aq)a neN, (12)

dy, )
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20e

21y

ean(Ag) =

1
1—y)2Y 1y vy
Ym+1 df( y) Y

(M 1) = 3]y (3)] = (m+ 1)y () + 4wy ()" = |ewg ()"
(1= w D)’

(13)

dy,

q _
“T12==5 welo1), m=0,1,....
1 L= oqy

Joxka3zarenbcTBo. B ciyuae du(t) = @(t)dt u @(t) ~ (t —1)Y, u3 ouenku (10) u ycnopus (7)
cpasy xe npuxoauM k cootHomeHuio (11). Onenka (12) nerko ciegyet u3 cootHornenus (11). ]

B teopeme 3.1 nonoxum oy =0, k=1,2,..., g. TornaA, = (0,0,...,0) = O u BenmuuHa £2,(0) =
= sgr)l) npeICTaBIIsIeT COOO paBHOMEpPHbIE MPUOIMKeHU 1 (PyHKIIMI MapKkoBa ¢ Mepoii {1, yI0BIeTBOPSIOIIEH
YCJIOBUSIM TeOpeMBI 3.1, CHHTYJISIpHBIM UHTETpaioM [ XeKCOHa, acCCOIMUPOBAHHBIM C CUCTEMOH TIOJIMHOMOB
YeObiéBa mepporo poja.

CaencrBue 3.2. Cnpagedausa oyenka ceepxy

fl -l _y(n+1)—3y—(n+1)y2+4y””—y2"*3
d

(1-y)3

dy, neN.
n Yn-i—

4. ACHMIITOTHKA Ma’KOPAHThHI PABHOMEPHBIX MPUOJIMKEeHUI

Hccnenyem acuMntToTryeckoe nopejieHue rpu n — oo Benuunbl (13). C 3Toil 11e1bI0 B UHTETpasie
BBINOJIHMM 3aMeHy nepeMeHHoro 1o dopmyne y = (1 —u)/(1+ u). Torma

2y+1f W (m+1) = 3|7, ()| — (m+1)|7ty (u) > + 4|7ty (u) |2 — |70, () |3

e5,(Ag) = du,
wlha) =5 (0~ @
roe
w1 Br—u 1— oy 1—d
- =—~* D=—""D€e(0,1).
H’Y(u) (1—+—u)(1—u2)y’ HBk_I_u Bk 1+OCI(7 1—|—d7 E( ) )

OTMeTHM, 4TO B PACCMATPUBAEMOM CIly4ae [Uisl KakJoro 3HaueHust n € N MOKeT BBIOMPAThCSI COOTBET-
CTBYIOIMI HAOOP MapaMeTpoB (X1, %2, ..., X,), T. €. B o0meM ciydae o = o (n) k=1, 2, ...,q. Ilpu
9TOM OyfieM MoJaraTh, YTO BBIOJIHSETCS CIeIyOIIee yCIOBHe:

hmnz (1—oy) = (14)
n—yeo =
M3 CKa3aHHOrO CIIEAYET, YTO Ul JOOOro 3HAYEHUs BEJIMUMHBI d = a — v/ a* — 1 cymecTByer Takoe
mg, mo=1,2,...,9to npum > mg Oyayt o € [d, 1), k=1,2,... ,q. DTn orpaHnyeHUs OyIeM yIUTHIBATH
B JaJIbHEUIINX pacCcykaeHusaX. B aTom ciydae 6e3 HapyllieHUs: OOIIHOCTHA MOXHO T0JIaraTh rapameTphl
(3% yrmopsamodeHHbIMU clieytommumM oopaszom: 0 < B, < ... <Py <D < 1.
Teopema 4.1. /a5 masxcopanmol pagromepHulx npudaudceruti pynxuuu Maprosa ¢ mepoii 8 ycao-
susix meopemvl 3.1 payuoHANLHLIM CUHZYASIPHBIM UHINEZPANOM []HCEKCOHA UMEIOT MECHO ACUMNITOMU-
uecKkue pageHcmea

3 (m+1)27%
2(m+1)2+1

e3,(Ag) ~ +o (4], m— oo, (15)
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20e

227YC(2y) (212 — 1)

—me-mG-2y) Y@/
ny)=<{v2m2, y=1/2,
23—3y1—‘(2y)(22y—1 - 1) .
2y-D2-27)3-2y) '€ (1/2, 1);
(v) ? 1+ |7, (u)]
J = u T Tg\M)1 ”
D), (Aq)—[iufy( )(1—|7Tq(u)|)2d : a16)

I'(+) — eamma-gpynkyus Jinepa; n = mq.
JToka3zaTeabcTBO. MakOpaHTy PaBHOMEPHBIX PUOJIVKEHHUIA IPEICTABUM B BUJIE

2y+1

ehn(Ag) = — 1A + 17 (A + 17 (A,)], neN, (17)
rie I,Sl)(Aq) ) jquy(u) (m—+1) =37, (u) — (m(Jlr i):f((z)); A7 +2 (u) — 72" () .
jZ: i ) (A1) =3Ity ()| — (m +(11)!_7T|q7i:25)|4)r34!ﬂq(u)!'”” )P
1940) = [ 1w (m+1)—3|7fq(u)|—(m+(11)|_7r47(525‘ﬂ;34lﬂq(u)I’"“—Iﬂq(u)lz’"” "

B

N3yunm 1o oTAeIbHOCTH aCUMIITOTHYECKOE TTOBEIEHHUE TIPH 11 — o0 KaXI0T0 U3 STUX BhIpaxkeHuil. Tak,
1

IUJTsI UCCIeIOBAHU Sl UHTEerpajia I,g )(Aq) BOCIIOJIb3yEeMCSl METO1aMH, TipeyiokeHHbIMU B [35]. TTponudde-

(1)
peHiumpyem unterpai I, ' (A4) Tpu pasa no napamerpy m. Torga Haxonum

a1 (a,) T“ w! — () + 417y () 2 () 2y (W) )
om " (1=, @) |
2104, (172 () 272 (20) — (In72 () >727 43 ()
— e, = 4 Hv(”) 3 du,
om J (1 7ty (u))
P14, | I, () ) P 7, () \3
Il (Ag) _ Inmy(u) N mi2st) g, Inmg(u) \7 am+3)s(w)
om? ! JM(“)(I_%(“» ) a 2ofufy(u)(1_7[q(”>> ) h
rae
L Pr—u
Z’ Br+u

Jlid uccie10BaHus aCUMIITOTUYECKOrO IIOBEIEHU S MHTETPajioB CIIPaBa B IIPEJbLIyIIEM PABEHCTBE BOC-
nonb3yemcst Merogom Jlamaca [36;37]. @yukuus S(u) yosBaet Ha otpeske [0, (4], u, cienoBaTebHO,
JOCTUTaeT CBOEr0 MaKCUMAaJIbHOIO 3HaueHus 1pu u = (. Y4uThIBas pasioxeHue

41
S(u) = —2u 1@—i-o()

e

1 —7,(u

" aCUMIITOTUYECCKOE PAaBEHCTBO
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crnpaseuuBble Ipu ¥ — 0, U151 HEKOTOPOro Majioro € > 0 OynemM UMeThb

37(1) € €
9’ _(Ag) 4 J‘uzy_lefZ(m+2)u):Z:1 B du— zfuzy_1672(2m+3)u):gzl B du  m— e
om?

0
BEINOJTHAB B IIEPBOM HHTErpaJie CIpaBa 3aMeHy TepeMeHHOro o dopmyne 2(m+2)uY i, & > U, a BO
BTOPOM 3aMeHy TepeMeHHoro 2(2m + 3)uZZ:1 & > U, TIOJTy UMM

emt2) L, 5,

1M (A,) —4 f >

~ WY e " du+

o0
f u?¥ e du=T(2y), 2y>0,
0

MOy YUM

PV, —4r(2y) [ | 2 -
( .

om? a 1\ m+2)2  (2m+3)>
'y
(£5)

UTOOBI BEPHYTHCSI K ACUMIITOTUYECKOMY BBHIPAXKEHUIO MIEPBOHAYAILHOIO MHTETpaja, IPOUHTErpUpyeM
MPaBYIO ¥ JIEBYIO YaCTH MOCJIEHETO aCHMITTOTUYECKOrO PABEHCTBA TPH pasa Mo napamertpy m. Torga

(2 2Ty (22— (et 1)

= YE(,1/2),
41
(1—2v)(2—2v)(3—2v)<2>
, =1 Br
(m+1)"In2
W) =172,
I, ' (Ag) i (18)
i1 Br
270T(2y) (22 -1 1)3-2Y
71
(2v1)(22v)(32v)<2>
k=1 Bk
Uccnenyem BoipaxeHue I,(,z) (A4) (em. (17)). ITockombKy
q—1 By 1 q—1 By
()( =(m+1) Z +|ﬂq du 32 7|7rq(u)| du—+
_ _ 3
] 1'3]J+\1 1 ’T[ ] 1[5;[1 1 |7Tq("t)|)
—1 By 2 —1 By 2m43
’”q ’ " )|
=g =g
TO OYEBH/IHO, UTO
qg—1 B 1
17 (Ag) = (m+1) J @] s (19)
L J i o)

J= lﬁﬂrl
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1 o
rac 6,(1 )(Aq) HMEECT 3aBEIOMO OOJIBIIHIA NOpAAOK MaJIOCTU B CPABHEHUU C INIaBHBIM YJICHOM aCUMIITOTHYC-

CKOI'0 pa3JjIOKECHHA.

3
Paccyxnas aHaJIOrMYHBIM 00pa30M B OTHOIICHUH MHTErpaja I,(l )(Aq), 3aKJII0YaeM, 4TO

D
3) 1+ |74 (u)| 2
L7 (A)) =(m+1) | iy(u)———F 5 du+0,"(4,), n— oo (20)
iR ﬁf gl
U3 npeacrasnenust (17) ¢ ydeToMm HaliIeHHBIX acUMOTOTAYeCKUX paBeHCTB (18), (19) u (20), nonyuum
(15). JokazaresnbCTBO TeOpeMbl 4.1 3aBepIleHO. ]

CaencrBue 4.2. B ycaosusx meopemvt 3.1 0as pagnomepHvix npubaudcenuti pynxuuu Mapro-
sa [L(x) na ompeske [—1,1] cuneyasproin unmezpanom JJoceKcona, accoyuuposanHbimM ¢ CUCMEMO
noaunomos Yedviumésa nepeozo pooa, cnpagednugol ACUMNIMOMUUECKUE PAGEHCNEA

(2(1)1) ~ mﬂ n— oo, (21)
20e | -
(2TRy) 2 - 1)
-2e-yG-2y YOV
T]O(Y) =3 7211127 vy = 1/2’
22 (2y) (221 1)
L2y —1)(2—2y)(3—-2y)’ ye(l/2,1).

HJoka3zareabcTBo. CreyeT HemocpeACTBEHHO U3 aCUMITOTUUECKUX PABEHCTB (15), eciii MonoxkuTh
ar=0k=1,2....q. O

O6paTtum BHUMaHHe, 94TO B OTJIMYME OT Pe3y/IbTaToB, OMyYeHHBIX B TeopeMe 4.1, B cnencTeuu 4.2
COZIEPXKUTCS IMEHHO aCUMITTOTHYECKAsI OLICHKA PABHOMEPHBIX TIPUOJIMKEHHIA, a He MaXOPAHTBI, TOCKOJIBKY
B MOJIMHOMHUAJIFHOM CJIy4ae MakCUMYM TPUOJIMKeHUN JocTuraercs npu x = 1.

5. Hanuyumue npuoJIMKeHHsT PAalHOHAJIBHBIM CHHIYJISIPHBIM HHTErpaJiom /I:kekcona

[Ipencrapnser nHTEpEC MUHIMHU3UPOBATD MPaBble YaCcTH COOTHOIIEeHH (15) mocpeacTBoM BrIOOpa
ONTUMAJILHOTO JUIs K&K 10/ 3a1a4n Habopa MapamMeTpoB Ay, T. €. HCKaTh HAWITYYIIYIO OLIEHKY PABHOMEPHBIX
npubmkennii pyHKkn Mapkosa {i(x) Ha otpeske [—1,1] B ycinoBusix teopemsl 3.1 CHHTYISIPHBIM
unterpanom Jlxekcona (3). Ilomoxum

Eong = i/?qf en(Ag), €y = if{qu €5,(Aq)-

OtmeTuM, 4TO U3 HepaBeHCTBa (12) cienyeT cnpaBelJIMBOCTb COOTHOIIIEHUS
*
€mg < €, NEN.

Beuy nocieaHeit olieHKY B ajIbHEIIeM OyieM BeCTH peub 00 aCUMITOTUYECKOM BhIpaKeHUU MaKOPaHThI
PaBHOMEPHBIX MPUOJIMIKEHUH.

Teopema 5.1. /[1s mascoparmot pasromepuvix npubaudicenuti pynxuuu Maprosa mepoii 8 ycao-
gusix meopemvt 3.1 na ompeske [—1, 1] cuneyaspruvim unmezpanom Joxcexcona cnpagedausvl acumnimo-
muueckue pageHcmaa

] v(v; 9)
Eong ™~ NPRTETAN n — oo, (22)
(n—l—l) ( T Iy )
20e

¥ (1=t D

vy, ) = LD A+YIG) T 200 >—IM @3
Y= 1 | =y oyt 4 ’ Y= (1+u)(1—u?)y’
275y (4y) o (1—y) Y0+ 0

geauuuna n(y) onpedenena 6 (15).
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Hoka3zareabcTBo. Vccnenyem acumnroTudeckue papeHcTsa (15). OueBUAHO, YTO NPU MOCTOSIHHBIX
Pr, k=1,2,...,q, IOPAOOK B 3TUX COOTHOIICHUSX HE OTIMYAETCS OT MOJMHOMHUAILHOTO. Byiem monarars,
410 Br = Pr(n) — 0,Bxr1 = 0(Pr), n — oo, ¢ BomonHeHUEeM ycsioBus (14). B atom citydae HETpyaHO
MOy YUTh, UYTO TIPU /M — oo CTIPABEJIUBB ACUMITTOTHUYECKHE PABEHCTBA

qi . o Bk_u 4 M—Bk % . . '
glﬁk Bq Hﬁk—kukljllu—kﬁk B, J=12000, ue By Bl

Tou—Br 2B
kl—Iu—’_Bk 7, Me[ﬁh 1]

[Ipu a3Tom u3 (16) HaxoAMM, UTO

—1 2
v) 1 S B cely)
®l’l A ~ 9 oo?
A~ 533y & 2o 28 "

rae c(y) onpenerena B (23).
AcuMnToTnueckue paseHcTBa (15) npu 3ToM NpuUMyT BUJ
- 2
m+1 BT (2-2y)ely)

— (2(2-2 12722y
@ 2vyas |0 TR L

sén,q(Aq) ~ , M — oo,

(24)
IIpu kaxxgoM (prkcrpoBaHHOM Y > 0 MpaBble YaCTH ACUMIITOTHUYECKOTO paBeHCTBa (24) MpeacTaBIIsioT
coboit hyHKIMM TepeMeHHbIX (31,32, .., B4), HENPEPHBHEIE B KaX/I0# TOUKe g-MepHoro Kyba [0, 1]9,
e & = d(n) > 0 — HeKOTOpast BEJIMUKMHA, 3aBUCSIIAS OT 71 U [IPH JIIOOOM 71 OTPAHMYMBAIOIIAsT MHOKECTBO
napameTpoB (31, B2, ..., B4) creBa. CornacHo Teopeme BeiiepmTpacca mpaBble YacTH yKa3aHHBIX PABEHCTB
MMEIOT CTPOTUii MUHMUMYM Hpu HekotopoMm B* = (B, B3,...,B;) € [8,1]7. [Tpuuem mockonbky By =
=1,k=1,...,q, COOTBETCTBYEeT NOJIMHOMHAIBLHOMY CIy4aio, a mpu B (n) — 0, n — oo, ¢ JOCTATOYHO
OO0JIBILION CKOPOCTHIO IIpaBble YacTy B (24) HEOrPaHMUYEHHO PACTYT, TO MOKHO MPEIIONIOKUTh, UTO [3* —
BHYTpPEHHsIsI TouKa Ky0a [0, 1]9. [1yis1 TOro 4ro0bl HAfTH ONTHUMANBHBIA HAOOD 3™ /7IsT COOTBETCTBYIOIIETO
ACHMIITOTUYECKOTO PaBEHCTBA PELINM SKCTPEMAIbHYIO 3aJa4uy

* .
€ A,) — inf.
2n,q ( q) A,
Torga B kBagpaTHOM CKOOKE paBeHCTBa (24) MPUXOIUM K 3a7aue

) sy, Pat | Booo B B«
WY(Ag) = cqB" + oyt oy Tt oy Ty T a2 B? A —> inf,
q qul 3 B

rae st KpaTKOCTU MOJIOKEHO
cg=22=2ymy)(m+1)>?, ¢ =(2-2y)e(y).

Oynkups P (A,) nepemennbix (B1, P2, ..., B,) HenpepsiHO audbepeHtmpyema B Kyoe (0, 1)7. Ecre-
CTBEHHO MCKATh TOYKY MUHMMYyMa 3TOii (DyHKIIMHU TaM, [JIe BBITONHSETCS HEOOXOIMMOE YCIOBUE IKCTPE-
myma: 0¥ (A,)/dBr =0, k= 1,2,...,q. HecllOXHbIe BHUUCIEHNS MPUBOJIAT K CUCTEME ypaBHEHHUil

2y-1 631—1
chﬁq - (1 _Y) 32y 0,
q

Bg-1 i

22y —-(1- )B372y =0,

q q—1

(25)

B2 B3

S22y —(1-v) 35y = 0,

3 2

Bi o

R
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nu3 KOTOpOﬁ HaxoJuM, 4TO C OIITHUMaJIbHbIM Ha60pOM napaMeTpoB LieJieBada (pyHKL[I/IH

WO (A7) = Hyy Bcllz (26)

Ocranoce Haiith mapamerp (3. C aToii nenbio cHoBa oOpaTtumMcs K cucteme (25). TlocnenobarenbHo
HaXoJ1M

. 2

-1 ) _ Y

i) 1Y
272 2 B | 271 22y - 1 e, 1—y
) 1=v B -y (1—v> ’ 27)
<B>lk>2 (YCq)(lfy)(q%)
B2 oy

C npyroii CTOpPOHBI, U3 MOCJEAHEr0 YpaBHEeHUs B (25) noiyynum

*4 ﬁ
()"

IMoxacraBuB 3, B mociieTHee paBeHCTBO CUCTEMBI (27), 1ociie He0OXOAUMBIX IpeoOpa3oBaHuil Oy[eM UMeTh

11-

<

21

a2 Y
S B Ll
= -1y
(I=y)

ITpu HaiiieHHOM (37, B IpecTaBIeHuHt (26) Noayuum

—v)(@-2)
Lty 25 [ (e
)= Cllw ! 1—(1—y)(@= D) , ve(0.1).

1=yt~
(1=y)~

BosgpamasAck K neppoHayaIbHbIM 3HAYEHUAM IIAPAMETPOB C| U Cy, U3 TIOCJIETHETO COOTHOIIEHHUS 1 (24)
HAXOIUM, 4TO

pv) ( AZ .

—y)a-!

Y (v
. ()™ (A +v)(n(y) ™ !
52n,q(Aq’ Uz”’q) . (1—y)1-! 1-(1—y)4~1 2<1_<17v)q—) s
275 ()T (1) T (me 12T
Tenepp, yuuThiBasi, UTO 1 = mq, IPUAEM K aCUMIITOTUYECKUM paBeHCTBaM (22). O

3ameuanue 5.2. Cpasrusas pesyavinamol meopemul 5.1 u acumnmomuueckux pagercms (21),
APUXOOUM K 8bl180JY, UMO CKOPOCHb PABHOMEPHLIX PAUUOHANLHBIX annpokcumauuil pynxkuuu Map-
K0o8a ¢ Mepoli 8 Ycaosusix meopemol 3.1 cuHzyasapHviM UHmMezpaiom [xicexcona okasel8aemcsi blue
COOMBEemMCmMaYIoUUX NONUHOMUANBHBIX AHANO0208.

6. Annpokcumanuu 31eMeHTapHbIX (PyHKIHI

MHorue 3neMeHTapHble (PyHKIMY MOKHO NPEACTaBUTh B BUAe KOMOMHALMiT (pyHKIMIT MapKoBa.
PaccmoTpum npumMep Takoii (pyHKIIMK U B KQUecTBe CICCTBUS TeopeMbl 5.1 HaliieM TOUHYI0 KOHCTaHTY U
TOPSIZIOK ee MPHUOIMKeHNI CUHTYJISIpHBIMU MHTerpanamu [xekcona (3).

®yukums f(z) = (z—1)Y, v € (0,4)\N, sBrsercs ronomopdroii B odnactu C\ (1, +o0). Cran-
JapTHOE NPUMEHEHNE UHTETpaIbHON (hopMyJbl Kol MpUBOAUT K COOTHOLIEHHUIO

1 (&—-1)

1) =— | ———d Q
(= 1) zmi;a_z £ zeQ
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riae Q — kpyr paauyca a > 1 ¢ IeHTpOM B Havalle KOOPIAMHAT M pa3pe3oM Mo oTpe3ky [1,a]. Y3 nocnienHeit
dopmyibl Jierko nonyuuthb (cM. [4;5]), uro npu |z| < a, zE(1,a), cpaBeUTMBO PaBEHCTBO

(1=x)" = fu (x) +g(x), (28)

rue

T omi E—x

inrry ((t—1)Y 1 1-g)Y
) = =30 (O g = L 028y
1 |&|=a

®ynkuus {1 (x), x € [0, 1], — ecTb QyHKIHsI, KOTOpast yIAOBIETBOPSET YCI0BUIO TeopeMsl 3.1. [ToaTomy

. sinty (v, q)
Equ(l’Ll (x)) ~ - (173,)4) )

(n+1)2<1_ Ty

rie BeqmuuHa V(y, ¢) onpenerneHa B (opMyIUpoBKe TeopeMsl S.1.
HUccrepyem npubmmkeHus: (pyHKIMU g(X) CUHIY/ISIPHBIM UHTerpaiom JxekcoHa (3). Umeem

n — oo,

2m

Z bkékq,q(ga X, Aq)7 X € <_17 1)7 (29)
Ym+1 k=0

52n,q(g7 X, Aq) =

rae

1 1— &)Y
f( )

6kq,q<g7 X, Aq) = g(X) _Skq,q(g7 X, Aq) = (27_()21 £ _x qu(X, E») da;

|&]=a

— npubsmkeHust PyHKIMH g(X) palMOHATBHBIM UHTErPabHBIM OrepaTropoM Pypbre—YeObinésa (2) ¢ Ha-
OopoM HapameTpoB A,

T eosu — cosy (sz(C) w’;(z)> dv
C

& —cosv wik(2) _ng(C) -z’

BEJIMYMHA wq(~) omnpenelnieHa B (5). U3BectHo [32], uTO

|6kq.,q(ga X, Aq)‘ < c(a, Y))\kv )\ < 17

(=¢e", z=¢e", x=cosu,

qu(X, a) =

c(a, y) — HEeKOTopas BeJIMUMHa, He 3aBucsIas oT k. VI3 mocseaHei olieHKy 1 paBeHCTBa (29) noiaydnm

1 2m c(a, Y) 2m '
‘5211.,q(g> X, Aq)‘ < Zbk‘ékt]ﬂ(gv X, Aq)| < Zbk)\ , meN.
m+1 fm Ym+1 1o

Bocnonp3oBaBiiyck (opmynaMu AJjis KOHEYHBIX CYMM, KOTOpbIe MPUMEHSUIUCh MPU TOKA3aTeIbCTBE
TeopeMbl 2.1, HETPYAHO MONTYUYUTh, YTO CHPABE]JIMBA OlLIEHKA

1
€ x, A)| <Ol — m € N.
| n,q(ga ’ q)| ~ (m+1>2 ’
Jpyrumu cjioBaMH, paBHOMEpHbIE NPUOIIMKEeHHsT (DYHKIMU g(X) CUHTYJISIPHBIM MHTErpaioM JIkekcoHa
yOBIBAIOT CO CKOPOCTHIO OOJIBIIEr0 MOPsAKA MAJOCTH B CPABHEHUH CO CKOPOCTHIO AIlMpPOKCHMAIN
dynkimn 1 (x). CinegoBaresibHO, U3 paBeHCTBa (28) HaxXOqUM

1

gl (1) = 5,1 +0 (b ) o mve

Caencrsue 6.1 (Annpoxkcumanus pyuxuun (1—x)Y). [as pagnomeprvix pauuonanibhvix npu-
onuocenuti pynxyuu (1 —x)Y, vy € (0, 1), na ompeske [—1, 1] payuonanvhvim cunzyasipHolm UHMeEZPANOM
Jicekcona ¢ q zeomempuuecki pa3auuHbIMU NOMOCAMU CNPABEOAUBHL ACUMNMOMUUECKIUE DABEHCMEA

Sy V(. g) ! > .
SZn,q((l X) ) (n+l)2<1*%) +0<(fl+1)2 y N —roo, (30)

20e seauuuna vV(y, q) onpedenena é popmyauposke meopemol 5.1.
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Ipu 3tOoM U3 creacTBust 4.2 3aKJ0YaEM, YTO [Isl TIOJTMHOMHAJIbHBIX MPUOJIMKEHUIA BOZMOXHO
OOUTHCS JIUILD

1
D= =0( ). e

U3sBectHo [38, . 96], 4TO HauIyuIlKe pABHOMEPHBIE MOJUHOMUAJIbHBIE TPUOIMKEHU (DYHKIIUIA CO cTe-
MEHHON 0COOEHHOCTHIO 00JIaIAI0T CJICAYIOIUM CBOHCTBOM:

EanllPY5 (-1, 1)) = 5y Ea((1 =051, 1)

Paccysxas aHaJIOrMyHbIM 00pa30M, U3 aCUMITTOTHYECKOro paBeHCTBa (30) HaXoauM, 4TO
H(s, 9)

259\’
(n+ 1)2<1_ 2471(2“))

52n,2¢](|x|s) ~ RS (07 2)7 n— oo,

rae BeJaunuuHa (s, ¢) MOXeT ObITh BBINMCAHA B SIBHOM BHAe. B wactHOCTH, mpu ¢ = 1 npuxomum
K PaBHOMEPHOM OLIeHKe armpokcuManuu GpyHkimn |x|*, s € (0, 2), Ha otpeske [—1, 1] paunoHa bHBIM
CUHTYJIIPHBIM UHTErpajioM J>keKCOHa C JIByMs T€OMETPUUYECKH Pa3IMUHbIMU I1OJIIOCAMMU:

. s (s, 1)
2 (X)) ~ ———5, n—oo.

(n+1)25
DTOT pe3ynbTaT coaepxkurcs B [29] B ciyyae npubmmkennii pynkuuu |x|*, s € (0, 2), CUHrYISpHBIM
MHTerpajoM J[eKcoHa, aCCOIMUPOBAHHBIM C CUCTEMOi1 anredpandeckux qpodeii YeOpimeéBa—MapkoBa
C IBYMSI T€OMETPUYECKH PA3JIMYHBIMU IOJI0CAMHU.

7. 3akjroueHue

B pabore m3yvens! annpokcumanun GyHKIMA MapkoBa Ha otpe3ke [—1, 1] panmoHambHBIMU
(pyHKIIMSIMY ¢ OTpaHMYCHUSIMU Ha KOJIMYECTBO FEOMETPUIECKU PA3JIMUYHBIX TIOMIOCOB. MeTooM NnpuoIu-
JKEHU BBICTYIIAIOT PAllMOHAJIBHBIE CHHTYJISIPHBIE MHTETpaitbl [’KeKCOHa, aCCOLIMUPOBAHHBIE C CUCTEMOM
anrebpanyeckux npodeit YeoOwméBa—MapkoBa ¢ (PUKCUPOBAHHBIM KOJIMYECTBOM I'€OMETPUUECKU pa3-
JIMYHBIX TIOMOCOB. J1JIsI BBeIEHHOTO METO/A PaIFIOHAILHON armpOKCUMAITMN YCTAHOBJICHO UHTETpaIbHOE
TpeJiCTaBJICHUE.

PaccmoTpenst anmpokcuMariu GhyHKIM MapkoBa ¢ aOCOTIOTHO HEMPEPHIBHOR MePOii, POU3BOJHAS
KOTOpO¥ acCHMITTOTMYECKU paBHa (PYHKIIMU CO CTETIEHHOU OCOOeHHOCThI0. B 3TOM ciyuae HaiimeHbI
OLIEHKHU CBEPXY MOTOYEYHBIX U PABHOMEPHBIX MPUOIMKEHUN, ACUMIITOTUYECKOE BhIpaXKEHHE MaKOPaHThI
PaBHOMEPHBIX MPUOJIVIKEHUH.

YcTaHOBJIEHBI 3HAYECHUSI TAPAMETPOB, IIPU KOTOPHIX 00ECIIEYMBAIOTCS HAWTYYIlIMe pABHOMEPHbIE
MPUOJTMKEHN ST STUM METOJIOM. B KadyecTBe cJeICTBUS pacCMOTPEHBI pallMOHAJIbHBIE armpOKCHMAIIN
CUHTYJISIPHBIM MHTErpajioM JIkeKCOHa HEKOTOPBIX JIEMEHTapHBIX (PYHKIIUI Ha OTpe3Ke, MpeICTaBUMBIX
dyskumsamMu Mapkosa.

Pab6ora BrInonHeHa npu (PMHAHCOBOIT MO IEPKKE TOCYIapCTBEHHON MPOrpaMMbl Hay YHBIX HCCJIe-
noBanuit «Koneeprenmusa—2025» (Ne I'P 20212046).
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AnHoTamusA. PaccMaTpuBaeTcs JiMHelHast EpHOIMUYECKas CUCTeMa yIpaBJIeHHs C MOCTO-
STHHOH MaTpHIieil Ipyu ynpasiieHud. [IporpaMmHoOe yrpaBiieHue SIBIsETCS NepHOITIECKIM,
MIPUYEM €T0 MEPUOA HECOM3MEPHM C NEPHOIOM MaTpHIH ko3 dunuentos. Jomyctumoe
MHOXECTBO TaKUX NEPUOIMYECKUX YIpaBIeHUI Ha3BaHO UpperyispHeiM. CTaBUTCS 3ajaya
BBIOOpA TAaKOTO YIPaBJICHHUS U3 YKa3aHHOTO JOIyCTHMOIO MHOXECTBA, YTOOBI TETeph yxke
y KBa3UMEPHOANIECKON CHCTEMBI TOSIBUIIOCH TIEPHOANYECKOE PEIIeHHe C 33laHHBIM CIIEKTPOM
4acTOT, EPUOJ] KOTOPOTO COBIAJAET C NeprooM yrpapienus. [loctapieHas 3agada Ha3BaHa
3agayveil ynpasiieH!sI aCHHXPOHHBIM CIIEKTPOM C UPPETYIAPHBIM AOIYCTUMBIM MHOKECTBOM.
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Abstract. A linear periodic control system with a constant control matrix is considered.
The program control is periodic, and its period is incommensurate with the period of the
coefficient matrix. The feasible set of such periodic controls is called irregular. The problem
is posed of selecting a control from this feasible set so that the now quasiperiodic system has
a periodic solution with a given frequency spectrum whose period coincides with the control
period. This problem is called the asynchronous spectrum control problem with an irregular
feasible set. A necessary condition for its solvability is given.

1. Beenenne

YHpaBJ'IeHI/IG CJIO)KHBIMM CUCTEMaMM CaMOU paSJII/I‘IHOﬁ npupoabl, TAKUMU KaK OECIUIOTHBIE

JleTaTeNbHbIe armapaThl, paJAUOIEKTPOHHBIE YCTPOUCTBA, MUAEMHUOIOTMIECKUE MOJISIH U JIp., TpeOyeT
pa3paboTKH COOTBETCTBYIOIIET0 MaTeMaTU4ecKoro amnmapaTta. OqHONH M3 MHOTMX BO3HUKAIOIIUX MPU
9TOM 3aj1a4, CBSI3aHHBIX C MEPUOIUYECKUMH Tpolieccamu (M., Harp. [1; 2], u ap.), sBaseTcs 3amaya
yIIpaBJIeHUsI aCHHXPOHHBIM CIIEKTPOM [3], KoTopasi COCTOMT B clieyiomeM. [1ycTs ynpasisemas cuctema
OIMUCBLIBAETCA YPaBHCHHUEM

x=f(t,x,u), teR, xeR"
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MpaBasi 4acTb KOTOPOro oOecrieunBaeT CyIEeCTBOBaHUE M €IMHCTBEHHOCTb PEIEHUH M MEepHOANYHA
WJIM TIOYTH NIEPUOAMYHA I10 f. YTIpaBJIEHUE i IIPUHUMAET 3HAUEHUS B HEKOTOPOM JOITyCTUMOM MHOXE-
CTBe, OIIpele/IsIEMOM MTOCTAaHOBKOW KOHKPETHOM 3aJauu. 3aJady BIOOpa TAKOTO yIPaBJICHUS U, YTOOBI
y IAHHOTO YPAaBHEHUs MOSIBUIMCH HEPETYJISIPHBIE IEPUOANUYECKUE PEILEHMS, CIIEKTP YaCTOT KOTOPBIX CO-
JEPXHT 3aJaHHOE TIOJMHOXECTBOM L, Ha3BaHa 3a/1aueil yIpaBJIeHUs CIIEKTPOM HepeTYJIspHBIX KoleOaHHit
(aCMHXPOHHBIM CIIEKTPOM) C LIEJIEBBIM MHOXECTBOM 4acToT L.

Bormpoce! pazpenmmocTy chopMyIMpOBaHHOM 3aJa4l MPUMEHHUTENBHO K IMHEHHBIM IEPUOANIECKUM
CUCTEMaM C MPOrPaMMHBIM YIIPAaBJIEHMEM TOTO K€ Mepruoja u3ydyaiick B padorax [4—6] u np. Brnonxe
€CTECTBEHHO OXHUAATh, YTO 3a7a4a YIPaBJICHUsI ACHHXPOHHBIM CIIEKTPOM AOIMycKaeT MOAU(ULIMPOBAaHHbIE
BapUaHThI, CBSI3aHHBIE C BHIOOPOM WHBIX BUAOB yrpaeieHus. Hanpumep, B MoHorpacduu [7, r. 1]
¥ Jp. pacCMaTpHUBAJICS CIydail CHHTE3a YNpaBJICHUs B BUIE JIMHEHHOU MO (ha30BBHIM IEPEMEHHBIM
00paTHOMN CBSI3MU.

B Hacrosimieit pabote BriepBbie (POpPMYIHMpYETCs 3ajlavya ypaBJeHUs] ACHHXPOHHBIM CIIEKTPOM
MEPUOANYECKUX CHCTEM, TJIe B KAYeCTBE JOIYCTUMOIO MHOXECTBA BBICTYNAIOT EPAOANYECKHE (DYHKIINH,
[epUoJ KOTOPHIX HECOU3MEPUM C MEPUOLAOM CHUCTEMBI.

2. IIpeaBapuTe/ibHbIE CBE1€HUS

[IpuBereM HEOOXOQVIMBIE [JTSI 3AMKHYTOCTH U3JIOKEHUS ITOHSTUS TEOPUH MEPUOANIECKUX 1 KBa3H-
MePUOANYECKUX CKASAPHBIX (PYHKILIMIA, KOTOpbIe €3 Tpyaa MepeHOCsATCs Ha BEKTOPHO- U MATPUYHO3HAYHbIE
ynkimn. ITycTh KOHEYHOE MHOKECTBO AeficTBUTebHBIX urcen (wq) ', ..., (wy)~! paumonansHo uHEN-
HO He3aBrcuMo. HenpepbiBHast GyHKIUS g () HA3bIBASTCS KBA3UIIEPUOAUYECKON C TIEPHOIAMHE W1, . . . , Wy,
€CIIM HaiiieTcsl HenpepbiBHast (GyHKIMs k lepeMeHHbIX G* (11, . . . , 1), HEPUOANYECKAs] 110 f; C IePUOIOM
w; (j =1,m), koTOpas sABIAETCS AUArOHANBHON JUISl MCXOLHON (yHKLMH, T. €.

g(t) =G (t,...,1).

Yucna 21t/ wy, ..., 27/ wy 00pa3yioT 6a3uc YacToT KBasumepuoanueckoi pynkuuu f(t). Kasu-
NEePUOANYECKUMH OYyIyT, B YaCTHOCTH, TPUTOHOMETPUIECKHE MHOTOWICHBI C PAIMOHATBHO JIMHEHHO
He3aBUCMMBIMH yacToTamu. Hanpumep, byukmms f(t) = sin27z + cos(271/+/2)t sBnseTcs KBa3UIEepH-
omMdYecKoil ¢ mepuogaMu w; = 1 1 wy = /2. OueBUAHO, UTO TepHoaMYecKHe (DYHKIMH SBIIAIOTCS
MOIMHOKECTBOM KBa3WIIEPUOANYECKUX U UMEIOT OJHOYACTOTHBII Gaswc.

17151 HerpepBIBHOM (W-TIepUOANYECcKOi (pyHKIWH f (1) cpefiHee 3HAUYCHHE — 9TO MTOCTOSIHHASI BETMIMHA

1 w
== 1,
0
a OCHMJUTMPYIOIIAsl YacTh OIpPeAessseTCs] paBEHCTBOM
fo)=r@)—7.
[Mokazarenem Pypobe (4acToToil) hyHKIMHK f(f) HA3BIBASTCS ACHCTBUTEIBHOE YHCIIO L TAKOE, YTO
XO0Ts1 OBl OTUH U3 MHTErPajioB
w
f f(t)cos urdt
0
Win
w

jf(t) sin prdt

0

OTJIMYEH OT Hy/Isl. MHOX)ecTBO noka3areseit ®ypbe nepuoauueckoit pyHKIUM 00pa3yeT ee CIeKTp.
Yepes rank;ow H 0003HAUMM CTPOUHBIA paHT HEKOTOPOH Teproprdeckoit Matpuipsl H(t), T. e.

HauOOJIbIlIee YUCIIO ee JTMHEHHO He3aBUCUMBIX CTONIONOB. [10400HBIM 00pa30M MOXHO OIpEesuTh U

CTOJIOLIOBBIA PaHT 3TOM MaTPUILIbI rankKeo H . OTMETHM, YTO B OOIIEM CJIydae CTPOYHBIA M CTOJOLIOBBIA
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panru matpuiibl H(f) He 00s13aHBI COBMaaTh. JIedCTBUTENIBHO, ISl MATPHIHI

H(t):( sint  2sint )

cost 2cost

nmeeM rank,w H = 2, a rank.o; H = 1. B cTanimoHapHOM cily4yae BBeJIcHHbIE PaHTH, OUEBUIHO, OYIyT
coBmaarth. byaem roBoputh, uto H (¢) — MaTpHIla HETTOJIHOTO CTOJIOIIOBOTrO PaHra, CJIii ee CTOIOIOBII
paHr MEHbIIIe YUCJIa CTOJIOIOB.

PaccmoTpuM KBa3sUNepuOAUUECKYIO0 CUCTEMY

d
d—f —g(t,2) +h(t,2), zeR",

i€ BEKTOP-(PYHKIINN g ¥ /i IEpHOJMUYECKHE TI0 IEPBOMY apryMeHTY C TIepUofaMu W U {2 COOTBETCTBEHHO,
NPUYEM OTHOIICHHE STUX EePHOJO0B MPPALMOHAIBHO.

Onpenenenne 2.1. Tleprognieckoe perierre z = z(¢) ¢ IEPHOAOM 2 TaHHON CUCTEMbI HA3BIBAETCS
YaCTUYHO HEepery/ISIpHBIM [8], a ero YaCTOTHBIN CHEKTP — YACTHYHO AaCHHXPOHHBIM.

3. IlocTaHoBKa 3aJa4n

PaccmoTpuM JMHENHHYI0 cUCTEMY YITpaBJICHUS
x=A(t)x+Bu, teR, xeR", (1)

B KOTOpPO# A(#) — HerpepbIBHAsI (W-NIEpUOUYecKast (1 X n)-MaTpuia; B — noctosiHHAsK (n X m)-MaTpuIia;
u — ynpasieHue. B kadectBe ynpasisoniero Bosaeictsus u(-) B cucteme (1) Oyaem MCronb30BaTh
HelpephiBHbIC HA BEIIECTBEHHOH OCH Q-TIEpPHOAMYECKUE M-BeKTOP-(DyHKIMM TaKue, YTO YUCiIa W U
Q HeconzmepuMsl. J[0MycTUMBIE MHOXECTBA MIEPHOANYECKUX (DYHKIMII TaKOro poja OyaeM Ha3bBaTh
UPPETYJISIPHBIMA.

3ajava yrnpasieHUs YaCTUYHO ACHHXPOHHBIM CIIEKTPOM C [1eJIEBBIM MHOKECTBOM L 1 MpperyJIsipHbIM
JOIYCTUMBIM MHOKECTBOM COCTOMT B CJISYIOIIEM: BBIOPATh TAKOE POrPAMMHOE yIIPABICHHE

u="U(t) (2)
M3 YKA3aHHOT'O JOITYCTUMOI'O MHOXECTBA, LITO6I)I CUCTEMA
%= A(t)x+Bu(r) (3)

MMeJia HeTPUBUATIbHOE YaCTUYHO HEperyisipHoe pelieHre x = x(f) neprona Q ¢ 3aJaHHBIM CIIEKTPOM
qacToT L.

CdopmynurpoBaHHasi 3a/1a4a sIBISETCS MPUHIMITMATIBLHO HOBOIA, TOCKOJIBKY B CHITy BRIOOpa YKa3aH-
HOTO ynpasjieHus cucteMa (3) Oyaer He MepUOAMUYECKOM, a KBa3UIIEPUOAMUIECKOM ¢ ABYMs Oa3MCHBIMU
YacTOTaMHu.

4. OcHOBHOI1 pe3yJabTaT

YkakeM HEOOXOJMMOE YCIIOBUE pa3pellIMMOCTH MOCTaBIeHHO! 3agaun. CripaBevBa

Teopema 4.1. ITycmw 3a0aua ynpasrenust acuHxponnvim cnekmpom cucmemst (1) ¢ uppezyasiprvim
OONYCMUMBIM MHONCECMEOM UMmeem peuterue. Toeda ocuurrupyrowas cocmasaaouas Mampuybl
KO3hpuueHmog umeent HenoAHlii CMoA0UO8bIi PaHz, M. e. bINOAHIEMCS OUeHKA

rankegA=n—d, 1<d<n. (4)

Joka3zaTeJibCTBO MMPOBEIEM METOIOM OT MPOTHUBHOTO. JlOMmyCcTHM, UTO 3a7a4a yIpaBeHHs aCHH-
XPOHHBIM CIIEKTPOM cHCTeMBI (1) ¢ UpperyssipHbIM JTOIyCTUMBIM MHOXKECTBOM pa3pelirmMa, a ycJIoBue
(4) ve umeet Mecta. dpyrumu cioBamu, HaiiieTcst Q2-mepruoandeckuil BeKTop (2) Takoii, uro cuctema (3)
OyzeT UMeTh HeTPUBHUATILHOE PEeLIeHUe X = X(f) TOro *e Meproja, IPUIeM MaTpHIa A(t) VIMeeT ITOJTHBIH
CTOJIOLIOBBIA PaHr, T. €. UMEeT MECTO PaBEHCTBO

rankeo A = . (5)
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Paznoxum B psig @Pypee Q-nieproandeckuii BeKTop x(7)
i Xm €XP <27rimt>
= m Q )

f )ex 2mm’r dt

P o) .
0
C yueToM NOJy4YEeHHOI'O pa3/IOKEeHUs 3allUIleM IPOU3BEeACHUE

1 2tim
Al - o Of A(t)dr | x(t) ~ - —IA Z xmexp< 5 t) . (6)

Paznoxum B psg Pypbe w-NeprogudecKyio MaTprIHyI0 (hyHKIIHIO

At ——fA it~ Y Akexp<2mk>, (7)

k=—o0, k0

rue

Xm

° \

e
1 2mik

Av=—[4 ~ 1) d

k Of (T)exp( T) T

Ucnons3ys pasznoxenve (7), IpUMEeHHUM CBOMCTBa (GOpMaJbHBIX omepanuii Haj psagamu Pypbe
[9, c. 39] k mpousBenenuio (6)

1 = 2k 2mim
A(r) — © jA(T)dT x(t) ~ 72 AjXp exp ( " + 0 > t (8)
0 k, m=—co, k£0
3anumem (8) B BUlIE psiaa
1§ -
AN = Of A(t)dt | x(1) Nj;wcjexp(zmj)z, (9)
KO3(PUIMEHTH KOTOPOTO HAXOIATCS CIEAYIOINM 00pa3oM:
k m
Cj= Z Akxma Vi=—" HWm= %, (10)
Vk+}'1-m:)\_/ w Q

T. €. ¢j CyMMHUPYET IONapHble NPOU3BeJeHUA TeX K03 duunuenToB Pypbe Ay U X;,, COOTBETCTBYIOIIE
KOTOPBIM YUCJIA Vi U |y, JAI0T OJMHAKOBBIE PABHBIE A; CYyMMBI.

INokazxem, 9TO A5 KaXJOM Maphl MHAEKCOB k U i UHIEKC j OyJeT eANHCTBEHHBIM, 00eCTIeYnBaIOIIM
PaBEHCTBO

Vit Hm =Aj.

D10 3HAUYUT, 4TO Kaxjas u3 cymm (10) OymeT cOCTOSTh TOJLKO M3 OJHOTO CJAraeMoro Mpu JIOObIX
3HAYEHMAX UHIEKCOB k U m. [{omycTiM, 94TO 3TO HE TaK, T. €. HalIyTCs TaKue JBE Mapbl HHAEKCOB k1, 1
u ky, my (ky # ky, my % my), 9TO BBHINOJHACTCS PABEHCTBO

Vi, + Winy = Vi, + Wiy 5
U3 KOTOPOro € y4€TOM IPHUHATBIX 0003HaYECHUIT [osxy4acM

kl mi kz

w Q w Q
B cuty T0ro, uto ki — ko # 0 1 my — my # 0, U3 MOJMYYEHHOro PABEHCTBA HAXOAMM OTHOIICHHE MEPHOIOB

w . k 1— kz
Q m-m

IMockonbky uHAEKCH ki, kp, mi, my — lejble YUCa, TO NpaBas 4acTh STOTO PABEHCTBA SIBJISIETCS

PAalMOHAJIbHBIM YUCJIOM. CHeHOBaTCHbHO, NneprUoabl W 1 Q COU3MEPUMBI — ITOJYYHJIU ITIPOTHBOPECYHUC.
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3HAuMT, ClIeJIaHHOE Oy LIEHIE HEBEPHO M KAk Iblii onpeensaemblii cootHomenreM (10) koadduimenr c;
psana (9) nelicTBUTEIbHO OYAET COCTOATH TOJIBKO U3 OJHOTO CJIAragMoro.

Tak Kak KBa3uIeproandecKas cucteMa (3) MMeeT YaCTHYHO HeperyisipHoe pereHue x = x(t) u
OTHOIIIEHHE W /{2 UPPAIIMOHATIBHO, TO corTacHo [10] BeKTop x(#) yIOBIETBOPSIET, B YACTHOCTH, TOXAECTBY

1 ¢ -
A(r) — wofA(T)dT = A(t)x(t) = 0. (11)
C yuetrom ToxaectBa (11) nns psga (9) umeeM npencraBieHue
17 > .
0={A()-— OfA(T)dT x(f) ~ j:z_‘,mcj exp (27 )1. (12)

N3 paznoxenus B paa (12) Ha OCHOBaHUHM TEOPEMBI €IMHCTBEHHOCTH JJIsI TOUTH MEPUOJUIECKUX
ynkuuii [9, c. 51] ciepyer, uTo Bee K03 (PHUUMUEHTH 3TOrO psiAa HyjleBble. 3HAYNUT, HYJIEBHIMU OyIyT
u ko3 purmentsl psaga (9), T. e

At =0 (13)

npu Bcex k==+1,£2,... u m=0,£1,4+2,....

TTocKOIBbKY TIO TIPEITOIOKEHHIO TIEPHOANYECKHI BEeKTOp X(¢) Z 0, TO HaiiieTCs M0 MeHbIIei Mepe
OfIuH 13 ero ko3 duuneHToB Pypoe, MMEIM XOTs Obl OfHY HEHYJIEBYIO KOMIOHEHTY. I1ycTh 310 Oyaer
koapdunmenr x; (s € {0,N}). [Ipumennm cBoiicTBa hopMasbHBIX oneparwii Haj psaamu Pypse [9,
c. 39] Kk OIHOMY M3 cJIaraeMsIxX MpeacTaBiaeHusd (6) Npu m = s, T. €. PACCMOTPUM NPOU3BEICHUE

1 ¢ > ik
A(t) — a fA(T)dT Xg ~~ - Z Akxsexp <Qt> .
0 k=—oo, k0
Kak nokasaHo Bbiiie, corsacHo (13) Bce mpoussenenust Pxg =0 (k= +1,42,...). [ToaTomy BBUAY
nepuoamdHOCTH PyHKIMH A (1 )x; Ha ocHOBaHMM [9, ¢. 51] M IPUHATHIX 06O3HAYEHMUIT UIMEEM TOXKIECTBO

Alt)x; =0, x,#0,

13 KOTOPOTO CleJlyeT, uTo A(f) — MaTpuIla HEMONHOro CTONOIOBOrO paHra. MiMeeM NpoTHBOpeure
CO CJICJIAaHHBIM B HayaJse J0Ka3aTeabCTBA MpeanoiokeHueM (5) o JIMHEHHON He3aBUCUMOCTH CTOJIOIIOB
9TON MaTpULbl. 3HAYUT, JOoNylIeHUe (5) HEBEPHO U B Cllydyae pa3peliMMOCTH MOCTABJIEHHON 3a1auu
yrpasyieHus1 cucTeMsl (1) ocUTHpyIoIIas COCTABIAIOIIAS ee MATPUITHl K03 (PHUIIMEHTOB UMeeT HEOTHBIHI
cronouoBeil panr. Teopema oKa3aHa.

3akJrouenue. /114 JTMHEHHON NepUOANMYECKOI CUCTEMBI YIIPaBJIEHUS C TIOCTOSIHHON MaTpuLien
IIpH YIIpaBJEHUU BIEPBbIE IOCTABJIEHA 3a/1a4a YIPABJICHUS] ACUHXPOHHBIM CIIEKTPOM C UPPETYJISPHBIM
JIOITYCTUMBIM MHOECTBOM U JIaHO HEOOXOIUMOE YCJIOBUE ee Pa3pelIuMOCTH.

Pa6ora BemonteHa B acturyTe matematuku HAH Benapycu npu nogaep:xke BPOPU (ripoekt
Ne ®25KU-015).

JIutepartypa

1. 3y6oe B. U. Jlexuun no Teopuu ymnpasieHus. M.: Hayka, 1975.

2. Makapos E. K., [Ionoga C. H. Y1ipaBiiieMOCTb aCUMITOTHYECKMX MHBAPUAHTOB HECTALIMOHAPHBIX
JMHEHbIX cucteM. MuHck: bei. HaByka, 2012.

3. Hemenuyx A. K. 3amaua ynpaBjieHHs CIEKTPOM CHJIbHO HEPETYJISIPHBIX HEPHOIUUECKUX KoJeOa-
uuii // Joxnagst HAH Benapycu. 2009. T. 53, Ne 4. C. 37-42.

4. Jemenuyx A. K. YpapjieHMe aCUHXPOHHBIM CIIEKTPOM JIMHEHAHBIX CUCTEM C HYJIEBBIM CPEIHUM
3HayeHueM MaTpulbl koapdurmenTos // Tpyast UHcTuTyTa MatemaTuku. 2018. T. 26, Ne 1. C. 31-34.

5. demenuyx A. K. YrpaBieHue aCHHXPOHHBIM CIIEKTPOM JIMHEHHBIX CUCTEM C HEBBIPOXK-
JEHHBIM CPEJHUM 3HaueHueM Matpuubl koagppuuuentos // Tpyas UncTuTyTa MaTematuku. 2020.
T. 28, Ne 1-2. C. 11-16.

6. Jemenuyx A.K. YpaBieHre aCUHXPOHHBIM CIIEKTPOM JIMHEHHBIX CUCTEM C HEBBIPOXKICHHBIM
JMaroHAIBHBIM OJIOKOM yCpeHEeHHs1 MaTpuiibl Ko duuuentos // Tpynsl UHctuTyTa Matematuku. 2022,
T. 30, Ne 1-2. C. 22-29.



38.[[21‘{.’:1 yipaBj€HUSA aCUHXPOHHBIM CIICKTPOM JIMHEHBIX NEPUOAUICCKUX CUCTEM... 95

7. Jemenuyk A. K. AcuHXpoHHBIe KosieOaHus B A HepeHMaIbHbIX CUCTEMaX. YCIIOBUS CyIlle-
CTBOBaHUA M ynpasieHus. Saarbrucken: Lambert Academic Publishing, 2012.

8. Demenchuk A. K. Partially irregular almost periodic solutions of ordinary differential systems //
Math. Bohemica. 2001. Vol. 126, N 1. P. 221-228.

9. Jlesuman b. M. Iloutn nepuonndeckue ¢pynkuuu. M.: I'TTH, 1953.

10. I'pyoo 3. HU., Jlemenuyx A. K. O nepruoguyecKrx peleHnsIX ¢ HeCOU3MEPUMBIMU NIEpUOAAMU
JIMHEWHBIX HEOJHOPOAHBIX nepuoanueckux auddepennmansubix cuctem // Quddepenil. ypaBHeHus. 1987.
T. 23, Ne 3. C. 409-416.

References

1. Zubov V. 1. Lectures on Control Theory. Moscow, Nauka, 1975 (in Russian).

2. Makarov E. K., Popova C. N. Controllability of asymptotic invariants of non-stationary linear
systems. Minsk, Belaruskaya Navuka, 2012 (in Russian).

3. Demenchuk A. K. Problem of control of the spectrum of strongly irregular periodic oscillations.
Doklady NAN Belarusi, 2009, vol. 53, no. 4, pp. 3742 (in Russian).

4. Demenchuk A. K. Control of the asynchronous spectrum of linear systems with zero mean value
of coeflicient matrix. Trudy Instituta Matematiki, 2018, vol. 26, no. 1, pp. 31-34 (in Russian).

5. Demenchuk A. K. Control of the asynchronous spectrum of linear systems with non-degenerate
mean value of coefficient matrix. Trudy Instituta Matematiki, 2020, vol. 28, no. 1-2, pp. 11-16 (in Russian).

6. Demenchuk A. K. Control of the asynchronous spectrum of linear systems with non-degenerate
diagonal block of mean value of coefficient matrix. Trudy Instituta Matematiki, 2022, vol. 30, no. 1-2,
pp- 22-29 (in Russian).

7. Demenchuk A. K. Asynchronous Oscillations in Differential Systems. Conditions of Existence
and Control. Saarbrucken, Lambert Academic Publishing, 2012 (in Russian).

8. Demenchuk A. K. Partially irregular almost periodic solutions of ordinary differential systems.
Math. Bohemica, 2001, vol. 126, no. 1, pp. 221-228.

9. Levitan B. M. Almost Periodic Functions. Moscow, GTTI, 1953 (in Russian).

10. Grudo E. I., Demenchuk A. K. On periodic solutions with incommensurate periods of linear
inhomogeneous periodic differential systems. Diff. Equations, 1987, vol. 23, no. 3, pp. 409-416 (in
Russian).



Hauuonanvhas akademusi nayx beaapycu
Tpyovr Hncmumyma mamemamuxu HAH Beaapycu. 2025. Tom 33. Ne 2. C. 96102

VIK 517.926.4 EDN: TZHQBX

JBYMEPHBIA AHTUIIEPPOHOBCKUN 3®PEKT CMEHBI
PABJIMYHBIX IMOJIOKUTEJIBHBIX IIOKA3BATEJIEN JISAITYHOBA
CHUCTEMBI JIMHEMHOI'O ITPUBJINKEHU S HA OTPUIIATEJIbHBIN
BOSMYHIEHUAMMA BBICHIEI'O ITIOPAJIKA MAJIOCTHA

H. A. N30608', A. B. Wibun?
"Unemumym mamemamuxu HAH Beaapycu, Munck, Beaapyco

>Mockosckuii zocydapcmeennblii ynusepcumem, Mockea, Poccus
e-mail: izobov@im.bas-net.by, iline@cs.msu.su

Hocrymuaa: 10.11.2025 HcnpasJiena: 09.12.2025 Ipunsra: 15.12.2025

KutoueBble c10Ba: xapaktepu- AHHOTammsl. Peann3oBaH JBYMEpHBI aHTHIEPPOHOBCKUI 3((EKT CMEHBl pa3iIMIHBIX
CTUYECKHI MOKa3aTesb JIAMyHO-  MOJOXKUTENbHBIX MOoKa3aTeselt JIsamyHoBa InHeiHo#! qud depeHInanbHOi CUCTEMBI Ha OTPH-
Ba, BO3MYILUEHHUS BBICUIErO MO-  LAaTeJIbHBIA BO3MYIIEHHEM BBICILETO IOPsIIKa MaJOCTH.

psAZIKa MaJIOCTH, AaHTUIIEPPOHOB-

cKuit 3(pexT.

TWO-DIMENSIONAL ANTI-PERRON EFFECT OF CHANGING ARBITRARY DIFFERENT
POSITIVE LYAPUNOV EXPONENTS OF A LINEAR APPROXIMATION SYSTEM TO
NEGATIVE ONES BY HIGHER-ORDER PERTURBATIONS

N. A. Izobov!, A. V. I’in?
Unstitute of Mathematics of the National Academy of Sciences of Belarus, Minsk, Belarus

2Moscow State University, Moscow, Russia
e-mail: izobov@im.bas-net.by, iline@cs.msu.su

Received: 10.11.2025 Revised: 09.12.2025 Accepted: 15.12.2025

Keywords: Lyapunov charac- Abstract. A two-dimensional anti-Perron effect of changing arbitrary different positive
teristic exponent, perturbations  Lyapunov exponents of a linear differential system to negative ones by a perturbation of a
of a higher order of smallness, higher order of smallness is realized.

anti-Perron effect.

PaccmatpuBaeM AByMepHbIe audpepeHnraibHble CUCTEMBI: JIMHEHHYIO
x=A(t)x, x€R? t>1 >0, (1)

C OrpaHMYeHHbIMU OECKOHEeUHO ar(depeHIupyeMbMU KO3 UIMEHTaMI U XapaKTepUCTUIECKUMU
MOKa3aTesIsIMUA

A2 (A) = A1 (A) >0
1 HEJIMHEWHYIO

y=At)y+f(t,y), YER:, t>1, (2)

TaKxke ¢ 6eCKOHeuHO U HepeHIMPYEMbIM TaK Ha3bIBAEMbIM (CM., Haripumep [ 1]) m-Bo3myiuenuem f(z,y),
MMEIOIIUM MOPSAIOK M > 1 MaJoCTH B OKPECTHOCTH Havasaa KoopauHat y = () 1 JOIMyCTUMOro pocTa BHE ee:

£ <Crllyl™, Cr=const>0, yeR?* t>t. (3)

Dddexrt [leppona [2, cMm. Takxke 3, c. 50-51] ycTaHaBIMBaeT CyLIECTBOBAHUE IBYMEPHBIX CHU-
ctemsl (1) co BceMu OoTpuIlaTeIbHBIMU MOKA3ATESMU U M-BO3MYIIEHHUs (3) TaKuX, YTO BO3MYIIIEHHAS
cucrtema (2) UMeeT HeTPUBUAJIbHBIE PEIICHUS C OJOKUTEIbHBIMY NOKa3aTesiMu JIssmyHoBa. Ero uccie-
JIOBaHUIO TIOCBSIIIIEHa cepusi paboT aBTOPOB, B ToM uuciie U coBmecTHbIX ¢ C. K. KopoBunbim. Bobmit
HWHTEPEC CBOMMM BO3MOKHBIMU IPUJIOKEHUSIMU NPEICTABIISIET IPOTUBOMNONIOKHBIA aHTUIIEPPOHOBCKUM
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3¢ peKT cCMeHbI MOJIOKUTEIBHBIX XapaKTEPUCTUIECKHX MOKa3aTelielt TMHeiHoro npudiskenus (1) Ha oTpu-
LATEJIbHBIE Y (HEKOTOPBIX ) HETPUBUAJIBHBIX PEIIEHUI BO3MYILEHHBIX CUCTEM (2) ¢ MaJIbIMU BO3MYLICHUSMU,
B YaCTHOCTH, M-BO3MYLICHUAMMU (3) BBICIIETO MOPSAAKA MAJIOCTH.

B patorte [4] anTunIeppoHOBCKUi 3(heKT B cliydyae MOJNOKUTETbHBIX COBNAMAIIIMX XapaKTePUCTH-
YECKHUX MTOKa3aTeslell peaJM30BaH Ha OJHOM HETPHUBUAIBHOM PEIIEHUH CUCTEMBI (2) C OTPULIATEIBHBIM
[OKa3aTeJIEM.

B sTOM Xe€ ciydae coBHaAeHHs MOJIOKUTENBHBIX MOKa3aTesel JMHEHHOro NpuOIKeHus OBY-
MEpPHBIIl aHTUMEPPOHOBCKMI 3(PpdeKT peanuzoBaH [S] Ha OosblIeM YKCIie HETPUBHAJIBHBIX pEIIeHUi
C OTpPHLIATENILHBIMU ITOKA3aTeJIAIMU BO3MYILEHHON CUCTEMBI (2) C COOTBETCTBYIOIIUM 711-BO3MYIIICHUEM —
Ha 4 TakuxX peleHUX.

Bo3HuKaeT Bompoc 0 BOZMOXKHOM pean3alii ABYMEPHOTO aHTUIIEPPOHOBCKOTO 3(hheKTa CMEHBI
m-BO3MyLIeHUsIMH (3) TOMOKUTEIBbHBIX pa3auunbix okaszateneit Ay(A) > Aj(A) > 0 nuHeiHOrO NpH-
6mokenus (1) Ha oTpHLIaTeNbHBIE Y (HEKOTOPHIX) HETPUBUAIBHBIX PEIICHUI BO3MYIIIEHHOU CUCTEMBI (2).
ITonoxurenpHbIA OTBET COAEPKUT

Teopema. /[1s a06bix napamempos

AM>A>0 m>1, 08>1

cywecmayom:
1) dsymepras auneiinas cucmema (1) ¢ ozpanuuennvimu 6eckoneuno Oupghepernyupyemvinu
Ko3gppuyuenmanu u xapakmepucmuueckumu nokazameasmu \i(A) =N, i =1,2;

2) makace Oeckoneuno ougpdpepenyupyemoe no m-803MyuseHue
f(tay) : [t07+°°) XRZ _>R2

makue, umo Heaunelinas ozmyuiernas cucmema (2) umeem pewtenue y(t) > 0 ¢ nokazamenem

B mON| + Ay

(4)
1. Jloka3aTeabcTBo 1°. OnpenelieHne JUHEITHON CHCTEMBI

By)ICM CTpOUTHL €€ B JUAroHaJIbHOM BUIC
x = diagla; (t),a2(1)[x=A(t)x, x€R>, t>19, (5)

C OrpaHMYEHHBIMU OECKOHEYHO A depeHIupyeMbIMA KOI(P(PUIIMEHTAMUA U XapaKTEPUCTHIECKUMU
nokazarensamu A;(A) = A;, i = 1,2. [I1st 3TOro, Kak 0ObIYHO, OYIEM HUCIIONb30BaTh MOMEHTbI BpEMEHH
t = 0K, k € No = NU {0}, n obecnieunBaroryio 6eckoHeuHy0 UM hepeHITIpyeMOCTb K03 (hUITMEHTOB
ay(t) u ay(t) cuctemst (5) usBecthywo dynkimo [endayma—Onmerena [6, c. 54]

eys(T,T1,T2) =y + (8 —y)exp{—(T—11) Pexp[—(tT—12) 7]}, TE (11,m2),

NPYHUMAIOLIYIO Ha KOHIIaX PACCMATPUBAEMOrO MHTEPBAJIA 3HAYEHHUS Y Y O U HYJIEBbIE 3HAYEHUS CBOMX
OJTHOCTOPOHHMX MPOU3BOHBIX JIIOOOIrO TOPSIIKA.

B paccmarprBaeMoM ciiydae pa3iMYHBIX 3HaYeHHit A; > A > 0 koaddunmentst a; () u ax (1),
B OTJIMYME OT PaboThl [5] ¢ COBNMAMAIONIUMY TIONOKUTEILHBIMU OCTPOEHHBIME A U Ay, ONPEIETUM
Ha OTpe3Kax

T2k+j = [t2k+j7ték+j+l]7ték+j+l = Dt j+1 — 8(l‘ZkJerrl)ﬂ £(t) = exp(—tz), keNo, Jj=0,1,

paBeHCTBaMU
i—1 (xh re T2k+j7 . .
ai(t) = (—1) keNy, i=12, j=0,1. (6)
=G, 1€ Dpyjra,
B HHMX MOCTOSHHBIE X; UMEIOT MPEJICTABICHUE
0+1
o= A
1 le _ 1 9

a HOMep J Tpu BCsKOM ¢ukcupoBaHHoM i € {1,2} npunumaer 3navenns O u 1.
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Onpenemm Tenepb Ko3duimenTst a;(t) 1 ax(t) ¢ moMombio GyHKIMIA ey 5 Ha MHTEpBalax

— / .
12k+j:(t2k+j+lat2k+j+l)a ke Ny, j=0,1,

HCIIOJIb3Y A IJIA 9TOTO YK€ OINPEACJICHHBIC pABECHCTBAMUA (6) HX 3HAYCHM HAa KOHLIAX MHTCPBAJIOB 12k+j .
ai(t) = eaf(’§k+_/+|)ai(lzk+j+1)(t)’ 1€ bjyjy1, k€N, j=0,1.

B cuny cpoiictB pynkuuii ['endayma—OsnmMcrena Tak onpeesieHHbie npu Bcex kK € Nou j =0, 1
K03 pUIMEHTH SBISIIOTCS OeckoHeuHO nuddepeHpyeMbIMI Ha BCeii rmomyocu ¢ > 1.

J1J1st BBIYMCJIEHU ST XapaK TePUCTUUECKUX TIOKa3aTeNiell MOCTPOEHHON CUCTEMbI JIMHEHHOTO NPUOJIU-
sKeHUs (5) BOCIONb3yeMCsl BCIOMOI'aTeJIbHOM Tak:Ke AUaroHaJabHOHN JTMHEMHON CUCTEMOt

% =diag[b (t),b2(1)]x=B(t)x, x€R* t>1, (51)
ko3 dunmentst b;(t), i = {1,2}, KOTOPOii ONpeseA0TCS PaBEeHCTBAMI

bi(t) = ai(toxtj), 1€ [tokyjrtok+jr1), kENy, j=0,1.
OueBugHoO, 1is k03 durmenToB cuctem (5) u (51) cipaBeITUBbl COOTHOIICHUS

!
) ()] = o1 etk
g 2“27 e [t£k+j+]7t2k+j+l)7 ]: 07 1.
Tem cambIM B CHJIy MaJOW JJIMHBI
!/ 2 .
0 <toktjr1 — oy jr1 SXp(—ty), kE€No, j=0,1,

IPOMEXKYTKOB [ték 12k j+1) HEPABEHCTBO
oo
[ 1B(x) —A(T) | < o
To

BBITIOJIHEHO TIpH JII0OOM KOHEeuHOM O > 0. [Tostomy [7] nuHeiiHbie cuctemsl (5) u (51) SIBJISIIOTCST aCUMII-
TOTUYECKH SKBUBAJICHTHBIMH U UX XapaKTepUCTUIECKHe ToKa3aTes M coBnagaoT. [locieqaue xe s
cucTeMbl (51) ¢ KyCOUYHO-TIOCTOSTHHBIMU «IIEPUOJMUECKHU MTOBTOPSIOIUMHUCS» KOIDPUIIMEHTAMHU UMEIOT
HEOOXOAMMbBIE MPEACTABIICHUS

-1

A,(A) = 7\1(3) = air—i—l =

N, i=1,2.
2. [TocTpoeHne BO3MYIIEHHOI CHCTEMbI U €€ PellieHHs ¢ OTPHIATeJbLHBIM MOKa3aTeJeM

3Tu nocTpoeHus OyAeM BECTH METOJOM, M3JIOKEHHbIM B Haulell padote [4] ¢ HEOOXOIUMBIMU
VM3MEHEHUSMU U JOTOJTHEHUSIMU.

Ha otpeske [fok,f2142] € TPOM3BOIBHO (PUKCUPOBAHHBIM k > ko OCYIIECTBUM OJHOBPEMEHHBIC
HOCTPOEHUS:

1) 6eckoneyHo nuddepeHIMPyeMOro m-BO3MYIIEHHS

Ft,y) = (filt,y2), fo(t; 1)) : [tak, taxs2] X RE — R
C ITOJIOKUTECJIIBHBIM OKTAHTOM
RL={y=(01.)) €ER:y >0,y >0}
nu HyﬂeBbIMI/I 3HAYCHUAMU
filtwyjyy3-1) =0, yeR;, i=12, j=0,2,

€ro KOMIIOHEHT M TaKMMH ke 3HaYEeHUsIMU UX NPABOCTOPOHHMX MPOU3BOJHBIX JIOOOTO MOPsiKA PH
Jj = 0 1 1eBOCTOPOHHUX NpH j = 2;

2) petuenust y(1) = (y1(¢),y2(¢)) cuctemsl (2) ¢ HOCTPOSHHBIM M-BO3MYyILIeHHEM [ (¢,y), IPUHUMAIO-
I[ero Ha KOHI[AX PacCMaTpHBAEMOro OTpe3Ka HavyajbHble M KOHEUYHbIe 3HAYCHUS

yi(t2k+j) :eﬁit2k+j7 = 1727 .1:072 (61])
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CBOUX KOMIIOHEHT
[ .
0<yi(t) <P’ t€tg, ), i=1,2, (6:)
B KOTOprX OTpI/ILIaTeJILHLIe ITIOCTOAHHBIC B] %1 E)z OHpeHeHH}OTCH CI/ICTCMOﬁ paBeHCTB

B1:m92B2+(9*1)20(1, (71)
Bo=mpP1+(0—1)(mo; + o). (72)

U3 sT0li cucteMbl Mojiy4aeM ux CJeayrouue ABHbIC 3HAUYCHUA

<P2=—-(0-1)

mOo + o

O(o) +mboy)
m202 —1

m202 —1
I/ICXOHH M3 YyIKE IMOJIYYCHHBIX BBIIIC HYJIECBbIX 3HAYEHUN
fi(l‘Zk)y37i):Oa i= 1727

KOMIIOHEHT BO3MYyIeHus f(f,y), MPOJOIKAM MX aHAJIOTHYHBIM 00Opa30M

Bi=—(0-1)|oi+ <0. (8)

filt,y3-) =0, t€[tuus3z—i), Nuri=turi—1, y=0, i=1.2, (8:)
Ha MaKCHMaJIbHO BO3MOXHBIE TI0 JJIMHE BPEMEHHbIE TIPOMEXKY TKH.
J1st ompepeneHust 3THX KOMITOHeHT fi(¢,y2) ¥ f>(f,y]) COOTBETCTBEHHO Ha HMHTEpBaax
(M2k+25t2k+2) ¥ (Mokt1,2%+1) BOCHONB3YyeMCsI (DYHKIMAME
6071(’(,’(1,’(2), TE [Tl,Tz},
E(T,7T1,7T2,73,T4) = { 1, TE (T2,T3),
€10(T,T3,T4), TE (T3,T4},

yeo1(yi,0,e(t)), yi€[0,e(t)], i=1,2,
Feyi) =19, .
Vi Yi>5(tk)7 l:l727

MOCTPOCHHBIMU Hamu B pabote [4].
B cootBeTcTBUM C ompezeseHueM (8) MepBOil KOMIIOHEHTH fi(f,y:) Bo3myieHust f(f,y) mis
HepBOii e KOMIIOHEHTHI Y1 (f) pemeHus y(f) ¢ HadaJIbHBIM ycJoBUeM (619) IMeeM IPeACTABICHHS

exp[Bitax + o (t —tar)], 1€ [tars by ]
t
t) = 9
M= 0 Dexp [ ar0dT=yie n ). 1€ iy il 1)
Bt
Ha criestyiomem poMexyTKe [t 1,25 »| KOMIOHEHTa y| () ONpe/IeNseTCs PaBeHCTBOM
yi(t) = yi(tarsr)expl—ai(t —taxy1), 1€ [tary1,t542]- (92)

OueHnm ee CBEpXy Ha OTpe3Ke [fok,l2k+1]

7\1(2‘) Etillnyl(l‘) < til[Bltzk—i-O(l(t—tzk)} = (Bl —Ocl)tzktfl + o <

)

<Br—o)0 '+ =B+ (0-1)]07" = —(6— I)Lmeo‘2

m292 1 < BZ) IS [t2k7t2k+l]' (10)

Ha cnenyiomem otpeske [t 1, ,] IPOU3BOAHAS

N (1) =t [~ Inyi (taxs1)] — catorr s

1J1s1 KOMIOHEHTHI Y (1) (eM. (91), (92)) He MeHsieT 3HaKa Ha uHTepBane (fo1, ték +2) Y I03TOMY (DyHKIMSA
A1 (7) mpuHEMaeT criefytoliiee HauOoJbIlee 3HAYCHUE:

max Ay (1) = max{A; (fr1), A1 (1 2)}s 1 € [takg1,22p40)-
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U ecnm HepaBeHCTBO A (for+1) < B2 yxke ycraHosieno (cm. (10)), To ps Al(ték +2) B CHJLy PaBEHCTBA
(92) u (71) cpaBeJIUBH OIIEHKU

max {Ai (£2), M (f2k12) } < [Br — (8 — 1)7our + 2001 (12442)]0 7% < B2 <0,

npu k > ko 1 cCOOTBETCTBYIOIIEM ko € N.

Jl71s1 mocie Iy IoIero nocTpoeHus BTOPOil KOMITIOHEHTHI f (¢,y1) m-Bo3mymienust f(f,y) Ha OTpe3ke
Mok+1,t2k+1] HEOOXOAMMO TIOMYYUTh Ha HEM OIIEHKY CHM3Y IEepBOW KOMIIOHEHTHI y|(¢) perueHus y(z).
N3 npencrasnenuii (91) u nepoit onieHku (10) umeeM HepaBeHCTBa

exp[(B1 — i)tk + o] = yi(t) = exp[(B1 — ot )tok + it — 2001 €(top 1)) =
= diy g expl(B1 — o )tok +out] > ey yexp[—ou + (B1+ (0 — Docr)Jtar, ¢ € Mokt tanra].
W3 mpeapiaymero HepaBeHCTBA C WCIONb30BaHUEM MpeacTaBieHuil (71) 1 (8) BeJwIuHBI 3]
MOJIy4aeM OLIEHKU
0(0 —1)oatok

e ] > o1 exp(— i 1) > exp(—13. ) =

yi(t) > corp1exp [—

=e(twr1), € Mausirtus1], k= ko,
C TIOCTOSIHHBIMH Cpp 1| = c’2k 1€ ™ ¥ oueBUIHBIM ko € N.
[MonyyeHHas! OILEHKA MO3BOJSET MPEICTABUTh HA OTPE3Ke [Moki1,l2k+1] BTOPYI0 KOMIIOHEHTY
f2(t,y1) BO3MyIeHus f(t,y) B clieayiolieM BUe:

f2(t>yl)|y1:y1(t) = —doy1Fak 1 (yl)|y1:y1(t) X E(f7ﬂ2k+1 an,2k+1>ték+lat2k+l) =
= —d2k+1y'1"(f)E(f7’,'7'7'),ﬂlzk+1 =MNokr1 +E(tkr1)s € Mokt1sborr1)-

Ha nipeaplayiiem [tox, Mok 1] ¥ MOCACAYIOMIEM [f2) 4 1,f2k+2] IPOMEKYTKAX ITA BTOpasi KOMIIOHEHTA
S2(t,y1) TokaECTBEHHO paBHa HYIO (CM. (8)). [Ipr 9TOM MOCTOSIHHAS )| TIOMJIEKHUT MOCTIELYOIIEMY
OTpe e ICHUIO.

Hccnenyem tenepb NOBeAEHNE BTOPOI KOMIIOHEHTHI Y, (1) Ha OTpe3Ke [ty, 2. Ha mepsoii ero
HIOJIOBUHE [fox,f24+1] OHA OY/IET ABIATHCS PEIIEHUEM JIMHEHHOTO HEOIHOPOJHOTO yPABHEHHUS

Y2 = ax(t)y2+ falt,y1(1)]

C HaYaJIbHBIM 3HaUYeHHUEM Y, (f2x) = exp(Patax). Ha otpeske [tax,Nox+1], Ha KoTOpoM f>(t,y1) = 0, umeem
HpeICTaBIEHIE
y2(t) = exp[Batar — o2t —t2r)],

a TeM CaMbIM B CUJIY HCPpABEHCTBA [52 > —0 U H606X0)II/IMYIO OLICHKY

0 <y2(r) <expPot, 1€ [fox;Mokr1]-
Ha crenymomem otpeske [Nok+1,%2x+1] KOMIOHEHTA Y7 (f), SIBJISISICh PEIICHHEM MPUBEICHHOIO HEOIHO-
POIHOIO ypaBHEHHsI, MMEET IPEICTABIEHUE

t

y2(t) = ya(tar)x2(t, tox) — dors1 j E (T, Mokt 1Moy 150y 15 F2k1) X
N2k+1

XY (T)x2(t,T)dT = 2(t) — dor 12 (Makt151), ¢ € Mokt t2kt1) (11)
t

B KOTOPOM X3 (7,T) = exp [ az(&)d& u Jo(Nag+1,1) — narerpan. I[octosiHHast ke dagt1 > 0 onpenessieTcst

T
U3 yCJIOBUSA

2(tok+1) — dorr 12 (Marg 1, t2k1) = Y2 (torg1) > 0, (12)
B KOTOpOM
Fo(tors1) = X5 ' (tas2, o 1) exp(Batas2) (13)

— HOBO€ 3HAYCHUEC KOMITOHCHTBI yg(l) B MOMEHT ! = 12f41-
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W3 pasencts (12) 1 (13) noay4nm 3HaueHUE MOCTOAHHOM dog 41 > O M yCTAaHOBUM €ro OrpaHUYEHHOCTh
CBEpXY He 3aBUCSINEH OT kK BEJIMYUHOM, YTO MO3BOJIUT CUMTATh CTPOSIIIEECs] BO3MYIIIEHHE HEOOXOIMMbIM
m-BO3MYIIIEHHEM Ha BCEl MOYOCH ¢ > fo. JIJIsl TOro OLIEHUM CHU3Y UHTErpast J2(Moki1,02k+1), YIATHIBAS
TIpU 3TOM HEPABEHCTBO

yi(1) =21 (Maks1),  TE Makttsbogsr)-
CHpaBe)lHI/IBbI TaKXe CJICL[yIOH_lI/Ie HepaBeHCTBa
Bt
Do (Mak+1,t2k41) = f W (Maks1)x2 (t2k41,T)dT = [1 —2€(t2p41)] X

Mgt
X exp{—2mo¢z + [mﬁl + (6 — 1)m0(1]l‘2k} =C exp{[mBl + (9 — l)moq]tzk} = exp[Bz — (6 — 1)0(2]t2k,

[pHYEM IOCIIe/IHee PABEHCTBO UMEET MECTO B CHITy onpejiesieHust BesurH 31 u o (em. (71) — (72)).
W3 npencrapienus (13) HOBOro 3HaueHUst Y (f2x 1) KOMIIOHEHTHI Y, (1) IMeeM HepaBeHCTBa

0 < ¥o(taks1) < c3exp[Patarrz — (0 — 1) xatopy1]

C He3aBHCsALIeH OT k TocTosiHHOM ¢3 > 0. 13 paBeHcTBa (12) monyyaeM npeacTaBieHUe OCTOSHHON doy 1

0 < dor1 = [z(taks1) — F2 (a1 o (a1, 2201) < 22k ) ' Mokt 15 tak1) < ¢ = const.

ITonoxuTEIPHOCTH d2k+1 CJIeayeT U3 HEPABCHCTB

V2 (o 1)z  (tors1) < exp[Ba(taksa —tox) — (0 — 1) oxa(tops1 —tox)] — 0.

IIpu sTOM CcnpaBemMBa OLEHKA

y2(t) = Fao(tor+1) exploa (t — tars1)] < exp[Pa(2taki2 —1)], t € [taks1,t2k+2)-

Jl71st oueHKH CBepXy |y2(t)| BTOpoil KOMIOHEHTHI Y3 (f) Ha OTPe3Ke [Nk 1,%2%+1], ONPEACICHHON
paBeHcTBOM (11), mpencTaBuM ee B CIEIYIOLEM BHIE:

t
y() =0 (t,0) | B2 —dor [ 37 (10 E (T, ()|

MN2k+1
npuyeM coriacHo (12) u (13) B MOMEHT fp;1| CIpaBedJIMBO HEPABEHCTBO

Dk+1
P —dyyy [ .dr>0. (14)

N2k+1

Tak Kak HepBas KOMIOHEHTa yi(f) BO3pacTaeT Ha BCEM MPOMEKYTKE [Noky1,ly ] (BIMAHME
IPOMEXYTKA [ty |, 2k 1] AMHBIL €[t 4 |] HE CKa3BIBAETCSA), TO HEPaBEHCTBO (14) GyneT coxpaHAThCA U
JUISL MHTErpaia ¢ BEPXHUM TIPEEIIOM I € [Nk 1,1+1]. DTO YCTAHABIMBAET MOJIOKUTEIBHOCTD Y3 (1) Ha
OTpe3Ke [Nok+1,0%+1], T. €. uMeeM 0 < y, () < z(f) Ha 93TOM ke OTpe3Ke, a 3HAUHUT, y; (1) < exp Baf. 10
HEPABEHCTBO COXPAHWTCS M HA CJIEAYIOMIEM OTPE3Ke [foi1,02k+2)-

EnuHCTBEHHBII HA OTPE3KE [f2k, f2k2] TPOMEKYTOK ASHCTBUS MEPBOii KOMIIOHEHTHI f(t,y2) m-
BO3MYIIeHHAs f(f,y) — OTPE30K [Nok+2,%2k+2] C JIEBBIM KOHIIOM T)2412 = fpr+2 — 1. Ha HeMm BbINosHEHa
OuYeBHU/IHASI OLCHKA Y7 (1) = €(tar2) M OITOMY Foryo[y2(T)] = ¥4 (T), T € Mak+2,t2+2). Tem cambiM Ha
paccMaTprBaeMOM OTPE3Ke [Nok+2,l2k-+2] TIEpBasi KOMIIOHEHTA UMEET TPEICTABICHIE

t
Y1) = 51 (6, Mok 2)y1 (Naks) — i | WB(DE(T,...). . dT =

MN2k+2
= u(t) — dog2)y Maks2,t), 1€ Moargastarsal,

C MOCTOSIHHOM dpi1o > 0, ompenesisieMoil yCIOBUEM

u(tok42) — dok2J1 (Mak+2, taks2) = eXp[Pitok+2]-
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Bce nocneayoriye paccykAeHHs 10 JOKa3aTeIbCTBY OrPAHUYEHHOCTH CBepXy (He 3aBucseit ot k € N
HOCTOSIHHO#) U MOJIOKUTEIBHOCTH BEJIMYHHBI do» aHATOTMYHBI PACCYKIACHUSM, IPOBEJCHHBIM BBIIIE
Ha OTPE3KE M2kt 1,12k+1)-

Takum 00pa3oM, Ha OTpPE3Ke [fo,l2k+2] TOCTPOCHBI HEOOXOAUMBIE /M-BO3MYILEHHE U PEIICHHE
y(t) = (y1(t),y2(t)) BO3MYIIIEHHO} CUCTEMBI C HAYaJIbHBIMU ¥ KOHEUHBIMH 3HAUYCHUAMH (6, ) U YIOBJIETBO-
psionye HepaBeHcTBaM (6;). MeTogoM MaTteMaTHYecKoi HHAYKIUU PACIIPOCTPAHUM 3TH OCTPOCHHUSI Ha
BCIO MOJIyOCh 1 > ty. HeoOxommmoe HepaBeHcTBO Aly] < 32 ycraHoBieHo. Teopema mokasaHa.

3ameuanue. B Hariem nokaze [8] mokaszarenu AlY;] JOKHBI UMETh TIpeCcTaBlIeHuE (4).
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KuoueBble cioBa: uHTErpo- AHHOTanus. M3ydaercs HOBOE JIMHEHHOE MHTErpo-auddepeHnnaIbHoe ypaBHeHHe Ha 3a-
muddepenHnanbHOe ypaBHEeHHe,  MKHYTOI KPHUBOH, PAcIloNOXEeHHON Ha KOMIUIEKCHO# miockocT. Ha kpuBylo 1 Ha koadduim-
THIEPCUHTYJSIPHBI MHTErpaJl, eHTHl ypaBHEHHsI HAKJIQABIBAIOTCSI HEKOTOPBIE OrpaHUYEHHs. Y paBHEHUE COAEPXKUT THIep-
00001eHHbIe (hopmyibl COXOL-  CHHTYJISIPHbIE MHTErpaJibl ¢ ICKOMO# (pyHKIMeH. XapakTepHONH OCOOCHHOCTBIO YPAaBHEHHS
KOro, CMeIllaHHas KpaeBas 3ajla-  SABJIAETCS HAIMYHME TaKKe PEryJIAPHBIX MHTErpajioB ¢ MCKOMOIl (DYHKIMEH U ee KOMIUIEKCHO-
ya, JIMHelHOoe [u( depeHany-  CONpsUKEHHBIM 3HaueHHeM. PelleHne ypaBHEeHHS CBOJUTCS K PEIIEHNI0 CMEIIaHHOH KpaeBoit
HOE ypaBHEHHE. 3a7a4u U1 aHATUTUYECKUX (DyHKIMI M TocieayoeMy peleHuio auddepeHIanbHbIX
YPaBHEHHUH C JIONIOJIHUTEILHBIMU YCJIOBUAMM Ha pelieHue. SIBHO yKa3bIBaIOTCA YCJIOBUSA pa3-
PEIIMMOCTH UCXOAHOTO YpaBHeHHs1. [Ipy UX BHIIOJIHEHUH PEILlIEHUE CTPOUTCS B 3aMKHY TOi
dopwme. ITpuBOIHTCS IIPUMEP.

AN INTEGRO-DIFFERENTIAL EQUATION DEFINED ON A CURVE IN THE ANGULAR
DOMAIN AND CONTAINING A COMPLEX CONJUGATE
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Keywords: integro-differential ~ Abstract. A new linear integro-differential equation is studied on a closed curve located on the

equation, hypersingular integral, complex plane. There are some restrictions on the curve and the coefficients of the equation.

generalized Sokhotsky formulas, The equation contains hypersingular integrals with the desired function. A characteristic

mixed boundary problem, linear  feature of the equation is the presence of regular integrals with the desired function and its

differential equation. complex conjugate value. The solution of the equation is reduced to solving a mixed boundary
value problem for analytic functions and the subsequent solutijn of differential equations
with additional conditions on the solution. The conditions for the solvability of the original
equation are explicitly stated. When these are performed, the solution is in closed form. An
example is given.

1. Beeaenne

IycTh L — mpocTas 3aMKHYTas MONOKUTENLHO OPUEHTUPOBaHHAsA KpuBas Kiacca C! Ha KOM-
TIeKCHOM 1ockocTd. O003HaunM D BHYTPEHHOCTD, 2 D_ BHEITHOCTDb 3TON KpuBoii. Fickomoii OyneT
B fanbHeinem yHkiws @ (1), t € L, H-HenpepbiBHasi (T. €. yIOBJIETBOPSIOIIAst ycJIoBHIo [efbaepa) BMecTe
CO CBOMMM IPOU3BOJAHBIMU, BXOISIIMMUA B UCXOAHOE ypaBHEHHUE.

15 npenenbHbIX 3HAUEHUI HAa KpuBO# L mHTerpana tuna Komm

O (2) = 1 o(T)dt

T 2mdL -z €Dy,

Y €ro NMPOM3BOJIHBIX CIPABE/IMBLI MOJTy4YeHHbIe B [ 1] 06001meHHbIe hopmysibl COXOIKOTO

1 k! @(T)dT
q’(ik)(f):iz@(k)(t)Jer.fL(TEt))kH, teL. (1)

Dopmyisl (1) cipaBeIMBHL B cily4ae H-HENpephIBHOCTH MPOU3BOJHBIX e® (1), Ipu 3TOM Mpe/ieIbHbIE
3HAYEHU TaKkxke H-HenpepbIBHBL. [ MIepCUHTYIIApHBIE MHTETPaNEl B (popMynax (1) MOHUMAIOTCA B CMBICIIE
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KOHEYHOM yacTy o AaMapy, 4To COrfiacHo [1] NpuBOAXT A MX BBIYMCIIEHUS K (popmynaam

f e(t)dt  mieW(r) j(P(T)le—o(p(;)y(t)(Tf)de,
L( L

L L (T—t)kt!

B MPaBBIX YacCTSAX KOTOPBIX MHTErpajbl CXOASATCS B OOBIMHOM cMbicsie. MHTerpo-auddepenmansHoe
ypaBHEHHUE C TAKMMU TMIIEPCUHTYJIIPHBIMU MHTETpajlaMy BBEIGHO B PACCMOTpPEHMeE B [2] — 9T0 JMHelHoe
YPAaBHEHUE C MNOCTOSIHHBIMU KO3(h(pULIMEHTaMU, KOTOPOE PELIEHO B IBHOM BUJie. C YaCTHBIMU CJIy4dasiMU
MepeMEeHHBIX KO3((UIIMEHTOB NOAOOHBIE YpaBHEHNUS U3Y4YalliCh B [3; 4] u apyrux padorax.

Eciu B CUHTY/ISIpHBIX MHTEIPAJIbHBIX YPABHEHUSAX HapsAy C CUHTYJISIPHBIMU MHTETpajlaMy IPUCYT-
CTBYIOT pETYJISIpHBIE HHTErpaJIbl C HICKOMOM (DYHKIMEH, TO TaKhe ypaBHEHUs IPUHATO Ha3bIBATh MOJHBIMU.
Ecnu B runepcuHrynsipHsle HHTErpajibHble UM UHTETpo-aAnud pepeHnaipHble ypaBHEHU BXOIAT pery-
JIApHBIE UHTETPaJIbl, TO TAKHE YPAaBHEHHS €CTECTBEHHO TOXKE HA3bIBATh ITOJHBIMU. McciieoBaHUSA MOTHBIX
TUIIEPCUHTYISAPHBIX UHTErPO-audepeHIINAIBHBIX YPABHEHHUI HA4aThl HEAABHO [5—7] M MpOoA0IKAIOTCS
B HacTosie pabote. TU UCccaeOBAHUS OTIMYAET KOHCTPYKTUBHBIN XapaKTep, KOTAa sIBHO YKa3bIBAIOTCS
YCJIOBUS PA3PELIMMOCTHU U IPY UX BBIIIOJIHEHUU SIBHO 3AIACHIBAIOTCS CAMU PELICHMUS.

2. IlocranoBka 3ajgaun. Hekoropbie 0603HaueHus1 1 (PaKThI

Bamagum uncna a; € C, by € R, k=0,n,n €N, a, # 0, b, # 0. 3agagum Takxke H-HenpephIBHbIE
dbynkimn a(t) # 0, b(t) # 0, h(t), t € L. O603HauNM

gj=end, jEE={0,1,..m—1}, )

KOMIUIEKCHbIE KOPHH CTeNeHU m 13 eauHuibl, m € N, m > 2. KpuBywo L Bo3bMeM Tenepb pacroloKeHHO
B yrioBoit obmactu {z: 0 < argz < Z}. Bynem pemarth ypaBHeHue

& a(t)ay — mk)! "
3 |ty o) o)+ U2y ((f OB

Jj=0

@(T)dt _
_LW =h(t), teL, 3)

€m = €0. [ MMEPCUHTYJISPHBIME UHTETPAJIaMK B YpaBHEHHH (3) SIBJISIOTCS MHTErPAbl ¢ (0 (T) BO BHY TPEHHEH
cymme 1ipu j = 0. OcTasibHbIE HHTETPAJIBI, B TOM YKCIIE BCE HHTETPAIBI C @ (T), ABJISIOTCS PETYISAPHBIMH.
O0603HaYNM

L={t: t=7, t€Ll}, Dyi={z: z=0(, (€D},
Lg={t: t=¢ept, Tel}, Dg={z: z=¢p(, (€D},

Leg={r: t=¢pt, T€L}, Dp={z: z=¢pC¢, (€D}, p=1,m—1,

m—1 m—1 m—1 m—1
D.=C\{tUpUrUp: U Ls U Ds U Ls U Ds}
p=1 pB= =1 p=1

rae C — pacimmpeHHass KOMIUIEKCHASI TJIOCKOCTb.
Bo3MOXHBII BT HEKOTOPHIX BBEJEHHBIX OOBEKTOB N300pakeH Ha puc. 1.
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ﬂ@/ )

< \Rez

Puc. 1. Bo3moxHblii Bua kpuBoii L u obnacreit D, D, B ciaydae m =3

Yucna €, Beruncisemsle o dopmyne (2) s j € Z, 06pa3yioT N0 yMHOKEHHUIO LIUKJIMYECKYI0
rpyIIny NopsiaKa m (C 00pa3yoyuM IEMEHTOM €1 ), TOITOMY B AajbHeliiem 31u uncia ist j € Z \ E
MOJKHO 3aMEHSATh Ha paBHbIE UM YHMCJA JJIs COOTBETCTBYIOIIEro 3HaueHus j € E. OTMETUM Takxe
PaBeHCTBO €; =€, j € Z.

3. CBe/ieHHEe ypaBHEHUs K KPaeBo# 3ajja4e JIs1 aHAJIATHIECKUX (PyHKIHI

BBenem ananmuTHdeckue (yHKIUH

L ([ eds [ (0T [ ., zeD.
2t Z )= =\ v D 4)
TS \L Tz JLT—En 2 «(z), z€D;.
O6ocHyem, uro dynkuus W, (z) obnagaer cBoiicTBaMU
¥, (e12) = Wi (2), (5)
V. (2) = Y.(2), (6)
Wi (e0) = 0. (7)

Tak kak umcna €; 00pa3yl0T UMKJIMYECKYIO TPYIITY, TO AJIf OOBIX uucen mi, my € Z

Y
LT—sJ+m,z =L Tgjz

Z ndr "G e(T)dt

Z f S e e(r)dr
LT— £m jAmZ = LT Em-j2

[Toatomy, B35IB B YACTHOCTHU m| = my = 1, IpUAEM K paBeHCTBY (5):

m

z_:1< . T)dt B 7@% )I‘P*(Z).

—&j+12 LT—€&n—jt+12

1
lP ElZ T

CgoiicTBo (6), BoIpaxaloliee CUMMETPUIO (PYHKLIIMM OTHOCUTEJIBHO JEHCTBUTEBHOM OCH, BHITEKAET
U3 paBeHCTBa

Lmi:l e(ndt ¢ e(rdt ) 1 ”’Zl 1 ¢ o(t)dt
27 120 LT—EJZ LT—¢pj2 - 2mi L'r—sjz 27U' LT—¢;7
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Haxkonen, paBeHcTBO (7) €CTh OUEBUIHOE CIIEJCTBUE U3BECTHOIO CBOMCTBA MHTerpajia tumna Komm.
®ynkuus W, (z) BIOMHE XapaKTepU3yeTcsi CBOUMU 3HAYCHHUSIMU B 00J1aCTH

{z: 0<argz < %}\ (D+UL>

(06J’IaCTb 6Cp6TCH BMECTE C COOTBETCTBYIOLIMMHA nyanH). Ha OCTAJIbHYIO 4aCTb obyactu D, ee MOXHO
pacnpoCTpaHuThb, HAIIPUMEDP, CHaYaJla IpOAO0JIKAaA 10 CUMMETPHUU OTHOCHUTEJIIbHO JIeACTBUTEIPHON OCHU
Ha CUMMCTPHUYHYIO 0071aCcTh

{z: —% Largz < 0}\ <5+UZ> :

3areM «yJBOCHHY» 00JIacTh

{z: _T <argz < %}\ (DJr ULU5+ UZ)

m

CJIEAYET BpallaTb BOKPYI' TOUKU 7 — 0O Ha YIJIbI, KpaTHbIe 2n , COXpaHdAd B COOTBETCTBYIOUIUX TOYKaAX TE

JKe 3HaueHUs (PYHKIMH, YTO U B 3TON «yABOECHHON» O6HaCTI/I
st mpousBoausix pyukimu W, (z) nmopsimkoB mk, k = 1,n, nonydnm

m (mk)! " e o(t)dT en (1) dt
gl k)(Z) - ,; (L (T— g;z)mkH1 _L (T— em_ Z)mk+1> -

0

(mik)! ]
T 2mi Z(L(_gzmkﬂ f T—¢, ka+1>

J=0

OTKY[Ia TIOHATHO, YTO Ha 3TH MPOU3BOIHBIE TIEPEeHOCATCS Bce cBoiicTBa BUaa (5), (6), (7).
3anuiieM npesespHble 3HaUYeHNA Ha KpuBoii L (pyHKIWIT (4) 1 X TTPOU3BOAHBIX MOPSIKOB, KpaT-

HBIX m.
m—1
)y _ L i) (mk)! _ e(Mar
0= 3o+ T L e e ®)

o RIS (¢ it ¢ edr )
2® )+ 27 X fL (T—gjt)mktl _[L (T—epmjt)mkt1 |7 k=0, 1eL. O

Jj=0

Dopmysl (8), (9) nomyyaioTcs nocie npuMeHeHus K GyHKUUAM B popmyiie (4) 00001meHHbIX (popmyn
Coxotukoro [ist uHTerpana ¢ @ (1) B ciayyae j = 0 u quddepeHIMpoBaHus MO 3HAKOM MHTerpasia 11
OCTaJIbHBIX MHTErpasioB. BerunTas u ckiaapiBas paBeHcTsa (8), (9), moayunm napy paBHOCUIbHBIX PABEHCTB

<p<'"k> (1) = ‘PS?“‘) (1) =¥ ), (10)

mk)! "=}
(m') Z<L( —st’""“ j

mk mk
mkH) =)+ ™),
Jj=0

C MOMOIIBI0 KOTOPBIX YPaBHEHHIO (3) MOXHO MPHUIATh BUI KpaeBOW 3a4a4n

n

Y [(al)ai+ bk (¥ (0) =2 (1)) + (a(t)ax — b)) (200 (0 + 9 (0) ] = ho), reL,

k=0
WM TIOCJIe OYEBUHBIX YHPOIICHUIA
k mk (t )
e b relL. 11)
Z Z 2a(t) (
Cymma B sieBoii yacTH paBeHcTBa (11) sBisieTcs npenebHbIM 3HaYeHHeM Ha KpUBO# L (pyHKIMH
k o o
Yi(2)=Yr ak‘PS_m ) (z), aHanmurrdeckoii B odmactu D . Cymma B ripaBoii yactu paBeHcTBa (11) siBistieTcst
o k o
Tpe/ie/IbHBIM 3HaUYeHUeM Ha KpuBoit L dyukumm Y, (z) = Y7 bk‘PSﬁm )(z), aHaJIMTUIECKOH B oOyactu D,.
k .
[Tockonbky Bce MpOU3BOAHBIE ‘PS" )(z) 00J1a1a10T CBOMCTBaMH, aHAJIOTMIHBIMU (5), (6), (7), TO STUMH ke

cBolicTBaMU OyyT 00J1a/1aTh U X JIMHEHHBIE KOMOWHAIIMY C IEHCTBUTENLHBIMU KO3 (PUIIMEHTAMHY, T. €.

Yi(e12) = Yi(2), (12)
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Y.(2) = Y.(2), (13)
Yi(o0) = 0. (14)

BosHukieil kpaeBoi 3agaye MOXXHO MPUIATh BUJL

Yo () = ’a’g;n (0)+ 2};(8),

Takas 3a1aua OTHOCUTCSI K CMEIIIaHHBIM KpaeBbIM 3ajjauaM. Buji KpaeBoro ycJIOBHSI aHAJIOTUYEH BUJTY
KpaeBoro yciosus 3agauu Pumana. Tpe6osanue (12) Ha oiHy M3 UCKOMBIX (DYHKIIHI UMEET XapaKTep
KpaeBoro ycsioBus 3a1aun Kapnemana, a TpedoBanue (13) — kpaeBoro ycnous 3aaauu [ wipdepra. Ha sty
3a/1a4y ylaeTcs pacpoCTPaHUTh KIACCUIECKYIO CXeMYy PellleHHrs] JBYyXJIEMEHTHBIX KpaeBhX 3a71a4 [8].
B pesynprare monyuuTcs, uyTo odiee perreHre 3agadn (15) 3amuceBaeTcs o popmMysiam

Yi(2) =X (2) (T (2) +R(2),  Yel2) = Xu(2) (Tu(2) + R(2),

telL. (15)

rae
X (z) =", X.(2) = ("—2f) *(&"—7) %", €Dy,

b(r) 1" U In (7" — =)~ (T" —2™) *b(7)/a(7))dT
0 L

a(r)’ %j: T—€;2

—f In (7 — 2o — 25™) () /a(v)) dr] :{ I.(z), z€D.,
L

X = Il’ldL

T—em_jz I'.(z), z€ Dy,
L’"i ( h(T)dt —f h(t) dt _ { T,(z), z€Dy,
4ni /= | L a(T) X (T) (T~ ¢2) a(t) Xy (1)(T— em_j2) T.(z), z€ D,
R ( ) Zi(xo ! CkZ C — IIPOU3BOJIbHBbIE ﬂeﬁCTBHTeHLHLIe IOCTOSAHHEIE, €CJIN X > 0,
. 0, ecm « < 0.

IMpu o > 0 3agaya paspemmma 6e3yCcJIOBHO, a npu & < 0 Uit ee pa3perMMOCTH HEOOXOIUMBI U J10-
CTAaTOYHbI YCJIOBUA

h mkfld
LM:O, k=T, —2a. (16)

a(t)X(7)

[Ipennonoxwum, uto 3amava (15) pazpemmma. [Janee cienyer pemarh quddepeHnmraibable ypaBHEHUS

Zak\P’"k =Y,(2), z€Dy, (17)
Zbk‘PSf"k)(z)zY*(z), z€D,, (18)
k=0

U B cllydyae HaXOXJEHHUS UX pelleHuil Bocnoyb3oBaThcs dopmyioit (10) npu k = O:

o) =W () —W.(1), 1€L. (19)

4. Pemenne qudpchpepeHINANBHBIX YPaBHEHUH

Oob1ee perenue ypasHenus (17), 3anucanHoe 1ociie IPUMEHEHHsI METOa BapHaLY IPOU3BOJIbHBIX

IIOCTOAHHBIX, UMECT BUL
_ mn N Z UO'(C)dC
7) = G; Us(2) (CG + 00 ) (20)

21

B at0ii popmyste DyHKIMH i (Z), ABHBIA BU KOTOPBIX XOPOIIO M3BECTEH U 3[€Ch HE IPUBOIUTCS, 00pa3yIoT
(yHIAMEHTAIIBHYIO CUCTEMY PELIEHUN COOTBETCTBYIOLIErO OJHOPOAHOTO ypaBHeHust, Cg — NPOM3BOJIbHBIE
KOMILIEKCHBIE TTOCTOsIHHBIE, U (() — BpoHCKHaH pyHKIMHA Uq((), Us(() — onpeeanTeb, Moy YeHHbIH
u3 U () 3ameHoi a1eMeHToB 0-1o ctotoua Ha 0,0, ...,0,Y4 (C) /a,, 0 = 1,mn, 71 — pUKCUPOBaHHAS TOUKA
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B obnactu D . NHTerpupoBanvie B popmyse (20) mpou3BoauTCs M0 OO0 KPUBOM, TPUHAIIEKAIIEH
D v coeuHSIIOUICH TOYKH 2| U Z, U BCJIEACTBIE KOHEYHOCTH U OHOCBSIZHOCTH 001acTi D IPUBOIUT
K OJHO3HAYHBIM (DPyHKLMAM.

Perienue ypaBHenus (18), B KOTOpoM 3aTeM ellle HyKHO OyaeT yuuThiBath ycaosus (5), (6), (7),
3aMMChIBAETCS M0 aHAIOTUYHOHN (hopmyre

w*@)zzgivck)(C;+sziggfc>. 1)

B dopmyie (21) v (z) — pyHIaMeHTaTbHAS CUCTEMA PEIICHUIA COOTBETCTBYOIIETO OJHOPOJHOTO ypaB-
Henwst, C;; — MPOM3BOJIbHbIE TTOCTOsIHHBIE, V (() — BpoHCKHaH (yHKIwi ve((), Vi (() — onpeaenureny,
nonydeHHsle U3 V () 3aMeHoii asieMeHToB o-ro cronoua Ha 0,0, ...,0,Y,(() /b,, 0 = 1,mn. UnTerpuposa-
HUE MIPOM3BOIUTCS 110 KPMBBIM, COEAMHAIOMIUM B 001acTi D, ToukM 0 U Z, U BCJIEICTBUE MHOTOCBSI3HOCTH
obnact D, MOKET NPUBECTH K MHOTO3HAYHBIM aHAJIUTUUECKUM (DYHKIUAM. B najbHeiiem ciemayer
TpeGOoBaTh BHIIOJHEHUE PABEHCTB

Vs(0)dC
A i A =1 22
L @ 0, o=1,mn, (22)
Vo(0)d( T
L,[s V(C) 07 B ,m y O , M, ( 3)
Vo(Q)dC Vo(0)dC T T o1
IZT_O’ fzﬁW_O, B=1,m—1, o=1,mn, (24)

SIBJISIIOLMXC ST HEOOXOOUMBIMH M JOCTATOUYHBIMU YCJIOBUSIMH OJHO3HAYHOCTH perieHus (21). PyHnamen-

TajbHas cUCTeMa pemeHuil B (popmyne (21) MoxeT ObITh OO0, OAHAKO 17151 y4eTa ycyouii (5), (6), (7)

OyzneM cTpouTh (pyHJaMEHTaIbHYIO0 CUCTEMY PEIIeHHUi C HEKOTOPBIMH JOTIOJHUTEIbHBIMU CBOHCTBAMH.
ITycts ypaBHEHHE

fmﬂ:o
k=0

MIMeeT JefCTBUTE IbHBIE KODHH A, KDATHOCTEH COOTBETCTBEHHO k), p = 1, P, 1 KOMILIEKCHO-CONPSKEHHbIE

a3 o _7 0 VP Q —
KopHH 04, 04 KpaTHOCTEH COOTBETCTBEHHO My, ¢ = 1,0, Y, 1 kp +2} g—1Mg = n. 1151 onpeieieHHOCTH
CUMTaeM, 4TO CPeJIv UMCEll A, HET paBHOro Hymo. Tak:ke 1714 onpeeIeHHOCTH MOKHO cuntath Im0, > 0,
g = 1,Q. Ilpou3BoibHBIM 00pa30M BbiOepeM U 3a(bMKCUPYEM OIHO M3 3HAUeHUi {/A,, 3TO 3HaueHUe
OyaeM B JajbHeiiieM 0003Hauyath W,, p = 1,P. AHaJOrM4HO NPOU3BOJILHBIM 00pa30M BhIOEPEM U
3a(bMKCUpYyeM OJIHO M3 3HaueHuil {/0,, 3TO 3HaueHue OyleM B HajbHeilemM o0o3HavaTh 54, ¢ = 1,0.
Torma KOpHU ypaBHEHUs

n
Z bkp'mk = 07
k=0

SIBJISTIOIIETOCSI XapaKTePUCTUUECKUM JIJIsI OMHOPOTHOTO ypaBHeHus (18), MOXHO 3anucaTh B BUJE

Eolp, E1Hp, -y Em—1Hp, P = I)Pv
€05g, &18q¢, - Em—18¢, 4= laQa (25)
EOEa El%v ey Emflgv q= lan

NpUYEM Kak/blii KODEHb UMEET COOTBETCTBYIOLIYIO KDATHOCTD K, WU 11,. 3anuiieM pyHKIuu

m—1

fiyp(2) =7 Y g et 1=0k,—1, y=0,m—1, p=1P, (26)
=0
m—1 L

glyq(z) :Zl Z E;yeé:jsqz7 l:O7mq_17 y:0,m—1, q= 17Q7 (27)
=0

S

m—1
hiyg(z) = 7 Z E;yeefm, [=0,my—1, y=0m—1, g= (28)
J=0
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W3 paborsl [7] ciepyeT, 4To coBOKYMHOCTD (pyHKIHII (26), (27), (28) 06pasyeT pyHAaMEHTAIBHYIO CUCTEMY
pelIeHui oTHOpoAHOro ypaBHeHus (18), mpuueM a1 Bcex 3TUX (PYHKUUI CIIpaBe1JIMBbl PABEHCTBA

Frvp(€12) = €iy fiyp () 8ivq(€12) = €14+ 81vg(2), hivg(€12) = €1y hiyg(2)- (29)

Ecim [, — KOMIUIEKCHOE YUCI0, TO Ul HEKOTOPOIo j = jo &) Uy = . YUMTHIBasA TOT (DakT,
4ro nipu j = 0,m — 1 Kak Bce 3HAYEHUA €;_j;, TAK U BCE 3HAYEHUSA € COBIAAYT CO BCEMU 3HAYECHUAMU
€, TOJIy4YUM

m—1 m—1

-y
Y pEitpT — TN (ejokp) V eCi—ioPr? —
A CT I £ e,

j=0
m—1 m—1
_gijY Z e YetitpZ — ¢ 7Y Z £ Y S M2
j=0 j=0

B dynmamenTanpHoi cuctemMe periennid (26), (27), (28) kaxayio u3 ¢yHkmit B (26), I KOTOPOU
COOTBETCTBYIOIIAsI TOCTOSTHHAS s}o # —1, 3aMeHUM Ha 3Ty ke (QYHKIHUIO, YMHOKEHHYIO Ha TIOCTOSIHHYIO

( 1+ s%). B pesynbrare nomyuum yHKIHN

m—

m=1 m—1
flyp(Z) (1 + EJO) : Z g; ettt = Z Z £;ye€./upZ_|_ Z ?j—YeE_/ HpZ
j=0 Jj=0
Y

CHMMETPHYHBIC OTHOCUTEJIBHO JeHCTBUTENILHON ocu. Ecim ke €] = —1, TO K CUMMETPUYHBIM OTHOCH-
TeJIbHO JEHCTBUTEIBHON OcH (PYHKITUSM MPHUAEM 1Mo opMyaam

flw (z) =i Jrvp (2)-

Cpenu umncen ’{’/?\T, MOTYT OKa3aThCs ACWCTBUTEJIbHBIE YMCia (B KOJIMYECTBe He OoJiee JIBYX
ans xkaxjaoro p = 1,P). Eciu BeiOpanHoe uncio W, € R, T0 MOXHO cuMTath W, = [, jo = 0, Torga
gy = 1. CHoBa 3ameHNM (yHKLMIO B (26) Ha (yHKLMIO ﬁyp (z). B aTOM citydae GyHKIUS fiy,(2) THIIB
yABaMBaeTCs, HO OKA3bIBAETCS MPH STOM MPEACTABICHHOH B BH/IE, B KOTOPOM CUMMETPHS OTHOCUTEILHO
IEUCTBUTEILHOW OCU OYEBU/IHA.

Hns pynkumii (27) (kak u gy pyHKumii (28)) mogoOHbIe paccyXAeHus He MPUBEAYT K CUMMETPHY-
HBIM (DYHKIIMSIM, IOCKOJIbKY Cpeu Ynce (25) HeT HU AeHCTBUTEbHBIX, HU Iap KOMIUIEKCHO-CONPSIKEHHBIX
ymcell. Tenepb B COBOKYNMHOCTAX (27), (28) kaxayo napy (yHKIMA

ﬂ‘l — m—

glyq(Z), hlyq =z Z ey £/sqz_zl Z 5} Yes j 52

3aMEeHMM Ha HOBYIO Mapy (yHKIui

m—1 m—1
8ivq(2) = 8ivq(2) + hiyg(2) = Z Z E;Vee_,xsqz + Z g Ve,
=0 =0

Zlvq(z) =i (glyq (Z) - hlyq(Z)) = izl Z e Yetisar Z ?—Yes 7542
j=0

CHUMMETPHUSI KOTOPBIX OTHOCUTEJIHHO JEHCTBUTEbHON OCH OYEBU/IHA.
B pesynbrare noayuynM ¢pyHIaMEHTAIBHYIO CUCTEMY pEIIeHUI OHOPOAHOro ypaBHeHus (18)

fA;Vp(Z)v lzoakp_la y:O,m—l, p:ﬁa (30)
lel{(Z)? lzovmq_lv ’YZOam_lv q:@7 (31)
hiyg(z), 1=0,m;—1, y=0m—1, q=1,0, (32)

Bce (PyHKIIMM KOTOPO# 001aAal0T CBOMCTBOM CUMMETPHH OTHOCUTEINBHO JIeHCTBUTENBHOM ocH. [TocKOIbKY
JIMHEWHBIE KOMOMHAMK (PyHKIKHA, 00agalImx cBoicTBaMu Buaa (29), COXpaHsIOT 3TH CBOMCTBA, TO
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st Beex ynkmii (30), (31), (32) 6yayT BHIONMHITHCS paBEeHCTBA

ﬁyp(slz) = ler‘YﬁYp(Z)a :gvlyq(slz) = 5l+y§lyq(z)a Elyq(elz) = 5l+yzlvq(z)~ (33)

Ecim uHAEKCH [ 4y KakuX-TO YMCENl €)1 HE NMPUHAJIEKAT MHOKECTBY E, TO 3aMEHMM 3TH MHJAEKCHI
Ha 3Ha4YeHWs u3 E, CpaBHUMBIE C HUMHU IO MOIYT0 m. B pe3yiaprare mOIyduTCs, 94TO IS KaXKIOTO
q)I/IKCI/IpOBaHHOFO snavenus [ = 0,k, — 1 u aus Kaxaoro q)I/IKCI/IPOBaHHOFO 3Hauenus p = 1,P cpeau
dyHKIHI flv »(2) ecTh poBHO O1HA (PYHKIMSA CO CBOHCTBOM BHAA f (slz) =¢ef ( ) TUTSL KAXKI0TO 3HAYCHUS
Y = 0,m — 1. AHanorudHble paccy:kAeHNs CIpaBeTBbI UL (PYHKIMM g/yq(2) U hlyq (z). CnenoBatesnbHo,
B JIaJIbHEIIIEM B KayecTBe (DYHKIIUIA V() MOXKHO B3:ATH nepeoOo3HaveHnbie yHkmmu (30), (31), (32),
npuueM o = km+ j, a

Vin+ j(€12) = €j—1Vim+j(2), k=0,n—1, j=1,m. (34)

Popmyna pemenus ypasHenus (18), npusoasimas BeaecTBUE paBeHCTB (34) K BBINOJIHEHUIO CBOWCTBA (5),
yKaszaHa B [7]:

n—1 z V()' d
LECE WO WRCHN B (35)
k=0

SAra dopmyia nonyyaercs u3 popmysst (21), koraa yacTb KoHCTaHT C;; paBHa HYIIIO.

TMockobKy 21eMeHThl BpoHCKuaHa V () U ameMeHTH Beex onpenenmreneit Vi (() OyayT ternepsb
CUMMETPUYHBIMH (DYHKIMSMHA OTHOCUTEJBHO JeHCTBUTEIBHON OCH, CUMMETPHUYHBIMU OYIYT U BCE MOABIH-
TerpajbHble (pyHKIMU B popmyae (35). A Tak Kak UHTerpajisl BUJa fOZ COXPaHSAIT CUMMETPHIO (DYHKLIHIA,
To pemeHue (35) OyaeT yaoBIETBOPATH ellle U CBOUCTBY (6), €Clii B HEM CUUTATh B JIalIbHEUIIIeM BCe
nocrosiuabie Cp, | NEHCTBUTEIILHBIMH.

B [7] o6ocHOBaHO, 4TO TIpH HATMYKH CBOKCTB (34) U3 paBeHCTB (22), (23) 10CTaTOYHO OCTABUTD JIUIIH
paBeHCTBa (22), MOCKOJIbKY paBeHCTBa (23) aBA0OTCSA ciielcTBUeM paBeHCTB (22). Ho eciu cnipaBe 1/MBbI
paBeHcTBa (22), (23), To OyayT CripaBei/IMBLI U paBeHCTBA (24), IOCKOJIbKY MHTErPaJibl 1I0 CUMMETPHUYHBIM
OTHOCHUTEJILHO JEMCTBUTEILHON OCH KPUBBIM OT CUMMETPUYHBIX (DYHKIIUA OTHOBPEMEHHO JINOO PaBHBI
HYJII0, JIMOO He paBHBI HYJIIO, TaK YTO U paBeHCTBA (24) OKa3bIBAIOTCS CJIEJICTBUEM paBeHCTB (22).

Ocranock yuects ycioue (7). st aroro pasnoxkum ¢yHkuuo W, (z) B psn JlopaHa B OKpeCTHO-
CTH OECKOHEYHOCTH U MPHUPaBHIEM K HYJIO KO3(D(UIMEHTH IPY HEOTPULIATENIBHBIX CTEIIEHIX Z STOrO
pasjioxeHus. B pesynabraTe nmoayduM cieyIonryo OeCKOHEUHYIO CUCTEMY JIMHEHHBIX ajireOpanyecKux
YPaBHEHMiA, KOTOPOW JIOJKHBI YIOBJIETBOPATH MOCTOSAHHbBIE Cp 1

n—1

Y duCi i =8, 1=0,12,.., (36)
k=0
rae
. Vkm+1(t)d il ? VO'(C)dC
d”‘_jm:p T me—p zml+1 fo V()

P — AOCTAaTOYHO OOJILIIIOE TTOJIOKUTENILHOE UHCIIO.

5. ®opmyaupoBka pesyiabrara. [Ipumep

Hcnonwiys dpopmyny (19), chopMysiipyeM OKOHYATEbHBIA pe3yJibTar.

Teopema. /15 paspewumocmu ypasnenus (3) Heo6X00umo u 00Cmamouno, 4moobl 6bINOAHIAUC
pasgercmea (16) npu « < 0, pagencmsa (22) u ovina coemecmna cucmema (36). Ecau smu ycaogus
BLINOAHSIOMCS, MO 00ulee peutenue ypasrenus (3) Haxooumcst no popmyne

mn ¢ ¢ n—1
o) = 3 [uot) (€-+ [ F5E5E )=o) [ 5505 | - L Gl vt

20e C§ —npousgonvHble KOMNAEKCHble nocmosiHHble, O = 1,mn, a C},, 1 — OelicmeumenvHble NOCMOsIHHbLE,
aeasouguecs peweruem cucmemot (36), k=0,n—1.
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IIpuseaem npumep ypaBHeHHUs (3), 171 KOTOPOTO OKa3bIBAIOTCS BHINOJHEHHBIMU BCE YCIIOBUSA pa3-
pemMocTty. Bo3bMeM B KauecTBe KpUBO#t L OKPYKHOCTD |t — 1 —i| = % N3 ypaBHEHMA 3TOM OKPYKHOCTH

B Buge T =1 +i+ 1e%°, o € [0,7], nonyunm dt = —4(Tf+i)2. 3anuiiem ypaBHeHHe
, 1—4i @(1)dT @(T)dt @(T)dt
"
3e7() = (1 +4i)er) + Tt ( L T—t fL 4t—1-i2(T—1) JL T+t +

o(T)dt 2 @(T)dT @(T)dt @(T)dT
A= —i)2(’t+t)> Tt (L (t—1)3 +L4(T— —im— T "

@(T)dt ) 2(t12 4 1168 4206 + 40¢* — 48¢% + 48)

_|_

[y e o GETE o rel 69

Tak Ha yKa3aHHOW OKPYXHOCTH BBHINIAUT npumep ypaBHeHust (3) npun =1, m =2, a(t) = b(t) =1,

ay=2,by =1, a9 = —4i, bp = —1. 3agaua (15) nys ypaBHenus (38) npruodpeTaet BUJ 3aa4u O CKauKe
112+ 1178 42006 + 40r* — 48:% 4 48
Y (t) =Y (t) = , teL. 39
+( ) *( ) ([4+4)3 ( )
O6nactu D u D, aHamuTiHIHOCTH (DYHKIIMIA COOTBETCTBEHHO Y () 1 Y, (z) n300paxeHsl Ha puc. 2.
AN
Im z
I
1 N
Rez
D,

Puc. 2. O6nactu D, u D, s 3anauu (39)

nsam =2 nonyunm €g = 1, &1 = — 1, moaromy ycnosue (12) npumer Bun Y, (—z) = Y. (z) u Oyzmet Bopaxathb
1eTHOCTh (pyHKIMH Y, (7). CoBOKYIHOCTD yeoBuii (12), (13) MOKHO HCTONKOBATH KaK CUMMETPHIO (DYHKIHAH
Y.(z) oTHOCHTENBHO 00EUX OCeil — IeWCTBUTEILHON U MHUMOM.

3agaua (39) (c yuetom ycsoBus (14)) 6e3yca0BHO pa3peliuma U UMeeT eAMHCTBEHHOE pelLleHHe.
Jlerko HaiiTu npencraBieHUE

124 1168+ 2000 + 40 — 4817 +48 18— 2010+ 81 + 482+ 16

(t* +4)3 (t* +4)3 ’

U3 KOTOPOro, 04Y€BUAHO, MOJTYyYUM

28 —202°+ 8% +4822+ 16
- (Z4+4)3

Y.()=1, %()

Hanee ciepyer pemaTh ypaBHEHMS

290 (z) -4i¥.i(z) =1, z€Dy, (40)



112 A. TI. IInnuua

28 —207°+87" +482+ 16
- (Z4 +4)3 ’

W (2) — W, (2) z€D.. 41)

Oo61iee penienue ypaBHeHus (40) MOXKHO 3amucath, Hanpumep, 1o gopmyie
. . N N
W, (z) =Cych((1+i)z) +Cysh((1+i)z) + 1
Cgoiicta Buzia (33) 1Uist IBYX CUMMETPHYHBIX OTHOCHTEJIBHO ACHICTBUTEILHOM OCH (PYHKITHIA, 00pa3yonyx
(pyHIaMeHTaIbHYI0 CUCTEMY PEIlIEHHI OJHOPOAHOTO ypaBHEHU:A (41), cBeJyTCs K YETHOCTH OJHOU U
HEYETHOCTH JAPYroil (hbyHKUMH; TaKUMH (PYHKLIMSMHU OYAyT COOTBETCTBEHHO chz u shz. ®opmyna (35)
NpUMeT BUJ

28 —2005+8C*+48C2+16

W.(z) = Cichz—chz | Ay shCd i+
2 (8 —20004-8C*+-48C% + 16
+shz | gy chdC.

O0a BO3HUKIINX HUHTErpajla MOXHO BbIYUCJIATD:

2 (82000 +8C*+48C2+16 chz 473shz 1
j shid( = + -,
0 (C*+4)3 244 (442 4
(8 =200+ 804 +482+ 16 h 473sh
sz C+4C —1—3 ¢+ CthC=fZ+ 4zs sz
0 (C*+4) 44 (F+4)

1 Torga I1ocCje ynpou_{el-mi?l MoJIy4YuM

1 1

Y.(z)=|C{+~ |chz— /.

OueBu/IHO, YTO JUIA BHINIONHEHUA ycloBuA (7) cienyer B3sATh C] = —%, MO3TOMY 3alUChIBaTh COOTBETCTBY-
fotryio cucremy (36) Het HeoOxoaumocT. Hakoner, no popmyse (19) npuxoaum k perenuio mpumepa (38):

1
t—1—i|==

(p(t):cfch((1+i)t)+C;sh((1+i)r)+i+ 5

4 447

raue C*, C2+ — IPOU3BOJIbHBIE KOMIUIEKCHBIE ITOCTOSIHHBIE.

6. 3aKkJII0uYNTeJIbHOE 3aMeYaHue

OTMETHM HaJIM4Ke NPOU3BOJIHBIX KOMILUIEKCHBIX MOCTOsAHHBIX Cy B (hopmysie (37) o61ero perneHus
WCXOJHOTO YPaBHEHHU S, YTO HETUITMYHO /IS IMHEHHBIX YPaBHEHHI, COEPKAIIMX HapsIy ¢ HEM3BECTHON
(yHKIMER ee KOMIUIEKCHO-CONPsDKEHHOE 3HaYeHHe. DToMy (PaKkTy MOKHO JaTh cieayolnee o0bsICHEHHE.
B dopmysie (19) mpousBosbHbIE KOMILIEKCHbBIE TOCTOSIHHBIE COIEP/KATCSI JIUIIb B Boipakenuu 1uist Py (7).
[Mpu noaCTaHOBKE TaKOW (DYHKIIUK B MHTETPAJIbl ¢ ((T) B HICXOAHOM YPAaBHEHUH MOy YUM

Y. (t)dt ¥, (T)dT
L G L (T—¢,7)mr1”

T _ sm_jt)mk-‘rl

HnateL ejtcD_, j=0,m—1,n03r0My PyHKIMU 0 ¥4

e T OyIoyT aHAIUTUUECKUMH B oOsacti D
€

Y 10 MHTerpasbHOl Teopeme Korm

j Y. (1)dt _0
L (T—g;7)mk] -

CrnenoBatebHO, IPU MOJACTAHOBKE perieHns B Buje (19) B 1eByI0 4acTh UCXOTHOTO YpaBHEHU S HATTMIKE WU
OTCYTCTBHE MHTEIPAJIOB C @ (T) He BJIMsIET HA BHIYMCIICHUS, CBsi3aHHble ¢ W (), N3-3a 4ero MocTosiHHbIC
Cl ocraioTcs IPOU3BOIBHBIMU KOMILIEKCHBIMM.
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AnHoTamust. PaccmarpuBaercs cetb MaccoBoro oocityxuBanus (CeMO) ¢ oTpunaTe bHBIMA
3a/la4aMy C OHOJIMHEHBIMK Y3/1aMU M OIPaHUYEHUEM Ha BpeMs IpeObIBaHUS 33/1a4 B y3J1ax.
Ecim B MOMEHT NMOCTYIUIEHHs OTPULIATENBHOH 3a/1auM B y3Jie UMEIOTCS MONOKUTEIbHbIE 3a/1a-
Y, TO OfHA U3 TIOJOKUTEIBHBIX 3a/1a4 MTHOBEHHO HCUe3aeT U3 ceTH. Eciu ke B 3TOT MOMeHT
B y3JIe OTCYTCTBYIOT MOJIOKUTEBHBIE 33/1aUH, TO TIOCTYTAIOIIAs B 3TOT y3€J OTpULlaTe/IbHAs
3ajlaya IpornajaeT, He OKasblBas B JaJIbHEHIIEM HUKAKOrO BJIMSIHUA Ha MOBEJECHUE CETU.
INonoxuTenbHbIe 33124, BpeMsI IPeObIBaHNsI KOTOPHIX B y3JIe 3aKOHYMIJIOCH, MTHOBEHHO U
HE3aBHCHUMO OT JPYTHX MOJOKUTEbHBIX 331 ePeMelIaloTCs o CETH B COOTBETCTBHUY C MaT-
pHULeli TepeXOHBIX BEPOSITHOCTEM, OTJIMYHOM OT MaTPHULIbl MapIIPy TU3ALMK 00CITY KEHHBIX
TIOJIOKUTENBHBIX 3aad. JloKa3bIBaeTCsl HEUyBCTBUTEBHOCTD CTAIIMOHAPHOTO pacIipe/ie/IeHns
K opMe pacnpesieieH!s JJUTebHOCTEl 00CIy KUBaHUs 3a/1a4, IPY (PUKCHPOBAHHBIX NEPBBIX
MOMEHTaxX.

INVARIANCE OF THE STATIONARY DISTRIBUTION OF G-NETWORKS WITH BOUNDED
SOJOURN TIME WITH RESPECT TO SERVICE TIME DISTRIBUTIONS
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Abstract. We consider a queueing network with negative customers, single-server nodes,
and constraints on the sojourn time of customers in nodes. If, at the moment a negative
customer arrives at a node, there are positive customers present, one of the positive customers
instantly disappears from the network. If, however, no positive customers are present in
the node at that moment, the incoming negative customer vanishes immediately and has no
further effect on the network’s behavior. Positive customers whose sojourn time in a node has
expired instantly and independently of other positive customers begin routing according to
a transition matrix that differs from the routing matrix used by positively served customers.
The insensitivity of the stationary distribution to the shape of the service time distribution
given fixed first moments is proven. The conditional distribution of customer sojourn times in
nodes is exponential.

1. BBegenue

CeTn MaccoBOro 00CITyKMBaHUS NPEJCTABIISIOT COOO0i OIMH U3 KITIOYEBBIX OOBEKTOB HCCIIEIOBAHUS
B TEOPHUH BEPOSITHOCTEH, MPUKJIAJHON MaTeMaTuke 1 WHXeHepur. OHU CITyKaT MOIIHBIM aIlapaToM
IS OITMCAHUSI, aHAJIM3a U OTITUMU3AIIMH ITPOLIECCOB 00CTYKUBAHUS 3asIBOK B PA3JIMUHBIX MTPUKJIATHBIX
CHCTeMax: OT KOMITBIOTEPHBIX M TEJIeKOMMYHHUKAIIOHHBIX CeTel 10 JIOTUCTHKH, CUCTEM YTIPaBJICHUS,
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OMOJIOrMYECKHX MPOLIECCOB M 00JIauHBIX BbIYMCIeHuH. Kiaccnueckue Mozeny, Takue Kak cetu [xekcoHa
n bakkera He y4yuTHIBaIOT BakHble 3((PEeKThl B3aUMOACHCTBUS MEXIy 3aJadyaMM, XapaKTepHbIE IJIs
COBPEMEHHBIX BBICOKOHArpyK€HHBIX U PaCHpElEICHHBIX CUCTEM.

B oTBeT Ha 3TH OorpaHMYeHus1 OblIa NpeJIokeHa MOJENb CeTeil ¢ OTpULATEeIbHBIMY 3asIBKaMH,
BIIEPBBIE CHCTeMaTHnIecKu uccieaoBannas . [enende (G-networks) [1]. Takue ceTu paciumpsioT Tpa-
qunonHsle CeMO, BBOJS B paCCMOTPEHHUE TaK Ha3blBaeMble IECTPYKTHBHBIE (OTpUIIATEIbHBIE) 3a/1aUH,
KOTOpHIE, B OTJINUME OT OOBIYHBIX (TIOJIOKHUTENIBHBIX), HE OOCITyKMBAIOTCS B TPAJUIIMIOHHOM CMBICIIE,
a B3aMMOZAENCTBYIOT C IpyTMMH 3a/layaMH, yJalss X U3 ceTH. DTO MO3BOJIAET ONMKCHIBATH TAKUE SABJICHUS,
Kak BBITECHEHME 3aJad U3 Ouepeld, OTMEHa Ollepalyii, pelUIMKalus U BOCCTaHOBJIEeHHe. biarogaps
9TUM BO3MOXKHOCTSM ceTu [enende Halum npuMeHeHHe B MOJIEIMPOBAaHIM OTKa30yCTOHMYMBOCTH, CUCTEM
C Meperpy3Ko, a Takxke B HeHpOMOP(HBIX BHUUCIEHUAX U OMOMH(pOpMATHKE.

OpHuM 13 BakHeHIMX HanpasiaeHuil B Teopun CeMO ¢ oTpuniaTesIbHbIMU 3asiBKaMU SBJISAETCSA
V3y4YeHHEe CTAIIOHAPHOTO pexruMa (PyHKIIMOHHUPOBAHHS CETH, T. €. TAKOTO COCTOSIHUSA, P KOTOPOM
BEPOSITHOCTHBIE XapPAKTEPUCTUKHU CUCTEMbl CTAHOBSATCS CTaOMIBHBIMU BO BpeMeHH. Ocoboe BHIMaHHe Ipu
9TOM y/IeJsieTCsl BpeMeHaM NpeObIBaHusI 3824 B Y3JIaX CETH [2], TOCKOJIbKY OHH OTPAXAaIOT KJIIOUYEBbIe
nokasaresn 3QpOEKTUBHOCTH CUCTEMBL: CpEIHEE BPEMs OTKJIMKA, 3aI€PXKKH, TOTEPHU U 3aTPy3Ky PECYpPCOB.
JLJ1s1 IIMPOKOTO Kjlacca CUCTEM C MOJIOKUTENbHBIMU 33a4aMy JIaBHO YCTaHOBJIEHO, YTO CTAllMIOHAPHOE
pacripefie/ieHle BpeMeHH NpeOblBaHUs B y3JlaX MOXET 00JalaTh ONpeeleHHON MHBApUaHTHOCTBIO —
YCTOMUMBOCTBIO K U3MEHEHHUSAM B CTPYKTYpe MaplLIpyTU3aIiK, Ha4aJbHbIM YCJIOBUAM WIN OTJEIbHBIM
napameTpam. B [3] Obu1 mosmydeH pe3ynbrat ais cereitl [eneHOe ¢ 9KCIIOHEHIIMAIBHBIM OIpaHUYSHUEM
Ha BpeMs NpeOblBaHMsA 3aJa4 B y3/1ax, U Ile pacnpeesieHde BpeMeH 0OCIyKMBaHUS 3a4ad B y3Jax
SIBJISIETCS] SKCTIOHEHIIMATHHBIM.

B yciioBUSIX IpUCYTCTBUS OTPULIATEIIBHBIX 3a/1a, 00JIaAAI0IINX BO3MOKHOCTBIO yAAJISATh Jpyrue
3aJaur, BONPOC 00 MHBAPUAHTHOCTH CTAIIMOHAPHOTO pacripeie/ieHUs] BpeMeH MpeObIBaHUS MPUOOpETaeT
O0COOEHHO OCTPBIi U HETPUBUAIBHBII XapakTep. B [4—7] mony4yensl hyHIaMeHTabHBIE PE3YAbTATHI MO
WHBAPUAaHTHOCTH CTAIIMOHAPHOTO pacIipe/ie/ieHusI 110 OTHOIICHUIO K 3aKOHY paclpe/ieieHus BpeMeH 00-
CITyKWBaHUA 3a7a4 B y37ax. JleCTpyKTUBHbIE B3aUMOJEHCTBUA MOTYT CYIIECTBEHHO U3MEHUTh JTUHAMUKY
CUCTEMBI, BbI3bIBasA 3P (PEKTH HEJMHEHHOTO XapaKkTepa, YTo JeJIaeT HEBO3MOXXHBIM NPSIMOE NMPUMEHEeHNe
TPaMLIOHHBIX METOJOB aHajM3a. TeM He MeHee, HallM4YKe CTPYKTYPHOH WHBAPUAaHTHOCTU B CTALIMOHAPHBIX
XapaKTepUCTUKAX TAKMX CETEH MOXET CIyKUTb LIEHHBIM MHCTPYMEHTOM KakK JJI TEOPETHUECKOro aHaIN3a,
TaK U I IPaKTUYECKOTO POEKTUPOBAHNUA U YIIpaBJIeHUs. B epBylo ouepeip, 3TO CBA3aHO C TEM, UTO
B peaJIbHBIX CETSX pacnpe/ieeHue MPOAODKUTEIbHOCTH 00CITYKMBaHUSI OOBIYHO OTJIMYAETCS OT MOKa-
3aTeJIbHOTO, a I0Ka3aTeJIbCTBO MHBAPUAHTHOCTH CTAIIMOHAPHOTO pacIipe/ieIeH s TO3BOIUT IPUMEHSTH
MeToabl uccienopanuss TMO K peasibHbIM CeTsIM 0OCITy KMBaHUS.

B [8; 9] npeacraBieHbl HEKOTOPbIE COBPEMEHHBIE PE3YJIbTATHI 110 CETAM C MOJIOKUTEIbHBIMU U
oTpulaTesbHBIMK 3a1a4amu. B padote [10] mis otkpeiroit CeMO ¢ puctrumaoi oociyxuanust LCFS
Preemptive Resume nokazaHa MHBapMaHTHOCTb CTAIIMOHAPHOTO pacIipe/ie/IeHHs 110 OTHOIIEHHUIO K pac-
MpeJeNIeHrsIM JTUTEIbHOCTEH 00CTy KMBaHU MPH (PUKCUPOBAHHBIX TIEPBBIX MOMeHTax. B [11] mokazana
WHBApUAHTHOCTb CTAIIMOHAPHOTO pacrpe/iesieHus Uit OTKPHITHIX U 3aMKHYThIX CeMO ¢ 06xomamu y3710B
3agayamMu. Panee ['oMesbCKOM IIKOIOHM MO MYJIBTUIUIMKATUBHBIM CETSM OBUI IOJY4EH pe3y/lbTaT I10
VHBAapUaHTHOCTH cTallMoHapHoro pacnpezeneHusa s CeMO c orpuuateabHbIMU 3aga4amu [12].

Henp HacTosmEeil pabOThH — JOKA3aTEeJIbCTBO MHBAPUAHTHOCTH CTALIMOHAPHOI'O paclpeaesieHus
OTHOCHUTEJILHO BpeMEH 00CITyKMBaHU 3a/a4 B y3Jlax CETH MacCOBOTO OOCITYKMBAHUS C TIOJIOKUTEIbHBIMU
Y OTpUIIATEIbHBIMU 32/Ia4aMH M SKCTIOHEHIIMAIbHBIM OIpaHIYEeHHEM Ha BpeMsi TpeObIBaHUs 33714 B Y3JaX,
NIpY YCJIOBUY, YTO UX MEPBbIE MOMEHTHI (MaTeEMaTHYECKHE OXHIaHUA) OCTAI0TCA (DUKCUPOBAHHBIMHU.

[IpakTryeckast 3HAYMMOCTh Pe3y/IbTAaTOB CBA3aHA C BO3MOKHOCTBIO MCIIOIb30BATh ITOJTyYEHHbIE
CBOICTBA /JIs1 YIPOLIEHHUS MOJEJIMPOBAHNS U aHAJIN3A CJIOKHBIX PACIpe/leIeHHBIX CHUCTEM, HE Iproeras
K TPYJIOEMKOMY BBIYHMCJIEHHIO KOHKPETHBIX NMEPEXOIHBIX BEPOSITHOCTEN M BPEMEHHBIX XapaKTepUCTHK
IUI KaXJIO0W KOH(UTYpaLlU CETH.
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2. MapkoBckuil ciayyai

B ceTb MaccoBOro 00CITyKMBaHUS, COCTOSIIYIO U3 N OJHOJMHEHHBIX SKCTIOHEHIIUAIBHBIX y3JI0B
C UHTEHCUBHOCTBIO OOCITYKUBAHUS [L; VIS i-TO y3Jia, MOCTymnaeT 2N He3aBUCHMBIX MPOCTEHINNX TOTOKOB
3a/1a4, NpUYEeM B i-il y3eJI MMOCTYIAIOT JBa MOTOKA: MOTOK IOJIOKHUTEIbHBIX (OOBIYHBIX, TPEOYIOIINX
0OCITyKUBaHK) 3a/1ay, IIOTOK OTPUIATENIbHBIX 3a1a4 (i = 1,N). COCTOsIHME CETH B MOMEHT BPEMEHHU !
3agaercs BektopoM (1) = (ny(1),...,ny(t)), rae n;(t) 0d03HAIAET KOMMYECTBO 3a/1a4 B i-M y3JIe B MOMEHT
BpeMeHH . UnCIIo MecT /Tt OXKHUJaHUS B KaKIOM M3 y3J10B 6eckoHeuHO. Ecii monokuTenbHbIN 3anpoc
MOCTYHAEeT B y3eJl, CBOOO/HBIN OT 3apOCOB, OH Cpa3y HAUMHAET 00CTYXUBAThCS. ECIi MONOKUTETbHBIN
3aIpoc MOCTYMAeT B y3€7, B KOTOPOM YKe €CTh 3arpoc, TO OH BHITECHSET 3aIpoc, HaXOSIINICS Ha IPHOOpe,
U cpasy e HaurHaeT 0OCIyKUBAThCs, & BRITECHEHHBIH C MPUOOpa MOJIOKUTEIbHBIN 3aIIPOC CTAHOBUTCS
B Hauasio ovyepenu (aucuurimHa LCFS Preemptive Resume). [1pu noctyrieHun oTpuiiaTebHOR 3a1aumn
B y3eJ yAaJseTCs MONOKUTEbHAS 3a/1a4a, CTOsIas MOCIeJHel B ouepeau (eciu Takue UMEIOTCs), a eciu
npudop 3aHAT, a B OUYEpelId HEeT 3314, TO yIaIseTcs 3aa4a, Haxojsasics Ha npuoope. [Iycts A; U A,
COOTBETCTBEHHO — UHTEHCUBHOCTHU MOTOKOB MOJIOKUTEJIbHBIX U OTPULATEbHBIX 33424, MOCTYHAOIUX
B i-i1 y3eJ u3BHe. bynem mpenmosnarath, 9TO IPOMEXYTKHA BPEMEHH MEXIY MOMEHTaMH MOCTYTIJICHUS
3a/1ay U3BHE B CETh, BpeMeHa MX OOCIIyKUBaHUS U BpeMeHa WX IMpeOblBaHUs B y3JIlaX CYTh B3aUMHO
He3aBUCHMblE MeXky co0Oil ciyuaiiHble BenmuuuHbl, a A; > 0, A; > 0 mns Beex i = 1,N. B MoMeHT
OKOHYaHUS 00CITyKUBaHUS TTOJIOKUTENHHON 3/1a4H B i-M y3JIe 9Ta 33/1a4a: C BEPOSITHOCTHIO p;; MepexoauT
B j-ii y3€1I, 0CTaBasACh NMONOKUTENILHOM 3a/1aueil, C BEPOATHOCTBIO p; ; IEPEXOIUT B j-i y3ell, IpeBpaIasch
B OTPHIIATENILHYIO 3a/1a4y, C BEPOATHOCTBIO pjo TIOKMAAET ceTh (i, j = 1, N, Z?’:o pij=1, rme p;j = p;; +
+p;j ana j # 0). Ecnm 3ajaya MOKKAAeT y3el1 3a CUeT OKOHYaHHsI BpEMEeHH MpeObIBaHMsI, 3Ta 3a/1a4a:
C BEPOSITHOCTBIO r;; TNEPEeXOIUT B j-if y3eJI, OCTaBasACh MNOJOKHUTE/IbHON 3a/a4eid, ¢ BEPOATHOCTHIO 7;;
NEPEXOIUT B j-U y3esl, MpeBpalasch B OTPULIATENBHYIO 3a/lady, C BEPOSATHOCTBIO 7j) MOKUAAET CETh
(i,j = m,zyzorij =1,mer; = r;; +r;; ana j # 0).

JuTebHOCTUA OOCTYKUBAHUS 3a/1ad B y3J1aX UMEIOT MTPOU3BOJIbHYIO (DYHKIIMIO pacripe/ieieHus]
Bi(t), npuuem

()" = | 1= Bi(0)]dr. (M

[Ipu paccMOTpeHUH MapKOBCKOTO ClTydast OyeM MPe/osiararh, 4T0 BpeMsi 00CITy KUBAHHUS TIOJIOKH-
TEJILHOM 331441 €AMHCTBEHHBIM IIPHOOPOM i-TO y3J1a IMEET MOKA3aTeIbHOE PACIIpe/IC/ICHIe C apaMeTpoM
w(i=1,N), 1. e. Bi(t) = 1 —exp{—p;t } (¢ > 0). Bpems npeObIBaHMs 3a/1aUH B i-M y3JI€ ABISAETCS CIIyyaii-
HO#1 BEJIMIHMHO, YCJIOBHOE pacrpeieIeHie KOTOPOii (€CIIH B i-M y3JiIe HAXOAUTCS 1; 3a1a4) MOKa3aTesbHOe
C napameTpoM . JIpyrumu C10BaMH, yCJI0BHAs BEPOATHOCTD TOTO, 4TO NPeObIBAHMA KakKI0] 3a1a1u
B [-M y3JIe 3aKOHYHTCSI B IIPOMEXYTKE [¢,¢ + /1), €CII B MOMEHT / B y3Jie HAXOAUJIOCh 1; 3a/]a4, paBHA
wth+o(h) mpu h — 0, a yc/IOBHas BEPOATHOCTDb 3aBEPIICHNS PeObIBAHUA XOTs Gbl OAHOH U3 3THX
3ajia4 paBHa V;h + o(h). B Takom ciydae, nporiecc n(¢) npeacTasisiet CoO0M OXHOPOIHBIN MapPKOBCKHUIA
HPOLIECC C HENPEPHIBHBIM BpeMeHeM U (ha30BbIM MPOCTPAHCTBOM COCTOSIHHM, KOTOPOE SBJISIETCS HE
Oosee YeM CUETHBIM.

O603HauMM vepe3 A" 1 A, COOTBETCTBEHHO MHTEHCHBHOCTH TIOTOKOB MONOKUTEbHBIX M OTPHIIA-
TEJIbHBIX 33/1a4, MOCTYMAININX B i-il y3e/1 (W3BHE U U3 IPYTUX y3JI0B, i = 1,N) B CTALMOHAPHOM pEKUME.
B [3] moka3aHo, YTO B CTALMOHAPHOM PEXHMME BBIOJIHSCTCS CJICAYIOIIHIT 3aKOH COXPAHECHHMSI:

N
A=A+ Y (Wil +vieirh), 2
=1

A=At ) (iejpi Ve, 3)

J

=
i
jz‘

o )\+ . .
THE Pi = A, — 3arpy3Ka i-To y3jia ceTy. VYpaBuenus (2) u (3) Ha30BeM ypaBHEHUSIMU Tpauka.
o +. . -
B [3] a5 naHHOIE ceT MacCOBOTO 0OCITyKMBaHUS JOKA3aHO, YTO MPU ﬁ <1,i=1,N, uenp
1 1 1

MapKOBa, OIMCHIBAIOIIAs KOJIMYECTBO 3aJ1a4 B CETM B MOMEHT BPEMEHU f, projnyHa, a €€ €JUHCTBEHHOE
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CTallMOHAapHOE pacnpejiesieHre nmeeT ¢opmy npoussenenust. [Ipusenem us [3] ypaBHeHUs I100aIbHOTO
paBHOBecCHUs 11 MapKOBCKOIO CJIydas

N N N

p(0) Y Ai+ (i +Vi+ M) nz0y = Y, P — ) Aid gy z01 + Y p(n+e€;) (ipio + Virio + Ai)+
i1 i1 i=1

N N
Z Z (n+e;—e) (1P + V7 ) 20y +
j=li=Li

N N
Z Z n+e]+el)(u]p]z+vj ]z)+P(n+eJ)(HjP,,+VJ jz)I{nL—O}
Jj=1li=1,

3,IICCL ei-e,III/IHI/I‘IHbIIjI BEKTOp I-TO HaripaBJICHUA.

3. HemapkoBckuii ciyyait

Tenepb OyaeM npearnonarath, YTo BpeMeHa 00CTyKMBaHUS 33124 B y3J1aX UMEIOT POU3BOJILHYIO
dyHk1m0 pacnpeaenenus B;(t), npuyeM MaTeMaTHYecKoe OkuaaHue (PUKCUPOBAHHO C MOMOIIBIO (1).
B sTOM ciiyuae mporiecc n(f) He SIBIsIeTCss MApKOBCKUM. [laniee MOoKaxeM, 4To ISl TAKOTO Mporecca
CIIpaBe/IJIMBa Clelyolias TeopeMa.

Teopema. IIpu ﬁ < 1,i=1,N, npouecc, onucwiéaouyuii KoAU4ecmso 3a0a4 6 y3ne 8 MOMeHN
8peMeHI t, umeem PUHANLHOE CIPO2O NOAONCUMENbHOE pacnpedenerue 6 popme npouzsedenus p(n) =

= pi(ny)...py(ny), ¢ MHONKCUMENIMU

pi(ni) =p/"(1—p;), n=0,1,...,

20e {\" A7 ,i =1,N} — pewenue ypasnenus mpagpura (2) u (3).

Joka3ateabcTBo. ITycTh Tj(f) — OCTaTOYHOE BpEMsI 0OCITY KUBAHHSI [ONOKHUTEIBHOM 331291 B i-M
y3JIe C MOMEHTa f 10 MOMEHTa OKOHYaHWsI BpeMeHH oOctyxuBanust, a T;(¢) = (i1 (1), Tia(t), - .., Tin, (1)) —
BEKTOP, OIMCHIBAIOIINI OCTATOYHOE BpeMsl 00CTy KUBAHHUS 33124 B i-M y3Je; re k — HoMep MO3UIIHH,
Ha KOTOPOii HAXOUTCS 33/1a4a OT «XBOCTa» K Mpuoopy. [TockosbKy, BooOIIe roBopsi, n(t) He sIBIIseTCsI
MAapKOBCKUM TIPOIIECCOM, PACCMOTPHM MapKoBcKuii mporiece (1) = (n(z),T(t)), mobasnss k n(t) Hernpe-
pbIBHYI0 KOMITOHEHTY T(f) = (T1(¢);...;Tn(2)). [LycTh BHIOIHEHO yCIIOBUE ﬁ <1l,i=1,N,1.e.
B Clly4ae, Koraa n(f) — MapKOBCKHI MPOLIECC, CYIIECTBYET CTALMOHAPHOE IPTrOANUYECKOE PacTIpeiesieHHe
n(t), a, cle10BaTebHO, B 001IeM cilydae u nporecca ((t), Tak Kak () momyvaercs u3 n(f) godaBneHneM
HeNpPepBIBHBIX KOMITOHEHT. [10/10Xx1M, 4TO

F(n,x) = F(n,xll, ey X1ny 9 X215 -3 X205 5 ...,le,...,anN) =

=1limP{n(t) =n,T;1(t) < Xi1, .o, Tin, (1) < Xin;,i = 1,N}.

t—o0

BeesieM 0003HaueHHUS: [X;| — BEKTOD, BCE JIEMEHTHI KOTOPOTO COBIAIAIOT C SJIEMEHTaMU BEKTOpa
X1,...,XnN, @ HA MECTE i-TO JIEMEHTa HaXOAUTCS SIEMEHT X;, [X;,X;] — BEKTOP, BCE 37I€MEHThI KOTOPOTO
COBIAJAIOT C JIEMEHTAMHU BEKTOPA X1, . .., Xy, @ HA MECTE i-TO U j-TO IEMEHTA HAXOAATCS JIEMEHTHI X; U
X; COOTBETCTBEHHO.

Inst F(n,x) cipaBeymBa crieyiornas cuctema quddepeHIraibHO-pa3HOCTHBIX YPaBHEHHIA:

F(n,x Z)\B (Xim ) D20 + F (0, X ZA +F(n,x Z\/B (i D20+
i=1 i=1 i=1

N R, [xits e Ximo1,0])  IF(n,x)
9 sy in 9 . ’ L. —
+i—21 ( axi,ni axi,ni ) 70

dF (n+ej,[xi1,...,Xipn,0
F(n—e,[xi1,. . Xin—1]) In20Bi(Xin ) A +Z bl — ])Pio+

i=1 8xi,ni+l

I
™=

Il
—_
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N
+ Z F(Il +e, [x,'71 s e Xings +°°])Viri0+
i=1

aF(n+eJ — €, [xj,b' .- 7xj,nj70]7 [xi,ly' .- axi,ni,l])

Bi(xi i p+1, o+
j=li=1 0Xjn11 i(%im ) P il

N OF(n+e;+e.[xj1, .., Xjn:, 0], [Xi1,- - Xin,+o0

-l—ZF(n—I-eiv{Xi,la yXin» —|-°° 7\ ++ZZ ’ : [J a - ] [ : = D

i=1 i=1j=1 Xjnj+1
J#i

pjit

N N
+Y )Y Fndej+e,[xj1,. .. x5, 400 [Xi1,- - Xin, o0 [)vjr;+
i=1j=1
J#i
8F(n+ej,[ij,...,xj’nj,O]) _ 8F(n+ej,[xj,l,...,xj’,,j,O])

8xj,nj+l

Bi(xi i pjli o+
i=1j=1 8xj,anrl ! i(Xim;) jidni
l

N N N
+Y ) Fte [, Xjn,+oo)viry =Y, Y, Fte, X1, .0, +00))ViBi(xin ) rjiln£0-
i=1 j=1j#i i=1 j=1j#i
Pazo6beM ypaBHenue (5) Ha ypaBHEHUS JJOKAIBHOTO PABHOBECHS, IPUPABHUBAS YWICHBI CJIEBA U CIIPaBa, He
cofepKalye MHOXHUTENA I, o, @ 3aT€M WIEHbI, COAEPKAIIME STOT MHOKUTE]ID:

N 8F(n+el, [—xl 1s- xi,niao])

anA Z

i=1 axt7ni+1

piot+

N N
+ ZF(IH—ei, [Xi 15+ Xi s F00] ) Virio + ZF(n—i—ei, (X015 - Xi s 0] )N+
i=1 i=1

8F(n—i—ej—|—e,-,[xjvl,...,xj,nj,O],[xl-vl,...,x,yni,—i—oo])

i=1j=1 0%yt
1

Pt

JF(n+e;[xj1,....xj,,0) & X o
ox: it Y, Y, F(ndeg[xjn, X, b)) Vi
l:1j:1 x]?”_f+] 1:1]:1]7/:1

1

3 Al Xilye-sXin—1, n,x
F(n,X)ZA (xzn)+F(n X)Z Bi(xi,ni)'{'z <8F(n’[ 1 Mi—l OD _ 8F( )) _

axi n; axi,ni

N N
+Y Y Fntej—e;[xj1, o sxjn,+oo], [t Xin 1)V Bi(Xin )7 —
s
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N Y OF(n+ej,[xj1,...,%jn:,0]) B
_ZZ Ja J, P By (X, )pji— Z Z F(ntej,[xj 1, X0y +00))VBi(Xin )T
i=1j=1 Xjnj+1 i=1 j=1)#i
J#i

HetpynHo yOeuThes, YTO HEOTPHUIATEILHBIM a0COMIOTHO HEMPEPHIBHBIM T10 X PEICHIEM YPaBHEHUI
JIOKQJIbHOTO PaBHOBECHS, a CJIe/IOBATEIbHO, U yPAaBHEHUS TJI00ATLHOTO PABHOBECHS SIBJISICTCSI

N n;

F(nx) = pm) [T [Twi [, [1 - Bi(w)du, 4)

i=1k=1

rJie p(Mn) — CTalMOHAPHAS BEPOSATHOCTH COCTOSIHUSA N B Iporiecce N(z) B MApKOBCKOM ciryvae. [loyictaBus (4)
p(m)
B [IEPBOE yPABHEHHE JIOKAJILHOTO PABHOBECHS, YMHOXUB 00€ YaCTH MOy YEHHOTO PABEHCTBA HA )’
TIOJTyY¥M TIEPBOE YpaBHEHHUE JIOKATBHOTO PAaBHOBECHS AJIsI MAPKOBCKOTO cirydas u3 [3]. 3atem, moacra-
BUB (4) BO BTOpPOE ypaBHEHUE JIOKAJILHOTO PABHOBECHsl, YMHOXHUB 00€ YacTH MOJTyYeHHOTO paBEeHCTBA

Xin.
Ha pm) jo""' [1=Bi(w)ldu IIOJIYy4YUM BTOPOEC aBHEHUE JIOKaJIbHOro paBHoBecusa CeMO ajis1 MapKOBCKOI'O
FoxB ) MOy poe yp p hit p

ciydas u3 [3]. ClokuB ypaBHEHHs JIOKAJILHOTO PABHOBECUS, YUUTHIBAsS, UTO Iy, —o = 1 — 1,40, IOy Inm
ypaBHEeHue IJ100aIbHOro paBHoBecust OTKpbiToii CeMO 1151 MapKOBCKOTO citydas (4), ¥ ¢ yu4eToM, YTo
F(n,+o) = p(n), Teopema JoKa3aHa. O]
B 3akmouenne aBTop BepakaeT IyOoKkylo 61arogapHocTth ipodeccopy 0. B. ManmakoBckomy 3a
MOCTOSTHHOE BHUMaHUe K padoTe 1 HEOLIEHUMYIO TIOMOIIIb, OKa3aHHYIO B TIOATOTOBKE CTaThU.

4. 3akroueHue

OCHOBHBIM TEOPETUYECKUM BKJIAJIOM JJAaHHOM pabOTHI SABJISETCSI CTPOrOe I0Ka3aTeJIbCTBO MHBAPUAHT-
HOCTH CTallMOHAPHOTO paclpe/iesIeHus 110 OTHOLIEHHIO KO BpEMEHH 00CTyKMBaHUs 3a1a4 B 0000LIEHHBIX
G-ceTsaX, yUUTHIBAIOIIMX KaK MOJIOKUTENbHbIE, TaK U OTpULIATebHbIE 3a4BKU. B oTIMUMe OT KilacCHYeckux
MOJieJiel, B KOTOPBIX B3aMMOIEHUCTBIE MEXY 3asBKaMH OTCYTCTBYET MM CBOAUTCS K IACCUBHOMY HAaKOII-
JIEHHUIO, 3/1eCh pacCMaTpUBAaeTCs MEXaHU3M yAaJleHus 3afad u3 ouepeu. [lonyueHo pyHrameHTaIbHOE
CBOICTBO: (hOpMa CTAIMOHAPHOTO paclpe/ie/IeHNs] BpeMeHH! MpeObIBaHUS COXPAHSETCs ITPU N3MEHEHNH
3aKOHa paclpeesieHus] BpeMeH! 00CIy:KMBaHUs 3aJad B y3Jax.

Takum 06pa3oMm, pe3ysbTaThl HCCIIEJOBAHUS MPEJICTABISIOT COOON 3HAUYMMBIIA IIar B pa3BUTHU
TEOPHU CEeTEel MACCOBOTO OOCIYKMBaHUS, yIIIyOJIsis MOHMMAaHKE CTPYKTYPhI CTALIMOHAPHOTO PEeXUMa
B YCJIOBUSX HAJIMYMS Pa3pylIMTESbHBIX B3aUMOJEICTBUI W MOATBEPXKIas HAIWYNE yHHUBEPCAIbHBIX
WHBAPUAHTHBIX CBOMCTB, YCTOWYMBBIX K YCJIOKHEHHIO CETEBON aPXUTEKTYPhl U ANHAMUKH.
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INPABMJIA 1JIA ABTOPOB

1. g ny6Gnvkanuy B XypHaJie IPUHAMAIOTCS] paHee He OIyOJIMKOBaHHBIE B JPYTUX W3JaHUIX
HayyHble cTaTbu. OO30pHBIE CTAaThU MYOJIMKYIOTCS MO PEIIEHHIO PEAKOIJICTHH.

2. O6beM cTaTbi He Oonee 20 KypHAIBHBIX CTPAHHMI] (C YUETOM TAOJIMUIl U PUCYHKOB, a TaKXKe CITHCKA
JUTEPATypHl Ha 2 sA3bIKaX), 00bEM KPAaTKOTO COOOIIEHHS — A0 5 CTpaHMII.

3. Cratpu B KypHase myOaMKyOTCS Ha PyCCKOM WM aHTJIMHACKOM SI3BIKE.

4. Cratbs gomkHa ObITH OATrOTOBJIeHa B cucteMe ISTEX mo oOpasily, HaxoasiemMycsl Ha caiite
Kypnana. He nonyckaercs ucnons3oBanue B TeX-ailnax «HectannapTHeix» TEX-KoMaHg (T. €. KOMaH[,
HE BXOJSIIIUX B CTaHJapTHYIO mocTaBky IATEX), a Takke nepeonpeeieHre CTaHIapTHRIX KoMaH . [Ipu
nojiaue CTaTh aBTOPY HEOOXOIUMO YKa3bBaTh pyopuky JKypHasia, K KOTOpOMY OTHOCHUTCSI CTaThsl.

5. Tekcr craThy HauMHaeTcs ¢ uHAekca YJIK, 3areM cienyioT Ha3BaHUE CTaThbU, UHHUIIAATHL U
(hammiim aBTOPOB, a Takke KpaTkasi aHHOTauus (He 6onee 15 cTpok) u kimoudessie cjioBa (5—10 cioB).
AHHOTaNYs He TOJDKHA COZIepKaTh CCHUIOK Ha (popMyIHl M JUTEepaTypy crathu. CBeleHus o0 aBTope
(aBTOpax), Ha3BaHME CTAThU, AHHOTAIIMS U KJIIOUEBbIE CJIOBA MUY TCS HA PYCCKOM U aHIJIMICKOM SI3BIKaX,
OCTaJIbHBIE NIEMEHTHI 0(POPMIISIIOTCS Ha PYCCKOM (QHTJIMHACKOM) SI3BIKE.

6. CchUIKM Ha IUTEPATYpPy B TEKCTE HYMEPYIOTCS B OPS/IKE MX YIIOMUHAHMS U JAIOTCS B KBaIPATHBIX
ckoOKkax. Mcnomb30BaHue CChUIOK Ha HEOMyOJIMKOBaHHbIE paboTh He AomyckaeTtcs. HeoOXomuMo npuBoanTh
JIBa CIKMCKA CCHUIOK Ha WCIIOJIb30BAaHHYIO B CTaThe JIUTeparypy — «Jlureparypa» u «References».

7. Eciiv npucyTcTBYeT nHpopMalnivs o (puHaHCUPOBAHUM (TTOIJEPKKE I'PAHTAMU MPOEKTOB U T. I1.),
ee CclielyeT pa3Mellarh B KOHIIE CTaThH.

GUIDELINES FOR AUTHORS

1. Scientific articles not previously published in other publications are accepted for publication
in the journal. Review articles are published by decision of the editorial board.

2. The volume of the article is no more than 20 journal pages, taking into account tables and
figures, the volume of a short message is up to 5 pages.

3. Articles in the Journal are published in Russian or English.

4. The article must be prepared in the IATEX system according to the model located on the Journal’s
website. It is not allowed to use “non-standard” in TgXfiles TgXcommands (i. e. commands not included
in the standard I£TEX distribution), and also override standard commands. When submitting an article,
the author must indicate the category of the Journal to which the article belongs.

5. The text of the paper must begin with the UDC, the title, and the name(s) of the author(s)
preceded by initials followed by a short abstract (no more than 15 lines) and keywords (5—-10 words).
The abstract must not contain numbered references to the formulas and bibliography items. Information
about the author (authors), title of the article, abstract and keywords are written in Russian and English,
other elements are written in Russian (English).

6. The references in the text are numbered in order of their appearance and in square brackets. The
use of references to unpublished works is not permitted. It is necessary to provide two lists of references to
the literature used in the article — “References” and “Literature”. An example of bibliographic descriptions
is given in the model located on the Journal’s website.

7. If there is information about financial support for the research (grant support for projects, etc.),
it should be placed at the end of the article.
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