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Abstract. Let X = {Xk}∞
k=1 be a sequence of independent symmetric bounded random

variables. This paper investigates systems of the form {XiX j}i< j, {XiX jXk}i< j<k, . . ., finite
unions of such systems, and systems close to them, in the spaceL∞ of bounded randomvariables.
Series over such systems do not hold the property of unconditionality: the convergence of
the series depends on the ordering of the terms. At the same time, as we demonstrate in the
paper, such systems posess a very close property of random unconditional convergence (or
RUC-property).
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Аннотация. Пусть X = {Xk}∞
k=1 – последовательность независимых симметричных и

ограниченных случайных величин. В работе рассматриваются системы вида {XiX j}i< j ,
{XiX jXk}i< j<k, . . ., конечные объединения таких систем и близкие к ним системы
в пространстве L∞ ограниченных случайных величин. Ряды по таким системам не
обладают свойством безусловности: сходимость рядов зависит от порядка, в котором
нумеруются элементы системы. В то же время, как показано в работе, такие системы
обладают очень бизким свойством случайной безусловной сходимости.

1. Introduction

Investigating the behavior of special sequences is a cornerstone of geometric Banach space theory
[1; 2]. The properties associated with random sequences and series are particularly important [3; 4].
The simplest version of such random constructions arises by applying random signs to the terms of
a series and studying norm changes of the sum under such arrangements. Another probabilistic method
can be used when the Banach space itself consists of random variables, such as the Lebesgue space
of measurable functions on the interval. Here, one studies sequences of independent random variables
or polynomial forms from such sequences [5–11]. The independence of sequence elements allows for
the application of general and strong results for sums over such terms, related to distribution estimates,
moments, and limit theorems. At the same time, these sequences provide a rich source of examples and
counterexamples that illuminate the geometry of the underlying space. By considering sums in Banach
spaces of random variables with random coefficients, we can combine these two approaches of applying
probabilistic methods to study the geometry of subspaces in such spaces.

We follow papers [12; 13], which initiated the study of sums over Rademacher chaos within the
space L∞[0,1]. This space is viewed as the set of bounded random variables on the unit interval with
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the Lebesgue measure. The authors investigated the stability properties of norms for such sums under
a random arrangement of signs. Let us recall the basic concepts and formulate some results from these
works. Rademacher functions rk(t), for t ∈ [0,1] and k ∈ N, can be defined as follows:

rk(t) = (−1)[2
kt], k = 1,2, ...,

where [x] denotes the integer part of the number [x]. Rademacher functions are used in a large number
of fundamental and applied problems[14–17]. The following fact was proved in [13]. For any n ∈ N and
any real coefficients ai, j, 1 ⩽ i < j ⩽ n, it holds that

Eθ

∥∥∥∥∥ ∑
1⩽i< j⩽n

θi jai jrir j

∥∥∥∥∥
L∞([0,1])

≍ min
θi, j=±1

∥∥∥∥∥ ∑
1⩽i< j⩽n

θi jai jrir j

∥∥∥∥∥
L∞([0,1])

≍

≍ max

n−1

∑
i=1

(
n

∑
j=i+1

a2
i j

)1/2

,
n

∑
j=2

(
j−1

∑
i=1

a2
i j

)1/2
 .

(1)

Here, ri = ri(t) are Rademacher functions, θi j are independent signs (i. e., ±1 valued random variables),
and Eθ denotes the expectation with respect to these signs. The notation X ≍Y means that c1Y ⩽ X ⩽ c2Y
for some universal constants c1,c2 > 0. This result establishes the random unconditional convergence
(RUC) property for the second-degree Rademacher chaos in L∞ and connects its norm to one special
norm of the coefficient matrix. RUC property was introduced by Billard, Kwapien, Pelczynski and
Samuel in [18]. It shows that although the system may not be an unconditional basic sequence (basis),
there holds a certain relaxation.

The nature of Rademacher random variables (we then use term rvs) gives the idea that results
concerning it can be extended to similar random variables, such as symmetric bounded random variables.
Moreover, the identical distribution of such rvs is not necessary for properties under investigation.
A primary objective of this work is to extend the aforementioned L∞-norm equivalences and the RUC
property to polynomial chaos constructed from sequences (X1,X2, . . . ,Xn, . . .) of real-valued independent
symmetric random variables with ∥Xi∥L∞

= Ci > 0. We demonstrate that these extensions hold, with
the key modification being a rescaling of the chaos coefficients by the respective bounding constants Ci.
In addition, the paper shows that chaoses of different degrees can be combined while maintaining the
property of random unconditional convergence.

The paper is organized as follows.
In Section 2 we present general definitions, some results from previous works that we will rely

on, and auxiliary statements.
In Section 3 we consider systems formed by mixing the first- and second-degree Rademacher chaos.

We examine two variants of such mixing. The first, more simple variant uses three independent copies of
the Rademacher sequences {rk},{r′i},{r′j} and examines the behavior in L∞ of sums of the form

Ssep(t) =
n

∑
k=1

bkrk(t)+
n

∑
i=1

n

∑
j=1

ai jr′i(t)r
′′
j (t).

The index "sep" in Ssepmeans that we are considering separated (or decoupled) chaos, i. e. chaos constructed
from independent copies of the original sequence of independent random variables. In the second case, we
work with ordinary (or unseparated) Rademacher chaos, i. e., we study the behavior of sums of the form

S(t) =
n

∑
k=1

bkrk(t)+ ∑
1⩽i< j⩽n

ai jri(t)r j(t).

The key property that allows us to transfer the results for homogeneous chaos from papers [12;13] to the
mixed chaos we consider is the complementedness of homogeneous chaos inmixed chaos. This property can
also be obtained from the work of [19]. We, however, also consider a direct proof of the complementedness
property, which is especially simple in the considered case of first- and second-degree chaos.

In Section 4 we extend the results of Section 3 to systems constructed from a sequence of
independent symmetric bounded random variables, not necessarily identically distributed. The main idea
is that the subspaces X := span[{Xk},{XiX j}] and Y := span[{Yk},{YiYj}] generated by different systems
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of independent random variables are isometric to each other in the case of ∥Xk∥L∞
= ∥Yk∥L∞

,k = 1,2 . . .:∥∥∥∥ n

∑
k=1

bkXk + ∑
1⩽i< j⩽n

ai jXiX j

∥∥∥∥
L∞

=

∥∥∥∥ n

∑
k=1

bkYk + ∑
1⩽i< j⩽n

ai jYiYj

∥∥∥∥
L∞

,

and the same equalities are valid for chaos of arbitrary degree. Formally, we prove this equality for
homogeneous separated chaos. The result is then extended to the unseparated chaos via the decoupling
method and finally to the mixed chaos by using the complementedness of homogeneous parts.

Rademacher chaos, discussed in Section 3, is a special case of the more general chaos studied in
Section 4.Moreover, results for the general case can be proved independently ofRademacher chaos.However,
we stress the case of the Rademacher chaos due to its particular importance for applications. Bilinear
and quadratic binary forms, equivalent to separated and unseparated Rademacher chaos, respectively,
are important in neural network models of associative memory [20–22], energy analysis of spin glasses
[23; 24], and adiabatic quantum computing [25].

2. Preliminaries and auxiliary results

A sequence {xk}∞
k=1 of elements in a Banach space X is called basic if it is a Schauder basis for

its closed linear span span{xk}. A basic sequence {xk} is an unconditional basic sequence if for any
x = ∑k akxk ∈ span{xk} and any sequence of signs ϵk =±1, the series ∑k ϵkakxk converges. In this case
there exists a constant Cu ⩾ 1, not dependent on x, such that∥∥∥∥∥∑k

ϵkakxk

∥∥∥∥∥
X

⩽Cu

∥∥∥∥∥∑k
akxk

∥∥∥∥∥
X

.

The elements of the unconditional basis sequence form a basis in span{xk} under any permutation. This
is equivalent to the property of convergence of series for all arrangements of signs, indicated in our
definition of unconditionality. For basic and unconditional basic sequences we refer to [2]. Note that
we also use the "inverse" form of the previous inequality∥∥∥∥∥∑k

akxk

∥∥∥∥∥
X

⩽Cu

∥∥∥∥∥∑k
ϵkakxk

∥∥∥∥∥
X

.

Equivalence follows since both inequalities must be valid for any ak and ϵk.
It is known that the Rademacher system {rk}, as well as systems consisting of products of

Rademacher functions {rir j}, {rir jrk} . . ., is an unconditional basic sequence in Lp([0,1]) for 1 ⩽ p < ∞

[26]. It is obvious that the Rademacher system will retain the property of unconditionality in the space
L∞[0,1], since the distribution of this system does not change when its elements are rearranged. However,
this is not the case for the system of products [27; 28].

We follow ([13, Remark 1], [18]) to give the following definition. A sequence of elements {xk} in
a Banach space X is said to possess the Random Unconditional Convergence (RUC) property if there exist
universal constants such that for any finite sequence of scalars {ak}, 1 ⩽ k ⩽ n,

Eθ

∥∥∥∥∥ n

∑
k=1
θkakxk

∥∥∥∥∥
X

≍ min
θk=±1

∥∥∥∥∥ n

∑
k=1
θkakxk

∥∥∥∥∥
X

.

where {θk} is a sequence of independent Rademacher signs, i. e. for the probabilities of values of random
variables θk the condition P{θk = 1}= P{θk =−1}= 1/2 is satisfied. This shows that the expectation
of the norm behaves like the minimum, so they are "close". We note that in definition of the RUC property
we consider finite sums only and consequently the order of elements of the sequence does not matter.

We consider Rademacher chaos polynomials. A d-th degree homogeneous unseparated Rademacher
chaos (or homogeneous Rademacher chaos) is a system consisting of functions of variable t ∈ [0,1]
of the form

(r j1 . . .r jd )(t) = r j1(t) . . .r jd (t), j1 < j2 < .. . < jd .
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We then consider polynomials constructed from these functions of the form

P(t) = ∑
1⩽ j1< j2<···< jd⩽n

a j1,..., jd r j1(t) . . .r jd (t),

where a j1,..., jd are real coefficients.Wewill call such functions homogeneousRademacher chaos polynomials.
The homogeneous multiple Rademacher system of degree d (also referred to as separated or decoupled
Rademacher chaos of d-th degree) consists of functions of d variables (t1, . . . , td) ∈ [0,1]d:

(r j1 ⊗·· ·⊗ r jd )(t1, . . . , td) = r j1(t1) . . .r jd (td).

A linear combination of such elements,

Psep(t1, . . . , td) = ∑
1⩽ j1,..., jd⩽n

a j1,..., jd r j1(t1) . . .r jd (td),

we will call a d-th degree homogeneous multiple Rademacher system polynomial.
The L∞-norm of a function f : [0,1]d →R is || f ||L∞

= sup(t1,...,td)∈[0,1]d | f (t1, . . . , td)|. For d-th degree
multiple Rademacher system polynomial Psep(t1, . . . , td), this is equivalent to the maximum over all 2n

sign combinations ϵ = (ϵ1, . . . ,ϵn) ∈ {±1}n:

∥Psep∥L∞
= max
ϵ∈{±1}n

∣∣∣∣∣ ∑
1⩽ j1,..., jd⩽n

a j1,..., jdϵ j1 . . .ϵ jd

∣∣∣∣∣ .
Analagous relation holds for Rademacher chaos polynomial, but signs may dependent in that case.

We will need the following decoupling argument.
Lemma 2.1 (Decoupling forL∞-norms, cf. [13, Corollary 1; 29, Theorem3.1.1]). Let d,n∈Nwith

d ⩽ n. Let (ξ1, . . . ,ξn) be a sequence of bounded independent random variables, and let (ξ(k)1 , . . . ,ξ
(k)
n ), for

k = 1, . . . ,d, be d independent copies of this sequence. Suppose that coefficients d j1,..., jd are symmetric, i. e.
d j1,..., jd = d jπ(1),..., jπ(d) for eachmulti-index ( j1, . . . , jd)∈ Ñd

n := {(i1, . . . , id)∈ {1, . . . ,n}d : ip ̸= iq if p ̸= q}
and every permutation π of {1, . . . ,d}. Then,

cd

∥∥∥∥∥∥ ∑
(i1,...,id)∈Ñd

n

di1,...,idξ
(1)
i1 . . .ξ

(d)
id

∥∥∥∥∥∥
L∞(Ω1×...×Ωd)

⩽

∥∥∥∥∥∥ ∑
(i1,...,id)∈Ñd

n

di1,...,idξi1 . . .ξid

∥∥∥∥∥∥
L∞(Ω)

⩽

⩽

∥∥∥∥∥∥ ∑
(i1,...,id)∈Ñd

n

di1,...,idξ
(1)
i1 . . .ξ

(d)
id

∥∥∥∥∥∥
L∞(Ω1×...×Ωd)

,

where cd is constant depending only on d, and the L∞-norms are essential suprema over the respective
probability spaces Ω (for ξk) and Ω1 × . . .×Ωd (for ξ( j)

k ).
Note that the right inequality in Lemma 2.1 is elementary: the set of essential values of the

random variable ∑di1,...,idξi1 . . .ξid is included in the set of essential values of the random variable
∑di1,...,idξ

(1)
i1 . . .ξ

(d)
id .

Let d,n ∈ N with 1 ⩽ d ⩽ n. Let Nd
n be the set of multi-indices J = ( j1, . . . , jd) such that jk ∈ [n],

where [n] := {1,2, . . . ,n}. For k ∈ {1, . . . ,d}, let J′k denote the multi-index ( j1, . . . , jk−1, jk+1, . . . , jd),
and also denote t

′
k = (t1, . . . , tk−1, tk+1, . . . , td). The multiple Rademacher system of degree d is {r⊗J }J∈Nd

n
,

where r⊗J (t1, . . . , td) = r j1(t1) . . .r jd (td).
Then we define ∆d be the set of multi-indices J = ( j1, . . . , jd) such that 1 ⩽ j1 < j2 < · · · < jd .

The (homogeneous) Rademacher chaos of degree d is a function {rJ}J∈∆d , where rJ(t) = r j1(t) . . .r jd (t),
t ∈ [0,1]. By ∆d

n we denote the set {J = ( j1, j2, . . . , jd) : 1 ⩽ j1 < j2 < .. . < jd ⩽ n}.
Also we use elements of the multiple Rademacher system of the form

r⊗J′k
(t

′
k) = r j1(t1) . . .r jk−1(tk−1)r jk+1(tk+1) . . .r jd (td).

Finally, for every d,n ∈ N,k = 1,2, . . . ,d and l = 1,2, . . . ,n we put

Nd
n(k, l) = {J = ( j1, . . . , jd) ∈ Nd

n : jk = l}.
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Now we discuss the two central theorems for our paper. They establish the RUC property of the
multiple Rademacher system and Rademacher chaos of degree d in L∞.

Theorem 2.2 [13, Theorem 4]. For every d ∈ N the multiple Rademacher system {r⊗J }J∈Nd has the
RUC property in L∞([0,1]d). More precisely, for all n ∈ N and aJ ∈ Rd ,J ∈ Nd

n the following inequalities
hold: ∥∥∥∥∥ ∑

J∈Nd
n

aJr⊗J

∥∥∥∥∥
L∞([0,1]d)

⩾ 2
1−d

2 max
k∈[d]

n

∑
l=1

(
∑

J∈Nd
n(k,l)

a2
J

)1/2

, (2)

and

Eθ

∥∥∥∥∥ ∑
J∈Nd

n

aJθJr⊗J

∥∥∥∥∥
L∞([0,1]d)

⩽
d

∑
k=1

2k−1
n

∑
l=1

(
∑

J∈Nd
n(k,l)

a2
J

)1/2

, (3)

where (θJ)J∈Nd
n
is a system of independent random signs, i. e. P{θJ = 1}= P{θJ =−1}= 1/2, J ∈ Nd

n .
Theorem 2.3 [13, Corollary 7]. Let d,n ∈ N, d ⩽ n. There exist universal constant C′

d (depending
only on d) such that for any real coefficients (aJ)J∈∆d

n
,

min
θ

∥∥∥∥∥ ∑
J∈∆d

n

θJaJrJ

∥∥∥∥∥
L∞([0,1])

⩽ Eθ

∥∥∥∥∥ ∑
J∈∆d

n

θJaJrJ

∥∥∥∥∥
L∞([0,1])

⩽C′
d

∥∥∥∥∥ ∑
J∈∆d

n

aJrJ

∥∥∥∥∥
L∞([0,1])

, (4)

where (θJ)J∈∆d
n
is a sequence of independent random signs.

Let us briefly describe the main ideas from [13] used in proving these results. We consider the
case d = 2. For the lower bound on

∥∥∑
n
i=1 ∑

n
j=1θi, jai, jri ⊗ r j

∥∥
L∞([0,1]2)

, one can use Szarek’s refinement
of Khintchine’s inequality for L1-norms [30]. We choose t1, argument of the first function of products
ri ⊗ r j = ri(t1)r j(t2), in an appropriate way, and the problem is reduced to estimating the L1-norm of
a Rademacher sum of degree 1 with respect to the remaining variable. Applying Khintchine’s inequality
then yields a lower bound in terms of L2,1-norm:∥∥∥∥∥ n

∑
i=1

n

∑
j=1

ai jri ⊗ r j

∥∥∥∥∥
L∞([0,1]2)

⩾
n

∑
i=1

1w

0

∣∣∣ n

∑
j=1

ai jr j(t)
∣∣∣dt ⩾

1√
2

n

∑
i=1

(
n

∑
j=1

a2
i j

)1/2

.

The L∞-norm of left hand side of (2) is thus bounded below. As we have symmetry in indices i and j,
swapping them, we get another lower bound. For the upper bound (3) explanation authors use such
techniques as the symmetrization trick and Ledoux–Talagrand contraction principle. It should be noted
that the specific method of applying these techniques to obtain the upper bound was taken from paper [31].
For more thorough explanations we refer to [13]. Now, having these estimates and using Lemma 2.1,
we proceed to RUC property for Rademacher chaos, i. e. (4).

We will consider multilinear and polynomial forms constructed from systems of random variables,
which are defined on a probability space ([0,1],µ) with standard Lebesgue measure, or on products of
such probability spaces. It is easy to see that the main results remain valid when replacing the segment
[0,1] with an arbitrary probability space.

Let us agree on the terminology used.
Let X = (Xk) be a sequence of independent random variables, and X (1) = (X (1)

k ), X (2) = (X (2)
k ), . . .,

X (d) = (X (d)
k ) be its independent copies. This means that the systems X ,X (1),X (2), . . . ,X (d) are identically

distributed and independent in the aggregate. We will call the system {X (1)
j1 X (2)

j2 . . .X (d)
jd }( j1, j2,..., jd)∈Nd

a homogeneous multiple random system of degree d, and the union of such homogeneous and mutually
independent systems of degrees 1,2, . . . ,d – a mixed multiple random system of degree d.

We will also consider systems generated by a single sequence X , without using its independent
copies. We will call the system {X j1X j2 . . .X jd}( j1, j2,..., jd)∈∆d a homogeneous chaos of degree d, and the
union of such homogeneous systems of degrees 1,2, . . . ,d – a mixed chaos of degree d.

Thus, the homogeneous multiple Rademacher system and homogeneous Rademacher chaos defined
above, which appear in Theorems 2.2 and 2.3, respectively, turn out to be special cases of a homogeneous
multiple random system and homogeneous chaos. We note that the precise ordering of elements of these
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systems is not relevant for the RUC-property discussed in the article. However, it should be noted that such
systems will form basic sequences if they are numbered using the lexicographic order on the index set [32].

Next, we will work with polynomials, by which we mean finite linear combinations of some
elements of the introduced system. To specify the underlying system for a given polynomial, we will use
a corresponding prefix. For example, a 3-degree homogeneous chaos polynomial will look like this:

P3(X) = ∑
1⩽i< j<k⩽n

ai jkXiX jXk.

And a 2-degree mixed multiple random system polynomial will look like this:

Ssep(X (1),X (2),X (3)) =
n

∑
k=1

bkX (1)
k +

n

∑
i=1

n

∑
j=1

ai jX
(2)
i X (3)

j .

Note also that Lemma 2.1 involves both a homogeneous chaos polynomial and a homogeneous
multiple random system polynomial. The distributions of these polynomials are different, but the lemma
shows that their L∞-norms are equivalent. Along with the notations P3(X),Ssep(X (1),X (2),X (3)), as above,
in which we emphasize the dependence of our polynomials on a system of independent rvs, we will also
use notations of the form P3(t),Ssep(t1, t2, t3), in which we consider our polynomials as random variables
(functions) of the variables t ∈ [0,1], (t1, t2, t3) ∈ [0,1]3.

It is also worth noting that every mixed chaos polynomial Q(X) of degree d can be uniquely
represented as the sum of its homogeneous parts:

Q(X) =
d

∑
k=1

Qk(X),

where Qk(X) is a k-th degree homogeneous chaos polynomial (or the k-th homogeneous component of Q).
An important result of Kwapien [19, Lemma 2] states that the mean values of a mixed chaos polynomial
Q(X) constructed from a symmetric vector X dominate the mean values of its homogeneous components.

Lemma 2.4 (Kwapien, [19, Lemma 2]) . Let F be a vector space, and let φ : F → R+ be a convex
function such that φ(−x) =φ(x) for all x ∈ F . Let Q(η) be a mixed chaos polynomial of degree d with
coefficients in F , where η= (η1, . . . ,ηn) is a vector of independent symmetric random variables. Let Qk(η)
denote its k-th homogeneous component, for 1 ⩽ k ⩽ d. Then there exists a constant Kd , depending only
on d, such that E [φ(Qk(η))]⩽ E [φ(KdQ(η))] .

We will use the following corollary.
Corollary 2.5. There is a constant Kd , depending only on d, such that for every mixed chaos

polynomial Q(η) of degree d, for every homogeneous component Qk(η) of this polynimial and every vector
η= (η1, . . . ,ηn) of independent bounded symmetric random variables we have

∥Qk(η)∥L∞
⩽ Kd∥Q(η)∥L∞

. (5)

Proof. The function φ(x) = |x|p for x ∈ [0,1] satisfies all conditions of Lemma 2.4. Applying the
lemma and taking the p-th root, we have

(E|Qk(η)|p)1/p ⩽ Kd (E|Q(η)|p)1/p .

Passing to the limit as p → ∞, this yields the L∞ estimate (5).
Remark 2.6. It is known that Kd can be taken as 2d , which is also cited by Kwapien.
This paper considers chaoses constructed from a sequence of independent symmetric bounded

random variables, which we will denote as (Xk)
∞
k=1, such that for each k, ∥Xk∥L∞

=Ck > 0.

3. RUC property for mixed multiple Rademacher system and mixed Rademacher chaos

In this section we extend the results of papers [12;13] about homogeneous Rademacher chaos to
the case of mixed Rademacher chaos. Thus we will consider 2-th degree polynomials of the form

S(t) =
n

∑
k=1

bkrk(t)+ ∑
1⩽i< j⩽n

ai jri(t)r j(t), (6)
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where bk and ai j are real coefficients. We denote the first-degree homogeneous part of S(t) as P1(t) and
the second-degree part as P2(t), so S(t) = P1(t)+P2(t).

We also consider "separated" version of chaos, in which different degree terms are generated
by independent copies of Rademacher sequences. More precisely, we will consider mixed multiple
Rademacher system polinomials of the form

Ssep(t) =
n

∑
k=1

bkrk(t)+
n

∑
i=1

n

∑
j=1

ai jr′i(t)r
′′
j (t), (7)

where r, r′, and r′′ are three mutually independent Rademacher sequences. Note that this function has
the same distribution as following function, defined on [0,1]3:

Ssep(t0, t1, t2) =
n

∑
k=1

bkrk(t0)+
n

∑
i=1

n

∑
j=1

ai jri(t1)r j(t2). (8)

We will use this fact of equivalence of distributions in our proofs.
We first consider the simpler case of mixed multiple Rademacher system, where the components of

different degrees are generated by independent Rademacher sequences.

3.1. RUC property for mixed multiple Rademacher system

Proposition 3.1. Let Ssep(t) = P1(t)+P2(t) be a mixed Rademacher multiple system polynomial of
second degree, where

P1(t) =
n

∑
k=1

bkrk(t), P2(t) =
n

∑
i=1

n

∑
j=1

ai jr′i(t)r
′′
j (t).

Then
∥Ssep∥L∞[0,1] = ∥P1∥L∞[0,1]+∥P2∥L∞[0,1]. (9)

Proof. We use equimeasurability of Ssep(t) and Ssep(t1, t2, t3), which follows from (7) and (8). We
know that for mixed Rademacher system polynomial of second degree their L∞-norm is the absolute
value of their sum for certain signs arrangement, i. e. there exists a sign configurations (ϵk,ϵ

′
i,ϵ

′′
j) ∈

∈ {−1,1}n ×{−1,1}n ×{−1,1}n which corresponds to such t∗0 , t
∗
1 , t

∗
2 , where maximum is attained, such

that:
∥P1∥L∞([0,1]) = max

t0∈[0,1]
|

n

∑
k=1

bkrk(t0)|= max
ϵk

|
n

∑
k=1

bkϵk|

and
∥P2∥L∞([0,1]2) = max

t1,t2∈[0,1]2
|

n

∑
i=1

n

∑
j=1

ai jri(t1)r j(t2)|= max
ϵ
′
i ,ϵ

′′
j

|
n

∑
i=1

n

∑
j=1

ai jϵ
′
iϵ

′′
j|.

These maxima we denote correspondingly by M1 and M2. Let also s1 and s2 denote the sign of the sum
under the module in points t∗0 , t

∗
1 , t

∗
2 . Now we consider the symmetry argument which later be modified to

the Rademacher chaos case. Because we choose t0 independently of t1, t2, we can always have s := s1 = s2.
Indeed, if these signs are different, we just take t∗∗0 such that rk(t∗∗0 ) =−rk(t∗0) for all k. Such point always
exists, because it corresponds to (−ϵk) sequence of signs. Therefore, we change the sign of P1 without
changing its absolute value. Therefore, we have

|P1(t∗0)+P2(t∗1 , t
∗
2)|= |sM1 + sM2|= |s(M1 +M2)|= M1 +M2.

Taking maxima of both sides of the equation, we get

∥Ssep∥L∞
= max

t0,t1,t2
|P1(t0)+P2(t1, t2)|⩾ M1 +M2.

On the other hand,

∥Ssep∥L∞
= max

t0,t1,t2
|P1(t0)+P2(t1, t2)|⩽ max

t0,t1,t2
{|P1(t0)|+ |P2(t1, t2)|}⩽ M1 +M2.

Combining the two inequalities, we obtain the desired equality. (9)
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Corollary 3.2. For mixed multiple Rademacher system polynomial as in Proposition 3.1 we have

∥P1∥L∞
⩽ ∥Ssep∥L∞

,

∥P2∥L∞
⩽ ∥Ssep∥L∞

.

From this we conclude that the following is true.
Theorem 3.3. For all n ∈ N and ai j ∈ R, 1 ⩽ i, j ⩽ n, we have the following two-sided estimates

with equivalence constants independent of n,ai j

Eθk,θi j

[∥∥∥ n

∑
k=1
θkbkrk +

n

∑
i=1

n

∑
j=1
θi jai jri ⊗ r j

∥∥∥
L∞

]
≍ min

Θ1,Θ2

[∥∥∥ n

∑
k=1
θkbkrk +

n

∑
i=1

n

∑
j=1
θi jai jri ⊗ r j

∥∥∥
L∞

]
≍ (10)

≍
n

∑
k=1

|bk|+max

 n

∑
i=1

(
n

∑
j=1

a2
i j

)1/2

,
n

∑
j=1

(
n

∑
i=1

a2
i j

)1/2
 ,

where Θ1 = (θk) and Θ2 = (θi j) are independent sequences of Rademacher signs.
As consequence, the mixed multiple Rademacher system has the RUC property.
Proof. We firstly prove the RUC property. If Θ1 = (θk) ∈ {−1,1}n and Θ2 = (θi j) ∈ {−1,1}n ×

×{−1,1}n are independent random sign, then we put

Θ1P1 :=
n

∑
k=1
θkbkrk, Θ2P2 :=

n

∑
i=1

n

∑
j=1
θi jai jri ⊗ r j.

Now, because always EΘ1,Θ2∥Θ1P1 +Θ2P2∥L∞
⩾ minΘ1,Θ2 ∥Θ1P1 +Θ2P2∥L∞

, it is enough for us to get an
upper bound of expectation on signs:

EΘ1,Θ2∥Θ1P1 +Θ2P2∥L∞
= Eθk,θi j

[
∥

n

∑
k=1
θkbkrk∥L∞

+∥
n

∑
i=1

n

∑
j=1
θi jai jri ⊗ r j∥L∞

]
=

= Eθk∥
n

∑
k=1
θkbkrk∥L∞

+Eθi j∥
n

∑
i=1

n

∑
j=1
θi jai jri ⊗ r j∥L∞

⩽

⩽ min
θk

∥
n

∑
k=1
θkbkrk∥L∞

+CRUC min
θi j

∥
n

∑
i=1

n

∑
j=1
θi jai jri ⊗ r j∥L∞

⩽

⩽CRUC min
Θ1,Θ2

(∥Θ1P1∥L∞
+∥Θ2P2∥L∞

)⩽

⩽CRUC min
Θ1,Θ2

∥Θ1P1 +Θ2P2∥L∞
,

where the first equality comes by taking expectations on (Θ1,Θ2) from both sides of (9), the second equality
by linearity of expectation and independence of (Θ1,Θ2), and third inequality from symmetric property
of Rademacher system and from RUC property of second-degree homogeneous multiple Rademacher
systems (by Theorem 2.2). In fact, the L∞ norm of the first-degree Rademacher system with random signs
is equal to sum of absolute values bk, which corresponds to symmetric property of this system in L∞. And
then we use known properties of minima of functions and in the final inequality we use (9) again. Thus,
the mixed multiple Rademacher system possesses the RUC property.

Now, to prove the second part of (10), we again use the Proposition 3.1 and the following simple
fact:

∥Θ1P1∥L∞
=

n

∑
k=1

|θkbk|= ∥(bk)∥l1 . (11)

Now, if we take b̃k = θkbk for fixed combinations of signs Θ1 = (θk), the same holds true. Then we unfix
the signs and take expectation from both sides of the equality:

EΘ1∥Θ1P1∥L∞
= Eθk

n

∑
k=1

|θkbk|= ∥bk∥l1 . (12)
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For the second-degree homogeneous multiple Rademacher system polynomial Θ2P2 = ∑
n
i=1 ∑

n
j=1 ai jri⊗r j,

by Theorem 2.2, its average L∞-norm is equivalent to the matrix norm:

EΘ2∥Θ2P2∥L∞
≍ max

 n

∑
i=1

(
n

∑
j=1

a2
i j

)1/2

,
n

∑
j=1

(
n

∑
i=1

a2
i j

)1/2
 . (13)

Combining relations (12) and (13) with Proposition 3.1, we obtain the right-hand side of relation (10).

3.2. RUC property for mixed Rademacher chaos

Now we consider the mixed Rademacher chaos polynomials, as in (6). Let S(t) = P1(t)+P2(t) be
such a polynomial, with P1(t) = ∑

n
k=1 bkrk(t) and P2(t) = ∑1⩽i< j⩽n ai jri(t)r j(t). In this case, the simple

additivity of L∞-norms observed in Proposition 3.1 no longer holds due to the mutual dependence between
P1(t) and P2(t). However, a crucial relationship still provides control over the norm of its components
by the norm of the total sum.

Proposition 3.4. Let

P1(t) =
n

∑
k=1

bkrk(t), P2(t) = ∑
1⩽i< j⩽n

ai jri(t)r j(t),

and S(t) = P1(t)+P2(t) is a mixed Rademacher chaos polynomial of second degree as it defined in (6).
Then,

∥P1∥L∞
⩽ ∥S∥L∞

, ∥P2∥L∞
⩽ ∥S∥L∞

. (14)

As consequence,
∥S∥L∞

⩽ ∥P1∥L∞
+∥P2∥L∞

⩽ 2∥S∥L∞
.

Proof. Let t∗ be a point where |P1(t∗)| = ∥P1∥L∞
. Without loss of generality, assume P1(t∗) =

= ∥P1∥L∞
⩾ 0. Consider another point t∗∗ such that rk(t∗∗) =−rk(t∗) for all k = 1, . . . ,n. Then P1(t∗∗) =

= ∑bk(−rk(t∗)) = −P1(t∗). However, P2(t∗∗) = ∑i< j ai j(−ri(t∗))(−r j(t∗)) = ∑i< j ai jri(t∗)r j(t∗) =
= P2(t∗). Thus, we have two values for S(t): S(t∗) = P1(t∗) +P2(t∗) and S(t∗∗) = −P1(t∗) +P2(t∗).
At least one of P1(t∗) or −P1(t∗) must have the same sign as P2(t∗).

If P1(t∗) and P2(t∗) have the same sign, then

|S(t∗)|= |P1(t∗)+P2(t∗)|= |P1(t∗)|+ |P2(t∗)|⩾ |P1(t∗)|= ∥P1∥L∞
.

If P1(t∗) and P2(t∗) have opposite signs, then

|S(t∗∗)|= |−P1(t∗)+P2(t∗)|= |P1(t∗)|+ |P2(t∗)|⩾ |P1(t∗)|= ∥P1∥L∞

In either case,
∥S∥L∞

= max
t

|S(t)|⩾ ∥P1∥L∞
.

Thus, we get the first inequality in (14), and for the second inequality we can apply the similar argument.
Next, using inequalities (14) we get:

∥P1∥L∞
+∥P2∥L∞

⩽ 2∥S∥L∞
,

and by triangle inequality
∥S∥L∞

⩽ ∥P1∥L∞
+∥P2∥L∞

.

Corollary 3.5. LetX1 = span{rk : k = 1,2,3, . . .} be the closed subspace of first-degree homogeneous
Rademacher chaos in L∞([0,1]), X2 = span{rir j : i < j, i, j = 1,2,3, . . .} be the closed subspace of second-
degree homogeneous Rademacher chaos in L∞([0,1]), andX1,2 = span{rir j,rk : i< j, i, j,k = 1,2,3, . . .} be
the closed subspace of second-degree mixed Rademacher chaos in L∞([0,1]). Then there is an isomorphism
of Banach spaces:

X1,2 ∼= X1 ⊕X2,



RUC property for chaos of random variables in the uniform norm 63

where
X1 ⊕X2 := {x = x1 + x2 : x1 ∈ X1,x2 ∈ X2}, ∥x1 + x2∥X1⊕X2 := ∥x1∥X1 +∥x2∥X2 .

Thus X1 and X2 are complemented subspaces of X1,2.
Proof. Mixed chaos is a basic sequence in lexicographic order in the space L∞ [32, Theorem 2].

Therefore, the space X1,2 consists of those elements x1,2 ∈ L∞ which can be represented in the form

x1,2(t) = b1r1(t)+b2r2(t)+b1,2r1(t)r2(t)+b3r3(t)+b1,3r1(t)r3(t)+b2,3r2(t)r3(t)+ . . . , (15)

where the series converges in the L∞-norm. Similarly, the spaces X1 and X2 consist, respectively, of
elements which are represented as sums of the form

x1 = a1r1(t)+a2r2(t)+a3r3(t)+ . . . and x2 = a1,2r1(t)r2(t)+a1,3r1(t)r3(t)+a2,3r2(t)r3(t)+ . . .

Let us consider two arbitrary elements x1 ∈ X1 and x2 ∈ X2. It is easy to see that from the convergence of
the series for x1 and x2 follows the convergence of the series

x1 + x2 = a1r1(t)+a2r2(t)+a1,2r1(t)r2(t)+a3r3(t)+a1,3r1(t)r3(t)+a2,3r2(t)r3(t)+ . . . ,

therefore X1 +X2 ⊂ X1,2. Then we note that convergence in L∞ implies convergence in L2, in which the
spaces X1 and X2 are orthogonal. Therefore X1∩X2 = {0}, and the space X1⊕X2 is well defined. Moreover,

∥x1 + x2∥X1,2 = ∥x1 + x2∥L∞
⩽ ∥x1∥L∞

+∥x2∥L∞
= ∥x1 + x2∥X1⊕X2 .

Now let x1,2 ∈ X1,2 and S(n)1,2 be the partial sum of the corresponding series (15). Then S(n)1,2 = S(n1)
1 +

+S(n2)
2 , where S(n1)

1 is some finite sum according to system {rk}, and S(n2)
2 is a finite sum according to

system {rir j}. As n increases, new terms will be added to the sums S(n1)
1 and S(n2)

2 in a certain order
determined by the lexicographic numbering of the combined system of {rk} and {rir j}. The sequence of
sums Sn1

1 will form the series
b1r1(t)+b2r2(t)+b3r3(t)+ . . . ,

and, similarly, the sequence of sums S(n2)
2 will form the series

b1,2r1(t)r2(t)+b1,3r1(t)r3(t)+b2,3r2(t)r3(t)+ . . . .

Both of these series will converge. This follows from the convergence of the series for x1,2 and inequalities∥∥S(m1)
1 −S(n1)

1

∥∥
L∞

⩽
∥∥S(m)

1,2 −S(n)1,2

∥∥
L∞

and
∥∥S(m2)

2 −S(n2)
2

∥∥
L∞

⩽
∥∥S(m)

1,2 −S(n)1,2

∥∥
L∞
, n < m,

which are valid by virtue of Proposition 3.4. Hence x1,2 = x1 + x2, where xi ∈ Xi, and X1,2 ⊂ X1 ⊕X2. By
virtue of the already established continuous embedding X1 ⊕X2 ⊂ X1,2 and Banach’s inverse operator
theorem, embedding X1,2 ⊂ X1 ⊕X2 is also continuous. Moreover, passing to the limit in inequalities∥∥S(n1)

1

∥∥
L∞

⩽
∥∥S(n)1,2

∥∥
L∞

and
∥∥S(n2)

2

∥∥
L∞

⩽
∥∥S(n)1,2

∥∥
L∞
, n < m,

which are valid according to Proposition 3.4, we obtain

∥x1,2∥X1,2 ⩽ ∥x1,2∥X1⊕X2 ⩽ 2∥x1,2∥X1,2 .

Nowwe prove the RUC property for mixed Rademacher chaos. We proceed similarly to Theorem 3.3.
Theorem 3.6. For all n ∈ N and ai j ∈ R, 1 ⩽ i < j ⩽ n, we have the following two-sided estimates

with equivalence constants independent of n,ai j

EΘ1,Θ2

∥∥∥∥∥ n

∑
k=1
θkbkrk + ∑

1⩽i< j⩽n
θi jai jrir j

∥∥∥∥∥
L∞

≍ min
Θ1,Θ2

∥∥∥∥∥ n

∑
k=1
θkbkrk + ∑

1⩽i< j⩽n
θi jai jrir j

∥∥∥∥∥
L∞

≍ (16)

≍
n

∑
k=1

|bk|+max

n−1

∑
i=1

(
n

∑
j=i+1

a2
i j

)1/2

,
n

∑
j=2

(
j−1

∑
i=1

a2
i j

)1/2
 ,

where Θ1 = (θk) and Θ2 = (θi j) are independent sequences of Rademacher signs.
As consequence, the mixed Rademacher chaos has the RUC property.
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Proof. Let us denote

Θ1P1 :=
n

∑
k=1
θkbkrk, Θ2P2 := ∑

1⩽i< j⩽n
θi jai jri(t)r j(t),

as in the proof of Theorem 3.3, we obtain

EΘ1,Θ2∥(Θ1P1)+(Θ2P2)∥L∞
⩽ Eθk,θi j

[
∥

n

∑
k=1
θkbkrk∥L∞

+∥ ∑
1⩽i< j⩽n

θi jai jrir j∥L∞

]
=

= Eθk∥
n

∑
k=1
θkbkrk∥L∞

+Eθi j∥ ∑
1⩽i< j⩽n

θi jai jrir j∥L∞
⩽

⩽ min
θk

∥
n

∑
k=1
θkbkrk∥L∞

+CRUC min
θi j

∥ ∑
1⩽i< j⩽n

θi jai jrir j∥L∞
⩽

⩽CRUC min
Θ1,Θ2

(∥Θ1P1∥L∞
+∥Θ2P2∥L∞

)⩽

⩽ 2CRUC min
Θ1,Θ2

∥Θ1P1 +Θ2P2∥L∞
,

where final inequality comes from Proposition 3.4. From this we obtain the RUC-property for the mixed
Rademacher chaos.

To prove the second equivalence in (16), we again use Proposition 3.4. Thus we get

EΘ1,Θ2∥Θ1P1 +Θ2P2∥L∞
≍ Eθk∥

n

∑
k=1
θkbkrk∥L∞

+Eθi j∥ ∑
1⩽i< j⩽n

θi jai jrir j∥L∞
≍

≍
n

∑
k=1

|bk|+max

n−1

∑
i=1

(
n

∑
j=i+1

a2
i j

)1/2

,
n

∑
j=2

(
j−1

∑
i=1

a2
i j

)1/2
 ,

where we used relations (11) and (1).

4. RUC property for multiple random system and chaos of symmetric bounded random
variables

In this section we extend results from Section 3 obtained for second-degree mixed multiple
Rademacher system and mixed Rademacher chaos to broader class of d-th degree mixed multiple random
system and mixed chaos of symmetric bounded (a. e.) rvs.

4.1. RUC property for homogeneous multiple random system and homogeneous chaos

First we will establish equality between L∞-norm of homogeneous multiple random system
polinomial and the L∞-norm of homogeneous multiple Rademacher system polynomial of degree d. As
before, we will denote by X (1), . . . ,X (d) independent copies of the sequence X = (Xk).

Theorem 4.1. Let {X (1)
j1 . . .X (d)

jd } be a d-homogeneous multiple random system formed by the
sequence X = (Xk) of independent symmetric bounded random variables, and ∥Xk∥L∞

=Ck > 0. Let

P(X (1), . . . ,X (d)) = ∑
J∈Nd

n

aJX (1)
j1 . . .X (d)

jd

is a polynomial by this system. Then,

∥P(X (1), . . . ,X (d))∥L∞
=

∥∥∥∥∥ ∑
J∈Nd

n

(
aJ ∏

l∈J
Cl

)
r⊗J

∥∥∥∥∥
L∞

,

where r⊗J denotes the elements of the d-th degree multiple Rademacher system.
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Proof. We remind that we work on a probability space (Ω,A,P) with Ω = [0,1] an P= µ, where µ
is a standard Lebesgue measure. Let us consider an auxiliary multilinear form

Ph(x(1), . . . ,x(d)) := ∑
J∈Nd

n

aJx(1)j1 . . .x(d)jd ,

which depends on variables x(1) = (x(1)1 , . . . ,x(1)n ), . . ., x(d) = (x(d)1 , . . . ,x(d)n ), and each x(k), k ∈ [d], changes
on a Cartesian product ∏

n
i=1[−Ci,Ci]. We show that the L∞-norm of the d-homogeneous multiple random

system polynomial formed by independent symmetric bounded random variables Xk coincides with the
L∞-norm of this multilinear form.

To show that ∥Ph∥L∞
= ∥∑J∈Nd

n
aJX (1)

j1 . . .X (d)
jd ∥L∞

, we proof two inequalities, which will give us the
desired equality when combined.

Firstly, we note that the inequality ∥Ph∥L∞
⩾ ∥∑J∈Nd

n
aJX (1)

j1 . . .X (d)
jd ∥L∞

holds true, because the co-
domain of random variable P(X (1), . . . ,X (d)) is included in the co-domain of Ph(x(1), . . . ,x(d)) almost surely.
Note that this holds for arbitrary independent symmetric bounded rvs (Xi) with norm ∥Xi∥L∞

=Ci > 0.
Now we prove the inverse inequality. By multilinearity of the form Ph we have that

M := ∥Ph∥L∞
= max

|x(k)jk
|=C jk

∣∣∣∣∣ ∑
J∈Nd

n

aJx(1)j1 . . .x(d)jd

∣∣∣∣∣= ∑
J∈Nd

n

aJC∗
1, j1 . . .C

∗
d, jd ,

where we note C∗
i, ji equal to C ji or −C ji , depending on where the maximum is attained.

We consider the following family of sets:

Ωi, ji,ϵ :=
{
ω ∈ Ω | X (i)

ji (ω) ∈ ∆i, ji,ϵ

}
, i ∈ [d], ji ∈ [n],

where by ∆i, ji,ϵ we denote either the interval [C∗
i, ji −ϵ,C

∗
i, ji ] or the interval [C

∗
i, ji ,C

∗
i, ji +ϵ], again, depending

on the sign of C∗
i, ji . By definition of essential supremum, we have that P(Ωi, ji,ϵ)> 0.

Let us consider the set

Ωϵ =
d⋂

i=1

n⋂
ji=1

Ωi, ji,ϵ.

By independence rvs from the system {(X (i)
k )k}i, we have that

P(Ωϵ) =
d

∏
i=1

n

∏
ji=1

P(Ωi, ji,ϵ),

so that P(Ωϵ)> 0 as the product of positive measures. By definition of Ωϵ we have inclusions{
P(X (1), . . . ,X (d)) |ω ∈ Ωϵ

}
⊂
{

Ph | x(i)ji ∈ ∆i, ji,ϵ

}
= [M−δ(ϵ),M] ,

with some δ(ϵ). Moreover, δ(ϵ)→ 0 with ϵ→ 0 by continuity of Ph.
From here we have that

|P(X (1), . . . ,X (d)|⩾ M−δ(ϵ)

on a set with positive measure. From this we get

∥P(X (1), . . . ,X (d)∥L∞
⩾ lim
ϵ→0

{M−δ(ϵ)}= M.

Thus,

∥P(X (1), . . . ,X (d))∥L∞
= sup

|x(k)jk
|=C jk

∣∣∣∣∣∑J
aJx(1)j1 . . .x(d)jd

∣∣∣∣∣=
= max
ϵ
(m)
k ∈{±1}

∣∣∣∣∣∑J
aJ(C j1ϵ

(1)
j1 ) . . .(C jdϵ

(d)
jd )

∣∣∣∣∣=
= max
ϵ
(m)
k ∈{±1}

∣∣∣∣∣∑J

(
aJ ∏

l∈J
Cl

)
ϵ
(1)
j1 . . .ϵ

(d)
jd

∣∣∣∣∣ .
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The last expression is precisely the L∞-norm of the d-th degree multiple Rademacher system with modified
coefficients ãJ = aJ ∏l∈J Cl . Therefore,

∥P(X (1), . . . ,X (d))∥L∞
=

∥∥∥∥∥ ∑
J∈Nd

n

(
aJ ∏

l∈J
Cl

)
r⊗J

∥∥∥∥∥
L∞

.

The following statement follows from Theorem 4.1, Theorem 2.2 and averaging over cyclic
permutations of the index k in inequality (3).

Theorem 4.2. The d-degree homogeneous multiple random system formed by the sequence X = (Xk)
of independent symmetric bounded rvs has the RUC property. Moreover, for all n ∈N and aJ ∈Rd ,J ∈Nd

n
the following inequalities hold:∥∥∥∥∥ ∑

J=( j1, j2,..., jd)∈Nd
n

aJX (1)
j1 X (2)

j2 . . .X (d)
jd

∥∥∥∥∥
L∞([0,1]d)

⩾ 2
1−d

2 max
k∈[d]

n

∑
l=1

(
∑

J∈Nd
n(k,l)

ã2
J

)1/2

,

and

Eθ

∥∥∥∥∥ ∑
J=( j1, j2,..., jd)∈Nd

n

aJθJX (1)
j1 X (2)

j2 . . .X (d)
jd

∥∥∥∥∥
L∞([0,1]d)

⩽
2d −1

d

d

∑
k=1

n

∑
l=1

(
∑

J∈Nd
n(k,l)

ã2
J

)1/2

,

where (θJ)J∈Nd
n
=±1 is a system of independent symmetric random signs, ãJ = aJ ∏l∈J Cl ,Cl = ∥Xl∥L∞

> 0.
Using the last fact for a homogeneous multiple random system and Lemma 2.1, we can establish

the RUC property for homogeneous chaos.
Theorem 4.3. The d-degree homogeneous chaos formed by the sequence X = (Xk) of independent

symmetric bounded rvs, ∥Xk∥L∞
=Ck > 0, has the RUC property. Moreover, the following relations are

valid with constants depending only on d

Eθ

∥∥∥∥∥ ∑
J∈∆d

n

θJaJXJ

∥∥∥∥∥
L∞

≍ min
θ

∥∥∥∥∥ ∑
J∈∆d

n

θJaJXJ

∥∥∥∥∥
L∞

≍
n

∑
j=1

(
∑

J = ( j1, j2, . . . , jd) ∈ ∆d
n :

∃k ∈ [d] : jk = j

ã2
J

)1/2

, (17)

where (θJ)J∈∆d
n
= ±1 is a system of independent symmetric random signs, ãJ = aJ ∏l∈J Cl , XJ =

= X j1X j2 . . .X jd .
Proof. For the proof we will use Theorem 4.2 and Lemma 2.1. Let bJ for J ∈ Nd

n be defined
as following:

b j1,..., jd =
1
d!

a jσ1
. . .a jσd

, if all ji are pairwise different,

where σ is permutation of [d] such that jσ1 < jσ2 < · · ·< jσd , and b j1,..., jd = 0 if there exists a pair ( ji1 , ji2)
such that ji1 = ji2 for i1 ̸= i2. These coefficients satisfy conditions of Lemma 2.1, and

n

∑
i1=1

· · ·
n

∑
id=1

b j1,..., jd X j1 . . .X jd = ∑
1<i1<i2<···<id

a j1,..., jd X j1 . . .X jd .

Let b̃J = bJ ∏l∈J Cl . By Lemma 2.1 and Theorem 4.2, we get∥∥∥∥ ∑
1<i1<i2<···<id

a j1,..., jd X j1 . . .X jd

∥∥∥∥
L∞

⩾ cd

∥∥∥∥ n

∑
i1=1

· · ·
n

∑
id=1

b j1,..., jd X (1)
j1 . . .X (d)

jd

∥∥∥∥
L∞

⩾

⩾ cd2
1−d

2 max
k∈[d]

n

∑
j=1

(
∑

J∈Nd
n(k, j)

b̃2
J

)1/2

=

= cd2
1−d

2

n

∑
j=1

(
∑

J∈Nd
n(1, j)

b̃2
J

)1/2

,
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where the last equality follows from the symmetry of the system of coefficients {b̃J}J∈Nd
n
. Further, due

to the same symmetry,

∑
J∈Nd

n(1, j)

b̃2
J = ∑

J∈Nd
n : j1= j

b̃2
J =

1
d ∑

J = ( j1, j2, . . . , jd) ∈ Nd
n :

∃k ∈ [d] : jk = j

b̃2
J =

1
d ∑

J = ( j1, j2, . . . , jd) ∈ ∆d
n :

∃k ∈ [d] : jk = j

ã2
J .

Hence ∥∥∥∥ ∑
1<i1<i2<···<id

a j1,..., jd X j1 . . .X jd

∥∥∥∥
L∞

⩾
cd√

d2
d−1

2

n

∑
j=1

(
∑

J = ( j1, j2, . . . , jd) ∈ ∆d
n :

∃k ∈ [d] : jk = j

ã2
J

)1/2

.

To obtain the upper estimate for the expectation Eθ, we cannot directly use the decoupling method.
The difficulty arises because moving to separated chaos requires averaging over signs ΘJ by all multi-
indices J ∈ Nd

n , not just ascending ones from ∆d
n . To overcome this, we use the reasoning following

Lemma 2.1 and establish the inequality:∥∥∥∥ ∑
J∈∆d

n

θJaJXJ

∥∥∥∥
L∞

⩽

∥∥∥∥ ∑
J∈∆d

n

θJaJX (1)
j1 X (2)

j2 . . .X (d)
jd

∥∥∥∥
L∞

for each set of signs {θJ}J∈∆d
n
. Therefore, by Theorem 4.2, where we put ãJ = 0 for J ̸∈ ∆d

n ,

Eθ

∥∥∥∥ ∑
J∈∆d

n

θJaJXJ

∥∥∥∥
L∞

⩽ Eθ

∥∥∥∥ ∑
J∈∆d

n

θJaJX (1)
j1 X (2)

j2 . . .X (d)
jd

∥∥∥∥
L∞

⩽

⩽
2d −1

d

d

∑
k=1

n

∑
j=1

(
∑

J∈Nd
n(k, j)

ã2
J

)1/2

=

=
2d −1

d

n

∑
j=1

d

∑
k=1

(
∑

J = ( j1, j2, . . . , jd) ∈ ∆d
n :

jk = j

ã2
J

)1/2

⩽

⩽
2d −1√

d

n

∑
j=1

(
d

∑
k=1

∑
J = ( j1, j2, . . . , jd) ∈ ∆d

n :
jk = j

ã2
J

)1/2

=

=
2d −1√

d

n

∑
j=1

(
∑

J = ( j1, j2, . . . , jd) ∈ ∆d
n :

∃k ∈ [d] : jk = j

ã2
J

)1/2

. □

Corollary 4.4. Let d ⩾ 2. The d-degree homogeneous chaos is not an unconditional system. This
means that there is no constant C such that for all n ∈ N, aJ ∈ Rd and θJ = ±1, J ∈ ∆d

n , the following
inequality holds: ∥∥∥∥ ∑

J∈∆d
n

aJXJ

∥∥∥∥
L∞

⩽C
∥∥∥∥ ∑

J∈∆d
n

θJaJXJ

∥∥∥∥
L∞

.

Similary, the d-degree homogeneous multiple random system is not an unconditional system.
Proof. Without loss of generality, we can assume that ∥Xk∥L∞ = 1, k = 1,2, . . .. Let us take aJ = 1.

Then ∥∥∥∥ ∑
J∈∆d

n

a jXJ

∥∥∥∥
L∞

=

∥∥∥∥ ∑
J∈∆d

n

XJ

∥∥∥∥
L∞

=Cd
n ,

where Cd
n = n!

d!(n−d)! . This follows from the fact that for any ϵ> 0

P

( n

∏
k=1

{Xk > 1−ϵ}
)
> 0,
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and from the continuity of the polynomial form

∑
J∈∆d

n

xJ, xJ = x j1x j2 . . .x jd .

On the other hand, according to (17),

min
θ

∥∥∥∥∥ ∑
J∈∆d

n

θJXJ

∥∥∥∥∥
L∞

⩽C
n

∑
j=1

(
∑

J = ( j1, j2, . . . , jd) ∈ ∆d
n :

∃k ∈ [d] : jk = j

12

)1/2

=Cn
√

Cd−1
n−1 ,

with some constant C that does not depend on n. Since

Cd
n ≍ nd , cn

√
Cd−1

n−1 ≍ n
d+1

2 ,

where the equivalence constants depend only on d, the unconditional inequality cannot be satisfied, as for
d ⩾ 2 we get d >

d +1
2

.
An analogous fact can be established for the d-degree homogeneous multiple system by using

a similar argument.

4.2. RUC property for mixed multiple random system and mixed chaos

Wewill first establish a key property for the L∞-norm of mixedmultiple system polynomial generated
by symmetric bounded random variables, analogous to Proposition 3.1 for Rademacher variables.

Proposition 4.5. Let

Ssep(X (1),X (2), . . . ,X ( d(d+1)
2 )) = P1(X (1))+P2(X (2),X (3))+ . . .+Pd(X (1+ d(d−1)

2 ),X (2+ d(d−1)
2 ), . . . ,X ( d(d+1)

2 ))

be a d-degree mixed multiple system polynomial, where X (1),X (2), . . .X (d(d+1)/2) are independent copies
of a sequence X = (Xk) of independent symmetric bounded variables. Then,

∥Ssep∥L∞
= ∥P1∥L∞

+∥P2∥L∞
+ . . .+∥Pd∥L∞

.

The assertion follows easily from the mutual independence of the terms P1,P2, . . ., and the following
simple property.

Lemma 4.6. Let ξ and η be independent symmetric bounded random variables. Then

∥ξ+η∥L∞
= ∥ξ∥L∞

+∥η∥L∞
.

Proof. Let
A = ∥ξ∥L∞

, B = ∥η∥L∞
.

Due to the symmetry of random variables ξ and η, for any ε> 0, events

Ωξ,ε := {ξ ∈ [A−ε,A]} and Ωη,ε := {η ∈ [B−ε,B]}

have positive measure. From the independence of ξ and η it follows that

P(Ωξ,ε∩Ωη,ε)> 0.

Moreover,
(ξ+η)(Ωξ,ε∩Ωη,ε)⊂ [A+B−2ε,A+B].

Hence
∥ξ+η∥L∞

⩾ lim
ε→0

(A+B−2ε) = A+B.

The opposite inequality coincides with the triangle inequality.
Now, analogously to the proof of Theorem 3.3 from Proposition 4.5 and Theorem 4.2 we conclude

that the following is true.
Theorem 4.7. The mixed multiple random system from the sequence (Xk) of independent symmetric

bounded rvs has the RUC property. Moreover, let

Ssep(X (1),X (2), . . . ,X ( d(d+1)
2 ),Θ) =
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= Θ1P1(X (1))+Θ2P2(X (2),X (3))+ . . .+ΘdPd(X (1+ d(d−1)
2 ),X (2+ d(d−1)

2 ), . . . ,X ( d(d+1)
2 )),

where

ΘmPm := ∑
( j1, j2,..., jm)∈Nm

n

θ j1 j2... jma j1 j2... jmX (1+m(m−1)
2 )

j1 X (2+m(m−1)
2 )

j2 . . .X (m(m+1)
2 )

jm .

Then

EΘ∥Ssep(X (1),X (2), . . . ,X ( d(d+1)
2 ),Θ)∥L∞

≍ min
Θ

∥Ssep(X (1),X (2), . . . ,X ( d(d+1)
2 ),Θ)∥L∞

≍

≍
d

∑
m=1

max
k∈[m]

n

∑
l=1

(
∑

J∈Nm
n (k,l)

ã2
J

)1/2

,

where Θ is the system of independent signs θ=±1, ãJ = aJ ∏l∈J Cl , Cl = ∥Xl∥L∞
> 0, and a constants in

the designated equivalences do not depend on n and real numbers {a j1 j2... jm}d
m=1 (but depend on d).

In the special case of mixed chaos of the second degree we obtain the following statement.
Corollary 4.8. The mixed multiple random system {X (1)

k ,X (2)
i X (3)

j } from independent symmetric
bounded rvs has the RUC property, and we have the following inequalities:

Eθk,θi j

∥∥∥∥∥ n

∑
k=1
θkbkX (1)

k +
n

∑
i=1

n

∑
j=1
θi jai jX

(2)
i X (3)

j

∥∥∥∥∥
L∞

≍ min
θk,θi j

∥∥∥∥∥ n

∑
k=1
θkbkX (1)

k +
n

∑
i=1

n

∑
j=1
θi jai jX

(2)
i X (3)

j

∥∥∥∥∥
L∞

≍

≍
n

∑
k=1

|b̃k|+max

 n

∑
i=1

(
n

∑
j=1

ã2
i j

)1/2

,
n

∑
j=1

(
n

∑
i=1

ã2
i j

)1/2
 ,

where b̃k =Ckbk, ãi j =CiC jai j, Ck = ∥Xk∥L∞
> 0.

To obtain an analogue of Theorem 4.7 for mixed chaos, we first note the following statement,
similar to Proposition 4.5.

Proposition 4.9. Let
S(X) = P1(X)+P2(X)+ . . .+Pd(X)

be a d-degree mixed chaos polynomial, decomposed into the sum of its homogeneous components Pm(X),
where X = (Xk) is a sequence of independent symmetric bounded variables. Then,

∥S∥L∞
≍ ∥P1∥L∞

+∥P2∥L∞
+ . . .+∥Pd∥L∞

.

Proof. From Corollary 2.5 we obtain

∥P1∥L∞
+∥P2∥L∞

+ . . .+∥Pd∥L∞
⩽ dKd∥S∥L∞

.

The opposite estimate is obtained from the triangle inequality.
From Proposition 4.9 and Theorem 4.3 we get
Theorem 4.10. The mixed chaos from the sequence (Xk) of independent symmetric bounded rvs has

the RUC property. Morever, let

S(X ,Θ) = Θ1P1(X)+Θ2P2(X)+ . . .+ΘdPd(X),

where
ΘmPm := ∑

J∈∆m
n

θJaJXJ, XJ = X j1X j2 . . .X jm .

Then

EΘ∥S(X ,Θ)∥L∞
≍ min

Θ
∥S(X ,Θ)∥L∞

≍

≍
d

∑
m=1

n

∑
j=1

(
∑

J = ( j1, j2, . . . , jm) ∈ ∆m
n :

∃k ∈ [d] : jk = j

ã2
J

)1/2

,
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where Θ is the system of independent signs θ=±1, ãJ := aJ ∏l∈J Cl , Cl = ∥Xl∥L∞
> 0, and a constants in

the designated equivalences do not depend on n and real numbers {{aJ}J∈∆m
n
}d

m=1 (but depend on d).
Corollary 4.11. Let (Xk) is a sequence of independent symmetric bounded rvs. We have the following

two-sided estimates

Eθk,θi, j

∥∥∥∥∥ n

∑
k=1
θkbkXk + ∑

1⩽i< j⩽n
θi jai jXiX j

∥∥∥∥∥
L∞

≍ min
θk,θi, j

∥∥∥∥∥ n

∑
k=1
θkbkXk + ∑

1⩽i< j⩽n
θi jai jXiX j

∥∥∥∥∥
L∞

≍

≍
n

∑
k=1

|b̃k|+max

n−1

∑
i=1

(
n

∑
j=i+1

ã2
i j

)1/2

,
n

∑
j=2

(
j−1

∑
i=1

ã2
i j

)1/2
 ,

where (θk =±1,θi, j =±1) is the system of independent signs, b̃k =Ckbk, ãi j =CiC jai j,Ck = ∥Xk∥L∞
> 0.

Summary

This paper investigates systems composed of products of independent random variables and their
properties related to the additive decomposition of other random variables over such systems. These
representations are closely related to the well-known Polynomial Chaos Expansion (PCE, see [33]) and
are a special case of the generalized polynomial chaos (see [34–36]), which has numerous applications
in mathematical modeling and machine learning. We show that for symmetric bounded random variables,
these product systems, while failing to be unconditional convergence systems in the space L∞ of bounded
random variables, nonetheless possess the closely related property of Random Unconditional Convergence
(RUC). Following the principle of moving from particular and simple cases to more general and complex
ones, we sequentially examine the cases of Rademacher random variables (in Section 3) and arbitrary
symmetric bounded random variables (in Section 4). We consider two variants of these product systems.
In the first, simpler variant, each product involves factors from different independent copies of the
generating sequence of random variables (Theorems 3.3, 4.2, and 4.7). In the second variant, each
product consists of factors from one common sequence (Theorems 3.6, 4.3, and 4.10), which creates
a more complex dependence structure between the elements of the constructed system. We also made
a transition from homogeneous systems, where all products consist of the same number of factors
(Theorems 2.2, 2.3, 4.2, and 4.3), to mixed systems, which are unions of several homogeneous systems
(Theorems 3.3, 3.6, 4.7, and 4.10).

The next stage of our research is to study the behavior of chaoses in arbitrary symmetric spaces.
The class of symmetric spaces in which the homogeneous Rademacher chaos forms an unconditional
sequence is characterized in papers [27; 28]. However, even for the special case of Rademacher chaos,
a similar question regarding the property of random unconditional convergence remains open.

The work was supported by the State Research Programme “Convergence–2025” of the National
Academy of Sciences of Belarus (assignment 1.3.05).
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