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Abstract. Let X = {X;};_, be a sequence of independent symmetric bounded random
variables. This paper investigates systems of the form {X;X; };«;, {X;X;Xi}i< j<t,.. ., finite
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unions of such systems, and systems close to them, in the space L., of bounded random variables.
Series over such systems do not hold the property of unconditionality: the convergence of
the series depends on the ordering of the terms. At the same time, as we demonstrate in the
paper, such systems posess a very close property of random unconditional convergence (or
RUC-property).
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Annoramus. ITycts X = {X; }}? | — noc/ieJ0BaTe/IbHOCTh HE3aBUCUMBIX CHMMETPHUUHBIX 1
OrpaHMYeHHBIX CITy4ailHbIX BeTMunH. B pabore paccmaTpupaiotcs cuctemsl Bupa {X;X;}i< ;,
{XiX;Xy}i< j<k,---» KOHEUHblE OOBETMHEHMA TAKUX CHCTEM M ONM3KME K HUM CHCTEMBI
B IIPOCTPAHCTBE Lo, OrpaHUYEHHBIX CJIyYalHBIX BEJMYMH. PAIBI 110 TaKUM cUCTEMaM He
00J1a1210T CBOHCTBOM 0€3yCIOBHOCTH: CXOAUMOCTb PAJOB 3aBUCUT OT MOPAAKA, B KOTOPOM
HYMEpYIOTCS JIEMEHTBI CUCTEMBL. B TO ke BpeMs, Kak MOKa3aHO B paboTe, TaK1e CUCTEMBbI

CJly4daiiHble BEJIMYMHBIL. 00J1/110T OYeHb OU3KUM CBOMCTBOM CJTy4aiiHOH 6€3yCJIOBHOM CXOAUMOCTH.

1. Introduction

Investigating the behavior of special sequences is a cornerstone of geometric Banach space theory
[1;2]. The properties associated with random sequences and series are particularly important [3;4].
The simplest version of such random constructions arises by applying random signs to the terms of
a series and studying norm changes of the sum under such arrangements. Another probabilistic method
can be used when the Banach space itself consists of random variables, such as the Lebesgue space
of measurable functions on the interval. Here, one studies sequences of independent random variables
or polynomial forms from such sequences [5—11]. The independence of sequence elements allows for
the application of general and strong results for sums over such terms, related to distribution estimates,
moments, and limit theorems. At the same time, these sequences provide a rich source of examples and
counterexamples that illuminate the geometry of the underlying space. By considering sums in Banach
spaces of random variables with random coefficients, we can combine these two approaches of applying
probabilistic methods to study the geometry of subspaces in such spaces.

We follow papers [12; 13], which initiated the study of sums over Rademacher chaos within the
space L«[0,1]. This space is viewed as the set of bounded random variables on the unit interval with
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the Lebesgue measure. The authors investigated the stability properties of norms for such sums under
a random arrangement of signs. Let us recall the basic concepts and formulate some results from these
works. Rademacher functions ri(t), for ¢ € [0, 1] and k € N, can be defined as follows:

n() = ()2 k=1,2,...,

where [x] denotes the integer part of the number [x]. Rademacher functions are used in a large number
of fundamental and applied problems[14—17]. The following fact was proved in [13]. For any n € N and
any real coefficients a; j, 1 <i < j < n, it holds that

Eg Z Qija,-jr,-rj = Sm—njzl Z 9ijaij”'irj =
I<i<j<n L.([0,1]) b I<i<j<n L ([0,1])
1/ 2 i 1/2 )]
= max Z < Z a%j) ’Z (Za%)
i=1 \ j=i+1 =2 \i=1

Here, r; = r;(t) are Rademacher functions, 0;; are independent signs (i. e., =1 valued random variables),
and Eg denotes the expectation with respect to these signs. The notation X < Y means that ¢1Y < X < Y
for some universal constants ¢y, cp > 0. This result establishes the random unconditional convergence
(RUC) property for the second-degree Rademacher chaos in L. and connects its norm to one special
norm of the coefficient matrix. RUC property was introduced by Billard, Kwapien, Pelczynski and
Samuel in [18]. It shows that although the system may not be an unconditional basic sequence (basis),
there holds a certain relaxation.

The nature of Rademacher random variables (we then use term rvs) gives the idea that results
concerning it can be extended to similar random variables, such as symmetric bounded random variables.
Moreover, the identical distribution of such rvs is not necessary for properties under investigation.
A primary objective of this work is to extend the aforementioned L..-norm equivalences and the RUC
property to polynomial chaos constructed from sequences (X, Xz, ...,X,,...) of real-valued independent
symmetric random variables with || X;||.. = C; > 0. We demonstrate that these extensions hold, with
the key modification being a rescaling of the chaos coeflicients by the respective bounding constants C;.
In addition, the paper shows that chaoses of different degrees can be combined while maintaining the
property of random unconditional convergence.

The paper is organized as follows.

In Section 2 we present general definitions, some results from previous works that we will rely
on, and auxiliary statements.

In Section 3 we consider systems formed by mixing the first- and second-degree Rademacher chaos.
We examine two variants of such mixing. The first, more simple variant uses three independent copies of
the Rademacher sequences {rx},{r;},{r}} and examines the behavior in Le, of sums of the form

n n n
/ !l
Ssep(t) = Z bkl’k(l‘) + Z Z a,-jrl-(t)rj (l)
k=1 i=1j=1
The index "sep" in Ssep means that we are considering separated (or decoupled) chaos, i. e. chaos constructed
from independent copies of the original sequence of independent random variables. In the second case, we
work with ordinary (or unseparated) Rademacher chaos, i. e., we study the behavior of sums of the form

n
S(t) = Z bkl”k(l) + Z aijr,-(t)rj(t).
k=1 1<i< j<n

The key property that allows us to transfer the results for homogeneous chaos from papers [12;13] to the
mixed chaos we consider is the complementedness of homogeneous chaos in mixed chaos. This property can
also be obtained from the work of [19]. We, however, also consider a direct proof of the complementedness
property, which is especially simple in the considered case of first- and second-degree chaos.

In Section 4 we extend the results of Section 3 to systems constructed from a sequence of
independent symmetric bounded random variables, not necessarily identically distributed. The main idea
is that the subspaces X := span[{X;},{X;X;}] and Y := span[{Y; }, {V;Y;}] generated by different systems
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of independent random variables are isometric to each other in the case of || X;||... = ||Yk||r., k= 1,2...:

n
Z b Y + Z ainin
k=1

1<i<j<n

n

Zkak+ Z ainin

k=1 1<i<j<n

)
L.

L.,

and the same equalities are valid for chaos of arbitrary degree. Formally, we prove this equality for
homogeneous separated chaos. The result is then extended to the unseparated chaos via the decoupling
method and finally to the mixed chaos by using the complementedness of homogeneous parts.

Rademacher chaos, discussed in Section 3, is a special case of the more general chaos studied in
Section 4. Moreover, results for the general case can be proved independently of Rademacher chaos. However,
we stress the case of the Rademacher chaos due to its particular importance for applications. Bilinear
and quadratic binary forms, equivalent to separated and unseparated Rademacher chaos, respectively,
are important in neural network models of associative memory [20-22], energy analysis of spin glasses
[23;24], and adiabatic quantum computing [25].

2. Preliminaries and auxiliary results

A sequence {x};_, of elements in a Banach space X is called basic if it is a Schauder basis for
its closed linear span span{x;}. A basic sequence {x;} is an unconditional basic sequence if for any
x = Y agxy € span{x; } and any sequence of signs €; = £1, the series }; €xarx; converges. In this case
there exists a constant C,, > 1, not dependent on x, such that

Y awx
k

The elements of the unconditional basis sequence form a basis in Span{x; } under any permutation. This
is equivalent to the property of convergence of series for all arrangements of signs, indicated in our
definition of unconditionality. For basic and unconditional basic sequences we refer to [2]. Note that
we also use the "inverse" form of the previous inequality

Zakxk Z ErarXi
k k

Equivalence follows since both inequalities must be valid for any a; and €.

It is known that the Rademacher system {r;}, as well as systems consisting of products of
Rademacher functions {r;r;}, {rirjrc} ..., is an unconditional basic sequence in L,([0,1]) for 1 < p <o
[26]. It is obvious that the Rademacher system will retain the property of unconditionality in the space
L.[0, 1], since the distribution of this system does not change when its elements are rearranged. However,
this is not the case for the system of products [27;28].

We follow ([13, Remark 1], [18]) to give the following definition. A sequence of elements {x;} in
a Banach space X is said to possess the Random Unconditional Convergence (RUC) property if there exist
universal constants such that for any finite sequence of scalars {a;}, 1 <k < n,

n
Z Gkakxk
X

<Gy
X

Z €rarXi
k X

<Gy
X

X

n

Ee = SI:EEI kz_:l Gkakxk

where {0} is a sequence of independent Rademacher signs, i. e. for the probabilities of values of random

variables 0y the condition P{0; = 1} = P{0;, = —1} = 1/2 is satisfied. This shows that the expectation

of the norm behaves like the minimum, so they are "close". We note that in definition of the RUC property

we consider finite sums only and consequently the order of elements of the sequence does not matter.
We consider Rademacher chaos polynomials. A d-th degree homogeneous unseparated Rademacher

chaos (or homogeneous Rademacher chaos) is a system consisting of functions of variable ¢ € [0, 1]

of the form

k=1

X

(rjy...rj)@)=r;(t)...r5,(t), j1<jo<...<]ja
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We then consider polynomials constructed from these functions of the form

P(l): Z ajl,‘..,jdrjl(t)---’"jd(t)7

I<ji<p<<ja<n

.....

The homogeneous multiple Rademacher system of degree d (also referred to as separated or decoupled
Rademacher chaos of d-th degree) consists of functions of d variables (1,...,t;) € [0,1]%:

(I"j1®"'®}’jd)(t],...,td):rjl(tl)...rjd(td).

A linear combination of such elements,

Psep(tla-'-ytd): Z Ajy,....jalji (tl)"'rjd(td)ﬂ

1< j15eja<n

we will call a d-th degree homogeneous multiple Rademacher system polynomial.
The Le.-norm of a function £ : [0, 1] — Ris || f||r. = Sup(, . s)efo,1¢ |f (t1; - - ta)|. For d-th degree

multiple Rademacher system polynomial Py (f1,. .. ,%4), this is equivalent to the maximum over all 2"
sign combinations € = (€j,...,€,) € {£1}™
HPSSPHLOQ = max R Z Ajiyeja€iy - €jal -
etE [1<jima<n

Analagous relation holds for Rademacher chaos polynomial, but signs may dependent in that case.
We will need the following decoupling argument.
Lemma 2.1 (Decoupling for L..-norms, cf. [13, Corollary 1; 29, Theorem 3.1.1]). Letd,n € N with
d <n.Let(&,...,&,) be asequence of bounded independent random variables, and let (Egk) ey &,(1’()), for
k=1,...,d, be d independent copies of this sequence. Suppose that coefficients d;, .. ;, are symmetric, i. e.
Ajyja = iy jmia JOT €ach multi-index (ju,...., ja) € Né:={(ir,...,ia) €{1,...,n} i, £i, if pFq}
and every permutation of {1,...,d}. Then,

Cq Z dil,...,idaﬁf)...a(") < Z di...i,&i - &y <

id
Lo(@ix..xQq) || [ia)ENG L(Q)

<[ X dosk g ,

ld

LM(Q] X...ng)

where cg is constant depending only on d, and the L.-norms are essential suprema over the respective
probability spaces Q (for &) and Q1 X ... x Qg (for &,(CJ)).

Note that the right inequality in Lemma 2.1 is elementary: the set of essential values of the
random variable }.d; ;& ...&;, is included in the set of essential values of the random variable

Ydi i 5,(11) e Efj).

Let d,n € N with 1 < d < n. Let N be the set of multi-indices J = (jjj, ..., js) such that ji € [n],
where [n] := {1,2,...,n}. For k € {1,...,d}, let J; denote the multi-index (ji,..., jk—1,Jk+1s---»Jd)s
and also denote t,/( = (t1, - tg—1,tk+1, - - - ,14). The multiple Rademacher system of degree d is {r? }JeNz’
where r;@(tl,...,td) =Trj (ll)---”jd(td)-

Then we define A? be the set of multi-indices J = (jj, ..., jgz) such that I < j; < jo < --- < jg.
The (homogeneous) Rademacher chaos of degree d is a function {r;},;ca¢, Where r;(t) =r; (t)...r;, (1),
t € [0,1]. By A? we denote the set {J = (ji, j2,---,ja) : 1 <j1 < jo <...<jq<n}

Also we use elements of the multiple Rademacher system of the form

d

Py (6 =1 (1) om0 () -7 ()
Finally, for every d,n e Nyk=1,2,...,dand [ = 1,2,...,n we put
Nk, 1) ={J = (j1,...,ja) e N9 - ju =1},
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Now we discuss the two central theorems for our paper. They establish the RUC property of the
multiple Rademacher system and Rademacher chaos of degree d in L.

Theorem 2.2 [13, Theorem 4. For every d € N the multiple Rademacher system {r§} ;cna has the
RUC property in L..(]0,1]4). More precisely, for alln € N and ay € R?,J € N¢ the following inequalities
hold:

. 1/2
‘ Y g >2%m Z( y a%) 7 )
JeN] Lw([071]d) I=1 \JeNd(k,I)
and
J 1/2
Eo| ) as0,ry <) 2~ 12( Y ) : 3)
JEN;] LN([O,l]") k=1 [ JEfo(k l)

where (0;) jeng is a system of independent random signs, i. e. P{0, =1} =P{6,= -1} =1/2,J € N4,
Theorem 2.3 [13, Corollary 71. Let d,n € N, d < n. There exist universal constant C); (depending
only on d) such that for any real coefficients (ay) jepd,

Z 0a;r; Z 0sary

Jead Jend

<G
Lo.([0,1]) L ([0,1])

where (07) ¢ Ad IS a sequence of independent random signs.

Let us briefly describe the main ideas from [13] used in proving these results. We consider the
case d = 2. For the lower bound on HZ?:l 27:1 0, jairi®r; "Lw([071]2)’ one can use Szarek’s refinement
of Khintchine’s inequality for L;-norms [30]. We choose #;, argument of the first function of products
ri®@rj=ri(t;)rj(t2), in an appropriate way, and the problem is reduced to estimating the L;-norm of
a Rademacher sum of degree 1 with respect to the remaining variable. Applying Khintchine’s inequality

then yields a lower bound in terms of L, j-norm:

1 1/2
n n 1 n n
aiiri(t)|dt > — at; .
SR @.Zl(j_zl )

Lo(012) =1

min Z ajry

Jead

; “)
Leo([0,1])

n

n
Z Z ajirir;j
i=1j=1

The Le-norm of left hand side of (2) is thus bounded below. As we have symmetry in indices i and j,
swapping them, we get another lower bound. For the upper bound (3) explanation authors use such
techniques as the symmetrization trick and Ledoux—Talagrand contraction principle. It should be noted
that the specific method of applying these techniques to obtain the upper bound was taken from paper [31].
For more thorough explanations we refer to [13]. Now, having these estimates and using Lemma 2.1,
we proceed to RUC property for Rademacher chaos, i. e. (4).

We will consider multilinear and polynomial forms constructed from systems of random variables,
which are defined on a probability space ([0, 1], ) with standard Lebesgue measure, or on products of
such probability spaces. It is easy to see that the main results remain valid when replacing the segment
[0,1] with an arbitrary probability space.

Let us agree on the terminology used.

Let X = (X;) be a sequence of independent random variables, and X (1) = (Xlgl)), X = (Xk(z)),

X = (X (d)) be its independent copies. This means that the systems X, X(1), X2 X(@) are identically
distributed and independent in the aggregate. We will call the system {X () ](22) X }j)}( J1jnseensja) ENA

a homogeneous multiple random system of degree d, and the union of such homogeneous and mutually
independent systems of degrees 1,2,...,d — a mixed multiple random system of degree d.

We will also consider systems generated by a single sequence X, without using its independent
copies. We will call the system {X;, Xj, ... X, }(j, j»....js)ca¢ @ homogeneous chaos of degree d, and the
union of such homogeneous systems of degrees 1,2,...,d — a mixed chaos of degree d.

Thus, the homogeneous multiple Rademacher system and homogeneous Rademacher chaos defined
above, which appear in Theorems 2.2 and 2.3, respectively, turn out to be special cases of a homogeneous
multiple random system and homogeneous chaos. We note that the precise ordering of elements of these
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systems is not relevant for the RUC-property discussed in the article. However, it should be noted that such
systems will form basic sequences if they are numbered using the lexicographic order on the index set [32].
Next, we will work with polynomials, by which we mean finite linear combinations of some
elements of the introduced system. To specify the underlying system for a given polynomial, we will use
a corresponding prefix. For example, a 3-degree homogeneous chaos polynomial will look like this:
P3 (X) = Z aiij,-Xij.

I1<i<j<k<n

And a 2-degree mixed multiple random system polynomial will look like this:

n n n
Suep(X M XD X =Y pxV + Y Y ayxPxl.
k=1 i=1j=1
Note also that Lemma 2.1 involves both a homogeneous chaos polynomial and a homogeneous
multiple random system polynomial. The distributions of these polynomials are different, but the lemma
shows that their L..-norms are equivalent. Along with the notations Ps(X), Ssep(X (1), X X)) as above,
in which we emphasize the dependence of our polynomials on a system of independent rvs, we will also
use notations of the form P3(t),Ssep(1,%2,13), in which we consider our polynomials as random variables
(functions) of the variables ¢ € [0,1], (t1,2,13) € [0, 1]>.
It is also worth noting that every mixed chaos polynomial Q(X) of degree d can be uniquely
represented as the sum of its homogeneous parts:

d
0(X) =) (X)),
k=1

where Oy (X) is a k-th degree homogeneous chaos polynomial (or the k-th homogeneous component of Q).
An important result of Kwapien [19, Lemma 2] states that the mean values of a mixed chaos polynomial
Q(X) constructed from a symmetric vector X dominate the mean values of its homogeneous components.

Lemma 2.4 (Kwapien, [19, Lemma 2]) . Let F be a vector space, and let ¢ : F — R™ be a convex
function such that @(—x) = @(x) for all x € F. Let Q(n) be a mixed chaos polynomial of degree d with

coefficients in F, where = (11,...,M,) is a vector of independent symmetric random variables. Let Qi (1))

denote its k-th homogeneous component, for 1 < k < d. Then there exists a constant K;, depending only
d, such that

o @ S Ele(Qx(m))] < E[@(KaQ(M))]-

We will use the following corollary.

Corollary 2.5. There is a constant K, depending only on d, such that for every mixed chaos
polynomial Q(n) of degree d, for every homogeneous component Qi (1) of this polynimial and every vector
n=M1,...,Mn) of independent bounded symmetric random variables we have

10k(M) .. < KallQ(M)] 1. (5)

Proof. The function ¢ (x) = |x|? for x € |0, 1] satisfies all conditions of Lemma 2.4. Applying the
lemma and taking the p-th root, we have

(EIQx(m)I")"? < Ky (ElQ()|P)"/7 .

Passing to the limit as p — oo, this yields the L., estimate (5). O
Remark 2.6. It is known that K can be taken as 2%, which is also cited by Kwapien.
This paper considers chaoses constructed from a sequence of independent symmetric bounded
random variables, which we will denote as (X;);>_,, such that for each k, ||Xi||.. = Cx > 0.

3. RUC property for mixed multiple Rademacher system and mixed Rademacher chaos

In this section we extend the results of papers [12; 13] about homogeneous Rademacher chaos to
the case of mixed Rademacher chaos. Thus we will consider 2-th degree polynomials of the form

St =Y b+ Y ayrit)ri(o), ©)
k=1

I1<i<j<n
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where by and a;; are real coefficients. We denote the first-degree homogeneous part of S(¢) as Py (¢) and
the second-degree part as P5(z), so S(¢t) = Py (1) + P»(1).

We also consider "separated" version of chaos, in which different degree terms are generated
by independent copies of Rademacher sequences. More precisely, we will consider mixed multiple
Rademacher system polinomials of the form

sep Z bkrk +

M:

Z 7

where r, ¥/, and v’ are three mutually independent Rademacher sequences. Note that this function has
the same distribution as following function, defined on [0, 1]*:

i=1j

n
Ssep(f0:11,12) Zbkl’k fo +Z Zalﬂ’l n)ri(t2). ()
k=1 i=1j=1

We will use this fact of equivalence of distributions in our proofs.
We first consider the simpler case of mixed multiple Rademacher system, where the components of
different degrees are generated by independent Rademacher sequences.

3.1. RUC property for mixed multiple Rademacher system

Proposition 3.1. Let Ssp(t) = Py (t) + P>(t) be a mixed Rademacher multiple system polynomial of
second degree, where

= i bkrk(t), Pz(l‘) = i i al]rl
k=1

Then
[Ssepllzfo, 1] = 1Pl zjo, ) + 1P2 ]l 2.cfo, 1) )
Proof. We use equimeasurability of Seep(f) and Sgep(#1,12,3), which follows from (7) and (8). We
know that for mixed Rademacher system polynomial of second degree their L.-norm is the absolute
value of their sum for certain signs arrangement, i. e. there exists a sign configurations (e, el, J) €

e {—1,1}" x {—1,1}" x {—1,1}" which corresponds to such ;,},#;, where maximum is attained, such
that:

n n
1P| 2..j0,17) = max | Zbkrk(fo)| = max | Z byex|
011 4= R

I()E[ )

and

P2l jo.12) = max Zzazm 1)rj(t2) |—H,13§|ZZLZU€/ ;

llj €€ i=1j=

These maxima we denote correspondingly by M; and M,. Let also s; and s, denote the sign of the sum
under the module in points £, ,#;. Now we consider the symmetry argument which later be modified to
the Rademacher chaos case. Because we choose ty independently of #,#,, we can always have s := 51 = 5.
Indeed, if these signs are different, we just take 7;* such that ri(¢5*) = —ri(t;) for all k. Such point always
exists, because it corresponds to (—e;) sequence of signs. Therefore, we change the sign of P; without
changing its absolute value. Therefore, we have

|Pi(ty) + Po(t1,15)| = [sMy + sMa| = |s(My +M>)| = M, + M,.
Taking maxima of both sides of the equation, we get
[Ssepllr.. = max |Pi(to) + P>(t1,12)| = My + M.
On the other hand,
[[Ssepllr.. = max |Pi(t0) + P2 (t1,12)| < mn}ﬁ?;z{lpl (to)| +|Po(t1,12) [} < My + M.

Combining the two inequalities, we obtain the desired equality. (9) O
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Corollary 3.2. For mixed multiple Rademacher system polynomial as in Proposition 3.1 we have

1P|z < ISsepllLe.,
P2l < [[Ssepllz..-
From this we conclude that the following is true.

Theorem 3.3. For alln € N and a;; € R, 1 <1, j < n, we have the following two-sided estimates
with equivalence constants independent of n,a;;

EGk,Gij i ®rj = éniél ijQi T ®rj = (10)
i=1j= 1,52 i=1j=
= Z |by| + max Z Zaij ,Z Zaij )
k=1 i=1 \j=1 j=1 \i=1

where ©1 = (0x) and ®, = (0;;) are independent sequences of Rademacher signs.

As consequence, the mixed multiple Rademacher system has the RUC property.

Proof. We firstly prove the RUC property. If ©@; = (6;) € {—1,1}" and ®, = (8;;) € {—1,1}" x
x {—1,1}" are independent random sign, then we put

®1P1 = Zekbkrk, ®2P2 fZZG,]a,jr,®r]
k= i=1j=1
Now, because always Eg, @,|/®1P1 + @2P;| 1. > ming, e, ||®1P1 + O2P; ||, it is enough for us to get an
upper bound of expectation on signs:

n

Ee,.0,/@1P1 + @251, = Eg 0, HzekbkrkHL +|IZZGUCIU71®”/||L =
i=1j=

= Eo, |l Z Oxbiri||.. + Eo, || Z Z 0ijaijri @rjllL. <
i=1j=1

rrg)ln” Z Oxbiril|L. —i—CRUcrreunH Z Z 0;jaijri 7|1, <
k=1 Yoi=1 j=1

< Cryc min ([|©1Py ]|z, + [|@2P2]|1..) <
01,0,

< Cryc min [|©P; + Oy,
01,0,

where the first equality comes by taking expectations on (@1, ®,) from both sides of (9), the second equality
by linearity of expectation and independence of (®;,®,), and third inequality from symmetric property
of Rademacher system and from RUC property of second-degree homogeneous multiple Rademacher
systems (by Theorem 2.2). In fact, the L., norm of the first-degree Rademacher system with random signs
is equal to sum of absolute values by, which corresponds to symmetric property of this system in L... And
then we use known properties of minima of functions and in the final inequality we use (9) again. Thus,
the mixed multiple Rademacher system possesses the RUC property.

Now, to prove the second part of (10), we again use the Proposition 3.1 and the following simple
fact:

101Pi[|. = Y, |6kbx| = [ (Ba)]]1,- (1D
k=1

Now, if we take by = 0,by, for fixed combinations of signs @1 = (0 ), the same holds true. Then we unfix
the signs and take expectation from both sides of the equality:

Eo,©:1Pi|r. = Ee, Y, 8xbx| = |16y, - (12)
k=1
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For the second-degree homogeneous multiple Rademacher system polynomial @,P> =Y | Z?:l a;jrirj,
by Theorem 2.2, its average L..-norm is equivalent to the matrix norm:

W/ on 12 s, 1/2
E®2H®2P2H1m = max Z (Z ai) ,Z ( al-2j> . (13)
i=1 \Jj=1 j=1 \i=1
Combining relations (12) and (13) with Proposition 3.1, we obtain the right-hand side of relation (10).
O

3.2. RUC property for mixed Rademacher chaos

Now we consider the mixed Rademacher chaos polynomials, as in (6). Let S(¢) = Py () 4 P»(t) be
such a polynomial, with Py (t) = Y/_; biri(t) and P (t) = ¥ << j<n @ijri(t)r;(t). In this case, the simple
additivity of L..-norms observed in Proposition 3.1 no longer holds due to the mutual dependence between
Pi(t) and P>(). However, a crucial relationship still provides control over the norm of its components
by the norm of the total sum.

Proposition 3.4. Let

n
Pi(t) =Y brt), P(t)= Y, ari(t)rj(t),
k=1 1<i<j<n
and S(t) = Py (t) + Ps(t) is a mixed Rademacher chaos polynomial of second degree as it defined in (6).
Then,
1P| < UISNles (IP2]li < S (14)

As consequence,
[SIr.. < IPi]|L + 1Pl < 2/

Proof. Let t* be a point where |P;(t*)| = ||P1||1... Without loss of generality, assume P (*)
= ||P1||L.. = 0. Consider another point +** such that r(t**) = —r(¢*) forall k = 1,...,n. Then P, (£**)

= Lhi(—n(t7)) = —Pi(t"). However, Py(1™) = Yicjaij(—ri(t"))(—rj(t")) = Licjaijri(t*)r(t")
= P(t*). Thus, we have two values for S(¢): S(t*) = Pi(t*) + P,(t*) and S(r**) = —P,(t*) + P (¢
At least one of Py (¢*) or —P; (t*) must have the same sign as P5(t*).
If Py (t*) and P5(¢*) have the same sign, then
S| =1P(E") +B(t)] = [P () [+ |P(7)| = [P ()] = [| 21|l .-
If P (t*) and P, (¢*) have opposite signs, then

[SEH) = [=P(") +Po(e)| = [P () [+ |P(e7)| = [P ()] = || 2],

*
~—

In either case,
IS]lr.. = max|S()[ = [P r...

Thus, we get the first inequality in (14), and for the second inequality we can apply the similar argument.
Next, using inequalities (14) we get:

1Pl + ([ P2l < 21182

and by triangle inequality
81|z < 1Pyl + (12 .-

O
Corollary 3.5. Let X; =span{ry : k=1,2,3,...} be the closed subspace of first-degree homogeneous
Rademacher chaos in L. ([0, 1]), Xo =Span{ryr;j : i < j,i,j=1,2,3,...} be the closed subspace of second-
degree homogeneous Rademacher chaos in L.([0, 1]), and X, » =Span{rirj,r:i < j,i,j,k=1,2,3,...} be
the closed subspace of second-degree mixed Rademacher chaos in L«([0, 1]). Then there is an isomorphism
of Banach spaces:
X2 =X ©Xo,
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where
Xi®0Xy :={x=x1+x:x €Xi,0€Xa}, |x1+xlxex:=xlx + x|

Thus X1 and X, are complemented subspaces of X] ».
Proof. Mixed chaos is a basic sequence in lexicographic order in the space L., [32, Theorem 2].
Therefore, the space X » consists of those elements x; » € L., which can be represented in the form

xl,z(l‘) =bin (l‘) +b2r2(t) +b172r1 (l‘)l’g(l‘) +b3r3(t) —f—b173r1 (t)r3(t) —|—b273r2(t)r3(t) +..., (15)

where the series converges in the L.-norm. Similarly, the spaces X; and X, consist, respectively, of
elements which are represented as sums of the form

X1 =ain (l‘) —I—Clzi’z(l) —|—a3r3(t) +... and xp = ajph (l‘)rz(l‘) +ayzrn (l‘)l’3(l‘) —|—a2,3r2(t)r3(t) —+...

Let us consider two arbitrary elements x; € X; and x, € Xj. It is easy to see that from the convergence of
the series for x; and x» follows the convergence of the series

x1+x2=airi(t) +axra(t) +aiori (t)ra(t) +asrs(t) +aizri(t)r3(t) +az3ra(t)r3(t) + ...,

therefore X; 4+ X, C Xj 5. Then we note that convergence in L., implies convergence in L, in which the
spaces X and X, are orthogonal. Therefore X; N X, = {0}, and the space X; @ X; is well defined. Moreover,

1 +x2x,, = Ix1 +x2 .. < x|z + P2l = 1x1 +x2lx0x, -

Now let x1 » € X » and SYg be the partial sum of the corresponding series (15). Then Sg'g =sim 4

(n1) (n2)

"2) where § \ " is some finite sum according to system {ry}, and S

+5,

system {r;r;}. As n increases, new terms will be added to the sums Sg'”) and Sg”) in a certain order
determined by the lexicographic numbering of the combined system of {rx} and {r;r;}. The sequence of
sums S|' will form the series

is a finite sum according to

by (l) +b2r2(t) —i—b3r3(t) +...,
(n2)

and, similarly, the sequence of sums S, " will form the series
b1721’1 (l)rz(l‘) + b173F1 (t)r3 (l) + b2’3r2(t)r3(t) +....
Both of these series will converge. This follows from the convergence of the series for x; » and inequalities
s = syl < s = iall, and 18 =< sVE =Sl n<m,

which are valid by virtue of Proposition 3.4. Hence x1 » = x1 +x2, where x; € X;, and X1 » C X; ©X>. By
virtue of the already established continuous embedding X; & X, C Xj » and Banach’s inverse operator
theorem, embedding X » C X © X is also continuous. Moreover, passing to the limit in inequalities

sl < [Isvall,. and (S5 < 8]l n<m,
which are valid according to Proposition 3.4, we obtain

x12]lx, < lx12llxex, < 2[x2llx.,-

O
Now we prove the RUC property for mixed Rademacher chaos. We proceed similarly to Theorem 3.3.
Theorem 3.6. For alln € Nand a;j € R, 1 <i < j <n, we have the following two-sided estimates

with equivalence constants independent of n,a;;

Ee, .0, Z Orbrri + Z 0;ja;rir; = mln Z Orbrri + Z 0;ja;rir; = (16)
1<i<j<n L. 1<i<j<n L.
n n—1 n ) 1/2 n Jj—1 ) 1/2
=Y b+ maxq Y [ ) aj; Y a;; )
k=1 i=1 \Jj=i+1 j=2 \i=1

where ©1 = (0x) and ®, = (0;;) are independent sequences of Rademacher signs.
As consequence, the mixed Rademacher chaos has the RUC property.
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Proof. Let us denote

0P = Zekbkrk> Py = ), Oari(t)ri(r),

k=1 1<i<j<n

as in the proof of Theorem 3.3, we obtain

Ee,,0,/[(@1P1) + (@2P2) ||, < Eg, 0, HZekbkrkHL +1 Y, 8jaijriril.| =

1<i<j<n
= Eq,| Z OkbirellL. +Eoyll Y, Oijaijriri|L. <
=1 1<i<j<n

mmHZGkbkrkHL +CRUCHGHHH Z 0;jaijrirj||r. <

Yo Ii<j<n
< Cruc mm (H®1P1HL°° +[|@2P]|.) <
< ZCRUC®mm |©1P + OB |1..,
17 2

where final inequality comes from Proposition 3.4. From this we obtain the RU C-property for the mixed
Rademacher chaos.
To prove the second equivalence in (16), we again use Proposition 3.4. Thus we get

Ee,.0,01P1 + @21, AEekHZekbkrkHL +Eo,ll Y, Oijairirlli. =

1<i<j<n
g n n—1 n 5 1/2 n [j—1 1/2
AZ|ka—maX Z Z a;; ,Z Z )
k=1 i=1 \j=it1 -1

where we used relations (11) and (1). ]

4. RUC property for multiple random system and chaos of symmetric bounded random
variables

In this section we extend results from Section 3 obtained for second-degree mixed multiple
Rademacher system and mixed Rademacher chaos to broader class of d-th degree mixed multiple random
system and mixed chaos of symmetric bounded (a. e.) rvs.

4.1. RUC property for homogeneous multiple random system and homogeneous chaos

First we will establish equality between L.-norm of homogeneous multiple random system
polinomial and the L..-norm of homogeneous multiple Rademacher system polynomial of degree d. As
before, we will denote by X M, ..., x4 independent copies of the sequence X = (Xj).

Theorem 4.1. Let {X ](Il) X J(j)} be a d-homogeneous multiple random system formed by the

sequence X = (X;) of independent symmetric bounded random variables, and || X||., = Cx > 0. Let

1 d)y _ (1) (d)
P(xW, . XxD)y=Y ax;’. X
JeNd

is a polynomial by this system. Then,

1P, X DI, =

Y (aJHQ) ry

JeNd \  lel

L.,

where r?’ denotes the elements of the d-th degree multiple Rademacher system.
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Proof. We remind that we work on a probability space (Q,A,P) with Q =[0,1] an P = p, where n
is a standard Lebesgue measure. Let us consider an auxiliary multilinear form

Ph( M) Z ajle jd 5
JeNd

which depends on variables x{!) = (xgl), e ,xﬁll)), o xd) = (xgd), e ,x,(fl)), and each x¥), k € [d], changes
on a Cartesian product [T, [—C;,C;]. We show that the Lo.-norm of the d-homogeneous multiple random
system polynomial formed by independent symmetric bounded random variables X; coincides with the
Le-norm of this multilinear form.

To show that || Py|1.. = || Xjene asX ](11) X ](dd) || L., we proof two inequalities, which will give us the
desired equality when combined.

Firstly, we note that the inequality [|P;[[. > || Ljene @ JX}:) X J(j) || .. holds true, because the co-
domain of random variable P(X(1) ... X(@)) is included in the co-domain of P, (x(1),.. ., x(®)) almost surely.
Note that this holds for arbitrary independent symmetric bounded rvs (X;) with norm || X;||.., = C; > 0.

Now we prove the inverse inequality. By multilinearity of the form P, we have that

Z aJx ..x(d)
J1° Jd

JeNd

M= HPhHLw max

_ * *
B, =Y aCij---Cijp
X\ i

JeNd

where we note C; ; equal to Cj, or —Cj,, depending on where the maximum is attained.
We c0n51der the followmg family of sets:

Qje={weQ| X (W) ey}, ildjiel,

where by A; j, e we denote either the interval [C}; — €,C;; ] or the interval [C];,C}';. + €], again, depending

on the sign of C7 ;. By definition of essential supremum, we have that P(Qij.e) > 0.
Let us consider the set

||
T D&

n
ﬂ pive:

By independence rvs from the system {(sz )i }i» we have that
d n
=[I1IP«ij.c)
i=1ji=1
so that P(Q¢) > 0 as the product of positive measures. By definition of Q. we have inclusions
{P(X“),...,X(d)) lwe Qe} c {Ph B A,,J-l.,e} = [M—5(e),M],

with some 6(€). Moreover, 5(e) — 0 with € — 0 by continuity of P,.
From here we have that
IPXW, XD > M —5(e)

on a set with positive measure. From this we get
P, XD > lim {M —5(e)} = M.
e—

Thus,

HP(X(I), ..,X(d))HLw: sup

|x | C!k

Zajxll 'd

Y as(Cjel)) . (Cj el

= max

J1 J1 Jd Jd
eMef+1} |7
_ ) (d)
= (ml‘)IlaX Z aJHC[ € € 1
e{£l} leJ
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The last expression is precisely the L..-norm of the d-th degree multiple Rademacher system with modified
coefficients dy = a;[1;c; C;. Therefore,

1Px™, .. XDy, =

) <aJHC1> ry

JeN? leJ

Lo
O
The following statement follows from Theorem 4.1, Theorem 2.2 and averaging over cyclic
permutations of the index k in inequality (3).
Theorem 4.2. The d-degree homogeneous multiple random system formed by the sequence X = (X.)
of independent symmetric bounded rvs has the RUC property. Moreover, for alln € N and a; € R?,J € N¢
the following inequalities hold:

(Dy(2) (d)
Z a;X; ' X;," - X,
J=(j1,j2,-ja) ENE

. 1/2
1-d
> 277 max a ,
keld] 1:21 ( Zk 0 ]>

JEN (k,

L-([0,1]4)

and

Ee Y o aexx? . xl?

Jd
J=(j1,j2s-ja) ENE

i)

d 2= \yerld

Lo([0,1]4)

where (8) jene = £1 is a system of independent symmetric random signs, dy = a[1;e; C, C; = || Xi|1.. > 0.
Using the last fact for a homogeneous multiple random system and Lemma 2.1, we can establish
the RUC property for homogeneous chaos.
Theorem 4.3. The d-degree homogeneous chaos formed by the sequence X = (X;) of independent
. = C >0, has the RUC property. Moreover, the following relations are
valid with constants depending only on d

Y 6sa,X;
Jead

Y 6sa,X;
Jead

; 1/2
=y ( Y a?,> : (17)
J=1\ J=(

= (j1,j2s---,ja) EAL:
Jkeld: jr=j

= min
0

L.

where (07) Jead = £1 is a system of independent symmetric random signs, dj = aj[lie;Cr, X; =
=X\ Xj - Xy

Proof. For the proof we will use Theorem 4.2 and Lemma 2.1. Let by for J € N¢ be defined
as following:

1

yea = Eaj"l ...a‘,-gd,lf all j; are pairwise different,

where o is permutation of [d] such that jg, < jo, < -+ < jo,. and b, ;, = 0if there exists a pair (j;, , ji,)
such that j;, = j;, for ij # i>. These coeflicients satisfy conditions of Lemma 2.1, and

Z Z bj,....jaXji - Xj, = Z AjyjuXji - Xy
1= ig=1 1<i|<ip<-+-<iyg

Let by = by[1;c; C;. By Lemma 2.1 and Theorem 4.2, we get

Yo a4 XX,

1<i|<iz<-<iy

n n

Y Y byax X

=1 iy=1

\ 1/2
ch% max Z ( Z B%) =
)

keld] j53 \yend(k,j

. 1/2
(g
=1 \JeN{(1,))

WV

Z g

L. Lo

WV
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where the last equality follows from the symmetry of the system of coefficients {b;} Jend- Further, due
to the same symmetry,

7 70 7 )
Y b= ) b= Y b5 = ) as.
JeNE(1,)) JENE: j1=j J:(jlvji:‘]"vjd)ENg: J:(jl,jz[w]qu)GAZi
Jkeld: jr=Jj Jkeld: jr=j

1/2
Cq ! ~2
> =T ) ) a)
L. VA2T [T\ b et

er[d]ljk:j

S
Ul

Hence

Z ajl7---7jde1 "'de

1<ii<ip<---<iy

To obtain the upper estimate for the expectation Eg, we cannot directly use the decoupling method.
The difficulty arises because moving to separated chaos requires averaging over signs ®; by all multi-
indices J € N, not just ascending ones from A?. To overcome this, we use the reasoning following
Lemma 2.1 and establish the inequality:

Y ojaxUx® . x®

Z Osa,X; Ja
Jead

Jead

<

Lo L.

for each set of signs {0} ¢ a¢- Therefore, by Theorem 4.2, where we put d; = 0 for J ¢ Ad,

Eo Z 0,a,X;| <Eg Z OJaJX}ll)X}f)...X}j) <
Jead L. Jend L
201 & & 2 v
<—XY| L @) =
k=1j=1 \JeNd(k,j)

) n d 1/2
TUEE( x a) -
/ J:(jujzj--wjd)eAﬁi

Jk=1J

213 [ N\
<7 b L v) -
k=1 J:(jhjzj---yjd)EAif:

Jk=1]

Corollary 4.4. Let d > 2. The d-degree homogeneous chaos is not an unconditional system. This
means that there is no constant C such that for alln € N, a; € R4 and © y==x1,J € AZ, the following

inequality holds:
Y aX;

Jead

<C
Lo

Y 6sa,X;
Jead

L.,

Similary, the d-degree homogeneous multiple random system is not an unconditional system.
Proof. Without loss of generality, we can assume that || Xg||z = 1, k= 1,2,.... Let us take ay = 1.

Then
Z anJ Z XJ
Jead Jead

L.

=

no
Lo

where C¢ = ﬁid)!' This follows from the fact that for any € > 0

P(kﬁl{Xk >1-— e}> >0,
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and from the continuity of the polynomial form
Z Xy Xp =X Xy e Xy
Jead

On the other hand, according to (17),

1/2
n
Y 0:x; <CZ< ) 12) =Cny/C],
Jend =N T = jay-nja) AL

Fkeld: jr=j

min

L.,

with some constant C that does not depend on n. Since

where the equivalence constants depend only on d, the unconditional inequality cannot be satisfied, as for

d+1
d}2wegetd>%. O

An analogous fact can be established for the d-degree homogeneous multiple system by using
a similar argument.

4.2. RUC property for mixed multiple random system and mixed chaos

We will first establish a key property for the L..-norm of mixed multiple system polynomial generated
by symmetric bounded random variables, analogous to Proposition 3.1 for Rademacher variables.
Proposition 4.5. Let

d(d+1) d(d—-1)

Srep (X, X x5y = p (XY £ Py (x @ X)) 4 py(x (T x| x (5

be a d-degree mixed multiple system polynomial, where XV, X @ . xd(d+1/2) qre independent copies
of a sequence X = (X;) of independent symmetric bounded variables. Then,

[1Ssepllz. = 1Pl + [1Pafl s 4[|t .-

The assertion follows easily from the mutual independence of the terms P;, P», ..., and the following
simple property.
Lemma 4.6. Let & and n be independent symmetric bounded random variables. Then
&+l = [[&]le. + Inll....

Proof. Let
A= ], B=|nlr..

Due to the symmetry of random variables & and 1, for any € > 0, events
Qi ={{c[A—¢,A]} and Q,.:={ne[B—¢,B]}
have positive measure. From the independence of & and 7 it follows that

P(QeeNQye) > 0.

Moreover,
(E+M)(QeeNQye) C[A+B—2¢e,A+B.
Hence
lE4+nllr. = lim(A+B—2¢)=A+B.
e—0
The opposite inequality coincides with the triangle inequality. O

Now, analogously to the proof of Theorem 3.3 from Proposition 4.5 and Theorem 4.2 we conclude
that the following is true.

Theorem 4.7. The mixed multiple random system from the sequence (Xy) of independent symmetric
bounded rvs has the RUC property. Moreover, let

d(d+1)

Seep(XW x? . xT7) @) =
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— 0,2 (XD) 1+ @, (XD X)) . 4 @up(x I+ xC+T) | x (15

where

. (1+m(m 1)) (2+m(m |)) (
®um = Z ejlj2~~jmajlj2"‘ij]1 X X

L ) C
(]1~,]2~,<--7.]111)€N:«,n

m(rr;rl))

Then

d(d+1)

EollSsep(XM, X . x5 @), = ménHSsep(X(l),X(z),... X7 0L =

9

d " 1/2
= Z max Z ( Z d%) ,
m=1 K€M 121 \ yenm(.1)

where O is the system of independent signs © = £1, a; = aj[1;e;C1, C; = || Xi||L.. > 0, and a constants in
the designated equivalences do not depend on n and real numbers {a;, j,. ;. Y% _, (but depend on d).
In the special case of mixed chaos of the second degree we obtain the following statement.
Corollary 4.8. The mixed multiple random system {X (1) (2) } from independent symmetric
bounded rvs has the RUC property, and we have the following mequalzttes

Eek7 0 Z Gkka + Z Z Gual] j ) = I/I(lln Z Gkka + Z Z Gljau j =
i=1j= L. i i=lj= Le
n ~ n n 1/2 n n 1/2
= Z |by| + max Z (Z d%) ,Z (Z@%) )
k=1 i=1 \Jj=1 j=1 \i=1

where by = Ciby,a;j = CiCjaij, Cr = || Xk||1.. > O.

To obtain an analogue of Theorem 4.7 for mixed chaos, we first note the following statement,
similar to Proposition 4.5.

Proposition 4.9. Let

S(X) = Pi(X)+Py(X) + ...+ Py(X)

be a d-degree mixed chaos polynomial, decomposed into the sum of its homogeneous components B, (X),
where X = (Xy) is a sequence of independent symmetric bounded variables. Then,

1Sl =< 1P|z + 1Pall e + - -+ [ Pal| .-
Proof. From Corollary 2.5 we obtain
1Pl + P2l 4+ | Pall., < dKql|S]] ...

The opposite estimate is obtained from the triangle inequality. O
From Proposition 4.9 and Theorem 4.3 we get
Theorem 4.10. The mixed chaos from the sequence (X) of independent symmetric bounded rvs has
the RUC property. Morever, let

S(X,0) =01~ (X)+0O:P(X)+...+O,P;(X),

where

OnPu:= Y, 0,a;X;, X;=X;,Xj,... X,
JeAn

Then
Eol|S(X,0)[l. = min][S(X,0)]. =

., 1/2
- zz( y ) 7
j J (Jl /27 /.m)eA:zn

Skeld: je=J
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where @ is the system of independent signs © = +1, day := a;[1;c;C;, C; = ||X;||r.. > 0, and a constants in
the designated equivalences do not depend on n and real numbers {{a;}jear}%_, (but depend on d).

Corollary 4.11. Let (X ) is a sequence of independent symmetric bounded rvs. We have the following
two-sided estimates

n

n
Zekkak+ Z eijainin

E9k79i.j Z 0bi X + Z Bija,-jX,-Xj = min =
k=1 1<i<j<n k0 || 1= 1<i<j<n L
noo n—1 n 5 1/2 n j—1 5 1/2
=Y bl +max g 3 |} ay)| LY | Xag )
k=1 i=1 \j=i+1 j=2 \i=1

where (0 = £1,0; j = £1) is the system of independent signs, by = Cibi,a;j = CiCjaij, Cy = || Xk||r.. > 0.

Summary

This paper investigates systems composed of products of independent random variables and their
properties related to the additive decomposition of other random variables over such systems. These
representations are closely related to the well-known Polynomial Chaos Expansion (PCE, see [33]) and
are a special case of the generalized polynomial chaos (see [34-36]), which has numerous applications
in mathematical modeling and machine learning. We show that for symmetric bounded random variables,
these product systems, while failing to be unconditional convergence systems in the space L., of bounded
random variables, nonetheless possess the closely related property of Random Unconditional Convergence
(RUC). Following the principle of moving from particular and simple cases to more general and complex
ones, we sequentially examine the cases of Rademacher random variables (in Section 3) and arbitrary
symmetric bounded random variables (in Section 4). We consider two variants of these product systems.
In the first, simpler variant, each product involves factors from different independent copies of the
generating sequence of random variables (Theorems 3.3, 4.2, and 4.7). In the second variant, each
product consists of factors from one common sequence (Theorems 3.6, 4.3, and 4.10), which creates
a more complex dependence structure between the elements of the constructed system. We also made
a transition from homogeneous systems, where all products consist of the same number of factors
(Theorems 2.2, 2.3, 4.2, and 4.3), to mixed systems, which are unions of several homogeneous systems
(Theorems 3.3, 3.6, 4.7, and 4.10).

The next stage of our research is to study the behavior of chaoses in arbitrary symmetric spaces.
The class of symmetric spaces in which the homogeneous Rademacher chaos forms an unconditional
sequence is characterized in papers [27;28]. However, even for the special case of Rademacher chaos,
a similar question regarding the property of random unconditional convergence remains open.

The work was supported by the State Research Programme “Convergence—2025" of the National
Academy of Sciences of Belarus (assignment 1.3.05).
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