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Аннотация. В работе рассматриваются свойства многочленов с коэффициентами
в кольцах с делением. Получена теорема о разложении многочлена с коэффициентами
в произвольном кольце с делением. Показано, что если нецентральный элемент не
является корнем многочлена над произвольным кольцом с делением, то в классе
сопряженности этого элемента бесконечно много элементов, не являющихся корнями
этого многочлена. Также в работе получены оценки для количества различных классов
сопряженности сферических корней для некоторых типов многочленов над алгебрами
кватернионов.
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Abstract. We consider properties of polynomials with coefficients in division rings. A theorem
on the decomposition of a polynomial with coefficients in an arbitrary division ring is obtained.
It is shown that if a non-central element is not a root of a polynomial over an arbitrary division
ring, then the conjugacy class of this element contains infinitely many elements that are
not roots of this polynomial. The paper also contains estimates for the number of different
conjugacy classes of spherical roots for some types of polynomials over quaternion algebras.

1. Введение и предварительные результаты

Пусть R – некоммутативное ассоциативное кольцо с делением, R∗ – его мультипликативная
группа. R[x] обозначает кольцо многочленов от переменной x с коэффициентами в R, считаем,
что переменная x коммутирует с элементами кольца R. Таким образом, всякий многочлен из
R[x] имеет вид

P(x) = anxn +an−1xn−1 + · · ·+a1x+a0, a0, . . . ,an ∈ R. (1)

Сложение и умножение многочленов из R[x] определяется естественным образом. Степень
многочлена вида (1) также определяется привычным образом и равна n, если an ̸= 0. В кольце
R[x] имеет место теорема о делении справа многочленов с остатком, при этом для многочленов
P(x),S(x) ∈ R[x] определен их наибольший общий правый делитель НОПД(P(x),S(x)) (см. [1]).

Основные свойства многочленов над кольцами с делением описаны в [2, Ch. 5, §16] (см.
также [3; 4]).

В [5] доказана следующая
Теорема 1.1. Пусть Q – алгебра кватернионов с делением над полем K. Тогда всякий

многочлен P(x) ∈ Q[x] может быть представлен единственным образом в виде произведения
P(x) = cG(x)H(x), где c ∈ Q∗ – старший коэффициент многочлена P(x), H(x) – унитарный
многочлен с коэффициентами в K и G(x) ∈ Q[x] – унитарный многочлен, не делящийся справа ни
на какой неконстантный многочлен из K[x]. Более того, если Q[x] рассмотреть как свободный
модуль ранга 4 над K[x] со стандартным базисом 1, i, j,k, то H(x) – это наибольший общий
делитель (в K[x]) координат многочлена P(x) в этом базисе.
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Одной из целей данной статьи является обобщение этой теоремы на случай любых колец
с делением (см. теорему 2.4 ниже).

Для a ∈ R определим P(a) как элемент

P(a) = anan +an−1an−1 + · · ·+a1a+a0.

Назовем элемент a ∈ R (правым) корнем многочлена P(x), если P(a) = 0. Известно, что a ∈ R
является корнем многочлена P(x) тогда и только тогда, когда x− a является правым делителем
P(x) в R[x] ([2, предложение 16.2], т. е. P(x) = H(x)(x−a) для некоторого многочлена H(x) из R[x].
Заметим, что из равенстваP(x) =H(x)S(x)∈R[x] не следует равенствоP(a) =H(a)S(a). В частности,
если a – корень многочлена H(x), то a может не быть корнем многочлена P(x).

Класс сопряженности элемента a ∈ R, который будем обозначать через [a], состоит из всех
элементов вида qaq−1, где q – произвольный ненулевой элемент из R. Кольцо R распадается на
непересекающиеся классы сопряженности. Через R(c) будем обозначать множество всех элементов
из R, коммутирующих с элементом c ∈ R. R(c) является подкольцом с делением в R.

В случае многочленов над полями всякий многочлен степени n имеет не более n корней.
В случае многочленов с коэффициентами в кольцах с делением ситуация другая, многочлен
степени n может иметь бесконечно много корней. Теорема Гордона–Моцкина [2, теорема 16.4]
говорит, что многочлен степени n из R[x] может иметь корни не более чем в n классах сопряженности
кольца R. Кроме того, если P(x) ∈ R[x] имеет два различных корня в классе сопряженности, то
P(x) имеет бесконечно много корней в этом классе (см. [2, теорема 16.11 и 4, предложение 3]).
В случае алгебры кватернионов Q получается, что если P(x) ∈ Q[x] имеет два различных корня
в классе сопряженности, то всякий элемент из этого класса является корнем многочлена P(x). Это
означает, что у многочленов над алгебрами кватернионов с делением существуют только два типа
корней: изолированный и сферический. Корень q многочлена P(x) называется сферическим, если q
не принадлежит центру алгебры и любой элемент d ∈ [q] также является корнем многочлена P(x).
Корень q называется изолированным, если класс сопряженности [q] содержит только один корень
многочлена P(x). Однако в случае, когда минимальный многочлен класса сопряженности имеет
степень больше чем два, ситуация принципиально другая. В [6] для любого класса сопряженности
с минимальным многочленом степени> 2 построен квадратичный многочлен, имеющий бесконечно
много корней в этом классе, при этом в данном классе сопряженности имеется бесконечно
много элементов, не являющихся корнями такого многочлена. В данной статье мы показываем,
что если нецентральный элемент c не является корнем многочлена над произвольным кольцом
с делением, то в классе [c] бесконечно много элементов, не являющихся корнями этого многочлена
(см. теорему 2.5 ниже). Также в статье получены оценки для количества различных классов
сопряженности сферических корней для многочленов над алгебрами кватернионов.

2. Многочлены над произвольными кольцами с делением

Пусть R0 – подкольцо c делением кольца R, {ci}i∈I – базис правого векторного пространства R
над R0. Тогда всякий многочлен P(x) ∈ R[x] единственным образом можно представить в виде

P(x) = ∑
i∈I

cibi(x), (2)

где bi(x) ∈ R0[x] почти все равны нулю. Многочлены bi(x) получаются следующим образом. Рас-
смотрим многочлен P(x) вида (1). Разложим каждый коэффициент многочлена ai, i = 1, ...,n, по
базису {ci}i∈I . Тогда

P(x) =

(
∑
i∈I

cian,i

)
xn +

(
∑
i∈I

cian−1,i

)
xn−1 + · · ·+

(
∑
i∈I

cia1,i

)
x+

(
∑
i∈I

cia0,i

)
=

= ∑
i∈I

ci(an,ixn +an−1,ixn−1 + ...+a1,ix+a0,i),

где ak,i ∈ R0,k = 0, ...,n, i ∈ I.
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Таким образом, bi(x) = an,ixn + an−1,ixn−1 + ...+ a1,ix+ a0,i в разложении (2). Отметим, что
почти все эти многочлены равны 0. В обозначениях выше имеет место следующая теорема.

Теорема 2.1. 1. Многочлен h(x) ∈ R0[x] является правым делителем многочлена P(x) ∈ R[x]
тогда и только тогда, когда h(x) является общим правым делителем многочленов bi(x), i ∈ I.

2. Многочлен h(x) ∈ R0[x] является правым делителем наибольшей степени из R0[x] много-
члена P(x) ∈ R[x] тогда и только тогда, когда h(x) = НОПД(bi(x), i ∈ I).

3. Элемент α ∈ R0 является корнем многочлена P(x) ∈ R[x] тогда и только тогда, когда α –
общий корень многочленов bi(x), i ∈ I.

4. Если многочлен h(x) ∈ R0[x] является правым делителем наибольшей степени из R0[x]
многочлена P(x) ∈ R[x], то любой корень из R0 многочлена P(x) является корнем многочлена h(x).

Доказательство. 1. Если h(x) делит справа каждый многочлен bi(x), то h(x) делит спра-
ва и P(x).

Пусть теперь P(x) = G(x)h(x) для некоторого многочлена G(x) ∈ R[x]. Для многочлена G(x)
существует разложение вида (2):

G(x) = ∑
i∈I

cidi(x),

где di(x) из R0[x]. Тогда

P(x) =

(
∑
i∈I

cidi(x)

)
h(x) = ∑

i∈I
cidi(x)h(x).

Таким образом, bi(x) = di(x)h(x) для всех i ∈ I. Следовательно, h(x) является общим делителем
многочленов bi(x), i ∈ I.

2. Следует из 1.
3. Следует из 1, так как α – корень многочлена P(x) тогда и только тогда, когда x−α –

правый делитель многочлена P(x).
4. Следует из 2 и 3. Действительно, если α ∈ R0 – корень многочлена P(x), то x−α является

общим правым делителем многочленов bi(x), i ∈ I. Тогда x−α является правым делителем их
наибольшего правого общего делителя. □

Замечание 2.2. Если в условиях предыдущей теоремы рассмотреть алгебру с делением,
то все корни многочлена P(x) можно искать как корни многочленов из подполей алгебры
(например, корень a лежит в подполе F(a)). Таким образом, задача поиска корней многочлена
с коэффициентами в некоторой алгебре сводится к задаче поиска корней в подполях.

Замечание 2.3. Покажем, что утверждение, обратное к пункту 4 из теоремы 2.1, неверно,
т. е. если любой корень из R0 многочлена P(x) будет корнем и многочлена h(x) ∈ R0[x], делящего
справа P(x), то не обязательно h(x) – многочлен наибольшей степени из R0[x], делящий справа
P(x). Например, пусть P(x) = (x2+1)x ∈H[x], гдеH – алгебра гамильтоновых кватернионов. Тогда
любой корень многочлена P(x) из R является корнем многочлена h(x) = x. Но h(x) не является
многочленом наибольшей степени из R[x], делящим справа P(x).

В качестве следствия в обозначениях теоремы 2.1 получаем
Теорема 2.4. Всякий многочлен P(x) ∈ R[x] может быть однозначно представлен в виде

P(x) = cG(x)H(x),

где c ∈ R∗ – старший коэффициент многочлена P(x); H(x) – унитарный многочлен с коэффи-
циентами в подкольце с делением R0; G(x) ∈ R[x] – унитарный многочлен, не имеющий правых
неконстантных делителей из R0[x]. Более того, H(x) является наибольшим общим правым
делителем многочленов bi(x), i ∈ I.

Теорема 2.5. Пусть R – кольцо с делением, P(x) ∈ R[x]. Предположим, что c не является
центральным элементом иP(c) ̸= 0. Тогда в классе сопряженности [c] бесконечно много элементов,
не являющихся корнями многочлена P(x).

Доказательство. Теорема Херстейна ([2, теорема 13.26]) говорит, что множество [c] является
бесконечным. Таким образом, если P(x) либо не имеет корней в [c], либо имеет конечное число
корней в [c], то в классе сопряженности [c] бесконечно много элементов, не являющихся корнями
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многочлена P(x). Предположим, что P(x) имеет бесконечно много корней в [c]. Из [4, предложение 2]
следует, что множество всех y ∈ R∗ c условием P(ycy−1) = 0 совпадает с множеством

V := {y ∈ R∗|
n

∑
i=0

aiyci = 0}.

Тогда V – бесконечное множество, поскольку P(x) имеет бесконечно много корней в классе
сопряженности [c]. Заметим, что V ∪{0} является правым векторным пространством над кольцом
с делением R(c). Так как c не является корнем многочлена P(x), то 1 /∈V . Тогда 1+y /∈V для любого
y ∈V , следовательно, (1+ y)c(1+ y)−1 не является корнем многочлена P(x) для всякого y ∈V .

Пусть y1,y2 ∈ V , y1 ̸= y2. Покажем, что

(1+ y1)c(1+ y1)
−1 ̸= (1+ y2)c(1+ y2)

−1.

Действительно, если (1+ y1)c(1+ y1)
−1 = (1+ y2)c(1+ y2)

−1, то

(1+ y2)
−1(1+ y1)c = c(1+ y2)

−1(1+ y1).

Следовательно, z = (1+ y2)
−1(1+ y1) ∈ R(c) и 1+ y1 = (1+ y2)z. Тогда

1 = (y2z− y1)(1− z)−1.

Что противоречит тому, что 1 /∈ V .
Таким образом, получаем бесконечно много различных элементов вида (1+ y)c(1+ y)−1,

принадлежащих [c] и не являющихся корнями многочлена P(x). □

3. Сферические корни многочленов над алгебрами обобщенных кватернионов

Пусть Q – алгебра обобщенных кватернионов с делением над полем F . Нам потребуется
следующая

Лемма 3.1 [2, лемма 16.17]. Пусть Q является алгеброй обобщенных кватернионов с деле-
нием над центром F , и пусть B – класс сопряженности алгебры Q с минимальным многочленом
λ(x) над F . Если P(x) ∈ Q[x] имеет два корня в B, тогда P(x) ∈ Q[x]λ(x) и P(x) обращается в 0 на
любом элементе из B.

Напомним, что корень q многочлена P(x) называется сферическим, если q не принадлежит
центру алгебры и любой элемент d ∈ [q] также является корнем многочлена P(x). В качестве
следствия леммы 3.1 получаем

Лемма 3.2. Если многочлен P(x) вида (1) с коэффициентами в Q имеет сферические корни
c1, . . . ,cm (m ⩽ n), лежащие в различных классах сопряженности, то P(x) делится на произведение
минимальных многочленов этих корней.

Доказательство. Докажем индукцией по числу классов сферических корней. Пусть fi(x) –
минимальный многочлен элемента ci, 1 ⩽ i ⩽ m. Из леммы 3.1 следует, что P(x) делится на f1(x).
Предположим, что утверждение верно для k корней. Тогда

P(x) = P1(x) fk(x) . . . f1(x)

для некоторого P1(x) ∈ Q[x].
Докажем утверждение для k+1 корней. Так как fk(x) . . . f1(x) ∈ F [x], то

P(b) = P1(b) f1(b) . . . fk(b)

для любого b ∈ Q. Любой элемент из класса [ck+1] является корнем многочлена P(x), но не является
корнем многочлена fk(x) . . . f1(x), поскольку c1, . . . ,ck+1 лежат в различных классах сопряженности.
Тогда ck+1 является сферическим корнем многочлена P1(x). Из леммы 3.1 следует, что P1(x) =
= P2(x) fk+1(x) для некоторого многочлена P2(x) ∈ Q[x]. Откуда

P(x) = P2(x) fk+1(x) fk(x) . . . f1(x). □

Далее получим оценку для количества различных классов сферических корней в зависимости
от степени многочлена.
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Теорема 3.3. Многочлен

P(x) = xn +an−1xn−1 + · · ·+a1x+a0

с коэффициентами в алгебре обобщенных кватернионов Q над центром F имеет не более n/2
различных классов сопряженности сферических корней. Если степень многочлена P(x) четная
и есть n/2 различных классов сопряженности сферических корней, то все коэффициенты
многочлена лежат в центре. Если же степень n нечетная и есть (n−1)/2 различных классов
сопряженности сферических корней, то все коэффициенты лежат в одном подполе алгебры Q.

Доказательство. Пусть степень многочлена P(x) четная. По лемме 3.2 многочлен P(x)
делится на произведение минимальных многочленов своих сферических корней. Поскольку степень
каждого такого минимального многочлена равна 2, максимальное количество множителей в таком
произведении равно n/2. Поэтомуи различных классов сопряженности сферических корней неможет
быть больше, чем n/2. Если же различных классов сопряженности сферических корней ровно n/2,
то P(x) равняется произведению многочленов из F [x], а значит коэффициенты P(x) лежат в F .

Пусть теперь степень многочлена P(x) нечетная. Аналогично, по лемме 3.2 получаем, что коли-
чество квадратных множителей (минимальных многочленов) многочлена P(x), а значит и различных
классов сопряженности сферических корней, не превосходит (n−1)/2. Если предположить, что
различных классов сопряженности сферических корней ровно (n−1)/2, получим, что P(x) имеет
вид P(x) = (x− a) f (x), где f (x) ∈ F [x] – произведение минимальных многочленов сферических
корней многочлена P(x), a ∈ Q. Тогда коэффициенты многочлена P(x) лежат в подполе F(a). □

Для многочленов третьей степени получаем простое достаточное условие отсутствия сфе-
рических корней.

Следствие 3.4. Если коэффициенты многочлена P(x) = x3 +ax2 +bx+ c ∈ Q[x] не лежат
в одном подполе алгебры Q, то у многочлена P(x) не может быть сферических корней.

Доказательство.Пусть многочлен P(x) имеет сферический корень. Тогда, согласно лемме 3.1,
он имеет видP(x) = (x−a)λ(x), где λ(x) – многочлен второй степени надF (минимальный многочлен
этого сферического корня). Отсюда следует, что P(x) ∈ F(a)[x], т. е. все коэффициенты многочлена
P(x) лежат в подполе F(a). □

4. Сферические корни многочленов из алгебры гамильтоновых кватернионов

Известно (см. [2, теорема 16.14]), что всякий неконстантный многочлен с коэффициентами
в алгебре гамильтоновых кватернионов H имеет корень в H. Кроме того, корень является либо
изолированным, либо сферическим. В этом разделе применим результаты предыдущих разделов для
анализа существования сферических корней некоторых типов многочленов с коэффициентами в H.

Лемма4.1. Если x1 – сферический кореньмногочленаP(x)∈H[x], то в каждоммаксимальном
подполе алгебры H лежит корень многочлена P(x) из класса сопряженности [x1].

Доказательство. Элемент x1 лежит в максимальном подполеR(x1) алгебрыH. Все максималь-
ные подполя алгебры H изоморфны полю комплексных чисел C. Тогда по теореме Сколема–Нетер
[7, § 12.6] все максимальные подполя сопряжены, т. е., если K – максимальное подполе, то K =
= gR(x1)g−1 для некоторого g ∈ H,g ̸= 0. Тогда gx1g−1 – корень многочлена P(x) из класса [x1],
лежащий в K. □

Замечание 4.2. Если многочлен P(x) ∈H[x] не имеет корней в некотором максимальном
подполе K ⊂H, то ввиду леммы 4.1 этот многочлен не имеет сферических корней. Аналогичный
подход для анализа существования сферических корней многочленов можно использовать в случае
алгебр кватернионов с делением, в которых имеется лишь конечное число классов изоморфности
максимальных подполей. Например, в случае кватернионных алгебр над локальными полями.

В общем случае нахождение корней многочленов с коэффициентами в алгебре гамильто-
новых кватернионов является сложной задачей (см., например, [8–12]), однако для многочленов
специального вида можно легко получить оценку для числа классов сферических корней.

Теорема 4.3. Рассмотрим такой многочлен

P(x) = xn +an−1xn−1 + ...+akxk + ...+amxm + ...+a1x+a0 ∈H[x],
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что все его коэффициенты, кроме, возможно, двух ak и am, лежат в R (возможен случай m = 0).
Тогда

1. Если один из коэффициентов ak или am из R, а второй – нет, то многочлен P(x) не имеет
сферических корней;

2. Если оба коэффициента ak и am не из R, но лежат в одном подполе, то многочлен P(x)
имеет не более (k−m)/2 различных классов сферических корней (в частности, если k = m+1,
то P(x) не имеет сферических корней);

3. Если оба коэффициента ak и am не лежат в одном подполе, то многочлен P(x) не имеет
сферических корней.

Доказательство. 1. Пусть am /∈ R. Найдем корни многочлена P(x), лежащие в максимальном
подполе K, K ̸= R(am). В качестве базиса алгебры H над полем K возьмем 1 и am. Тогда

P(x) = 1(xn +an−1xn−1 + ...+akxk + ...+am−1xm−1 +am+1xm+1 + ...+a1x+a0)+amxm =

= 1b1(x)+amb2(x),

где b1(x) и b2(x) из R[x]⊂ K[x]. Поскольку b2(x) = xm либо не имеет корней, если m = 0, либо имеет
единственный корень, равный 0, если m ̸= 0, то и многочлен P(x), согласно теореме 2.1, в поле K
не имеет других корней, кроме, возможно, 0. Следовательно, по лемме 4.1 в этом случае у P(x)
нет сферических корней. Аналогичное рассуждение, если ak /∈ R.

2. Найдем корни многочлена P(x) в максимальном подполе K ̸= R(am). В качестве базиса H
над K можно взять 1 и am. Так как ak ∈ R(am), то ak = u+ vam, где u,v ∈ R. Тогда при разложении
многочлена P(x) по базису 1 и am получаем

b1(x) = xn +an−1xn−1 + ...+ak+1xk+1 +uxk +ak−1xk−1 + ...+am+1xm+1 +am−1xm−1 + ...+a1x+a0,

b2(x) = xm + vxk. Имеем, b2(x) = xm + vxk = xm(1+ vxk−m). Таким образом, корни многочлена P(x)
в поле K – это либо 0, либо корни многочлена xk−m +1/v. Если у многочлена xk−m +1/v есть корень
в R, то этот корень не является сферическим корнем многочлена P(x). Поскольку xk−m +1/v ∈R[x],
то для всякого корня a этого многочлена, не лежащего в R, сопряженный кватернион a также
является корнем. Поскольку a и a принадлежат одному классу сопряженности, то корней у данного
многочлена, лежащих в разных классах сопряженности, не более (k−m)/2. Таким образом, P(x)
имеет не более (k−m)/2 различных классов сферических корней.

3. Будем искать корни многочлена P(x) в поле R(am). Возьмем базис 1 и ak алгебры H над
полемR(am). ТогдаP(x) = 1b1(x)+akb2(x), где b2(x) = xk и b1(x) – некоторый многочлен изR(am)[x].
Поскольку b2(x) имеет только корень 0, то в поле R(am) у P(x) не может быть других корней, кроме,
возможно, 0. Тогда согласно лемме 4.1 у P(x) нет сферических корней в этом случае. □

Далее рассмотрим случаймногочленов третьей степени. Отметим, что длямногочленов второй
степени явные формулы для нахождения корней в случае алгебры гамильтоновых кватернионов
получены в [9].

Следствие 4.4. Многочлен

P(x) = x3 +ax2 +bx+ c ∈H[x]

в зависимости от коэффициентов имеет
1. Не более одного класса сферических корней, если либо а) a,b,c ∈ R, либо б) a,c /∈ R,b ∈

∈ R,a ∈ R(c), либо в) a,b,c /∈ R,a,c ∈ R(b);
2. Только изолированные корни в остальных случаях.
Доказательство. 1. Оценка для количества классов сферических корней получается из

теоремы 3.3.
2. Если не выполнены условия на коэффициенты многочлена из первого пункта, то возможны

следующие случаи:
а) один коэффициент не лежит в поле R, а остальные коэффициенты принадлежат R;
б) a ∈ R, b,c /∈ R, b ∈ R(c);
в) c ∈ R, a,b /∈ R, a ∈ R(b);
г) коэффициенты многочлена не лежат в одном подполе алгебры H.
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В случае а) отсутствие сферических корней следует из пункта 1 теоремы 4.3. В случае б) и в)
отсутствие сферических корней следует из пункта 2 теоремы 4.3. Наконец, отсутствие сферических
корней в случае г) получается из следствия 3.4. □

Пример 4.5. Рассмотрим несколько примеров кубических многочленов с коэффициентами,
удовлетворяющими условиям из пункта 1 следствия 4.4.

Многочлен x(x2 −1) не имеет сферических корней, а многочлен x(x2 +1) имеет сферический
корень i.

У многочлена
x3 − ix2 − x+ i = (x− i)(x2 −1)

нет сферических корней, а у многочлена

x3 − ix2 + x− i = (x− i)(x2 +1)

i является сферическим корнем.
Многочлен

x3 +(2− i)x2 +(1−2i)x− i = (x− i)(x2 +2x+1) = (x− i)(x+1)2

не имеет сферических корней, так как многочлен (x+1)2 имеет корни в R, а у многочлена

x3 +(1− i)x2 +(1− i)x− i = (x− i)(x2 + x+1)

есть сферический корень – это корень многочлена x2 + x+1.
Таким образом, в случае выполнимости условий из пункта 1 следствия 4.4 требуется более

тонкое рассуждение для ответа на вопрос о существовании сферического корня у кубического
многочлена.

Работа выполнена в рамках НИР «Разработка алгебро-геометрических и представленческих
методов исследования конечнопорожденных групп, конечномерных алгебр и квадратичных форм»,
государственной программы научных исследований «Конвергенция–2025», № ГР 20212390.
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