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Abstract. A multi-server retrial queueing system with heterogeneous servers is analysed.
The service times have a phase-type distribution with different irreducible representations.
Customer arrival to the system is defined by a Markovian arrival process. When all servers are
busy at an arrival moment, the customer moves to the virtual place called orbit to retry to reach
the servers in exponentially distributed periods of time. The total retrial rate from the orbit
infinitely increases when the number of customers residing in orbit grows. Upon arrival or
retrial from the orbit, a customer occupies the server having the minimal number among all idle
servers, if any. The dynamics of the system states is described by a multidimensional Markov
chain having the special block structure of the infinitesimal generator. The explicit expression
for this is presented. Ergodicity condition is derived. The expressions for computation of the
key performance characteristics of the system are given. Numerical results, which highlight
dependencies of these measures on the mean arrival rate for the system and its particular
cases, when the arrivals are described by the stationary Poisson process or (and) service times
follow the exponential distribution, are presented.
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Аннотация. Анализируется многолинейная система обслуживания с повторными вы-
зовами и неоднородными серверами. Длительности обслуживания имеют фазовое
распределение с различными неприводимыми представлениями. Поступление запро-
сов в систему определяется марковским процессом поступления. Когда все серверы
заняты в момент поступления, запрос помещается в виртуальное место, называемое
орбитой, чтобы повторить попытку достичь серверов через экспоненциально распре-
деленные периоды времени. Общая скорость повторных вызовов с орбиты бесконечно
увеличивается с ростом числа запросов, находящихся на орбите. При поступлении
или повторных вызовах с орбиты запрос занимает сервер с минимальным номером
среди всех свободных серверов, если таковые имеются. Динамика состояний системы
описывается многомерной цепью Маркова, имеющей специальную блочную структу-
ру инфинитезимального генератора. Представлено явное выражение для генератора.
Выведено условие эргодичности. Приведены выражения для вычисления ключевых
характеристик производительности системы. Представлены численные результаты, ил-
люстрирующие зависимости характеристик производительности системы от средней
скорости поступления заявок для системы и ее частных случаев, когда поступления
описываются стационарным пуассоновским процессом или (и) времена обслуживания
подчиняются экспоненциальному распределению.



112 M. Liu, A. N. Dudin

1. Introduction

Retrial queues fit well for the mathematical description of various real-world systems,
telecommunication networks, including the mobile cellular networks, and contact centers in particular.
Analysis of such queues is much more involved than the study of the queues with customer loss or buffers
for waiting in case of the lack of available servers having the same types of arrival and service processes.
This is explained by to the state inhomogeneous behavior of the stochastic process describing the dynamics
of the system. This is the reason why the retrial queues are investigated in a far less extent.

The fundamental results obtained for the multi-server retrial queues of the M/M/N type (this
means that the arrivals are described by the stationary Poisson process and service times follow the
exponential distribution) are presented in the well-known [1]. However, due to the significant change
of the character of the flows in communication networks and customers service time during the last
decades, essentially more adequate model of arrivals in the modern real-world systems is the MAP
(Markovian Arrival Process), see, e. g., [2–5]. This process well describes the modern correlated bursty
flows. Essentially more general distribution of service time than the exponential one is Phase-Type (PH)
distribution, see, e. g., [5; 6] which allows to fit not only the mean service time, but also higher moments,
including the variance. Taking these circumstances into account, the BMAP/PH/N type retrial queue
was studied in [7]. But only the aspects relating to the ergodicity condition of the system are considered
there. More comprehensive analysis of the BMAP/PH/N type retrial queue was given [8] where, besides
to the proof of the sufficient condition for the ergodicity in cases of the classical retrial policy and the
constant retrial rate, the effective algorithms for the computation of the stationary distribution of the
system states and the main performance measures were presented.

Essential assumption imposed in [1] and [8] is that the servers are identical, while they can be
heterogeneous in some real-world system. In this paper, we significantly weaken this restrictive assumption.
In the papers [9] and [10], this assumption was already weakened and the servers are not identical. In that
papers, it was supposed that service times have the exponential distributions with different parameters. In
the present paper, we suppose that service times have the Phase-Type distributions with different parameters.

Generalization from the case of the exponential distribution to the case of the Phase-Type distribution
has the practical importance because the former one allows to fit only the average value of the real service
time while the latter one allows to fit simultaneously many initial moments of the distribution of the
real service time, and the variance of this time in particular. From the theoretical point of view, this
generalization leads to the necessity of construction and analysis of the multi-dimensional continuous-time
Markov chain with more involved structure of the blocks on the infinitesimal generator. Here this analysis
is successfully implemented.

The outline of the presentation is as follows. The mathematical model under study is described
in Section 2. The random process describing the dynamics of the considered system is introduced in
Section 3 as the multi-dimensional continuous-time Markov chain and the explicit expression for the
generator of the chain is presented there. The sufficient condition for the ergodicity of this Markov chain is
derived in Section 4. Formulas for computation of the values of the key performance measures of the
system are given in Section 5. The illustrative numerical results are presented in Section 6. Section 7
contains some concluding remarks.

2. The mathematical model

We consider an N-server queueing system. The primary customers arrive to the system according
to a MAP (Markovian Arrival Process). We denote the directing process of the MAP by νt , t ⩾ 0.
The state space of the irreducible continuous-time Markov chain νt is {0,1, . . . ,W}. The intensities
of transitions of the process νt are defined as the entries of the square matrices D0 and D1 of size
W̄ =W +1. The matrix D0 contains the intensities of transitions at which customers do not arrive. The
matrix D1 contains the intensities of transitions at which customer arrives to the system. The matrix
D(1) = D0 +D1 is an infinitesimal generator of the process νt . The vector θ that is the unique solution to
the system of equations θD(1) = 0, θe = 1 defines the stationary distribution of the process νt . Here
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and thereafter e is a column vector of an appropriate size consisting of 1’s and 0 is a row vector of
an appropriate size consisting of zeroes.

The average (fundamental) arrival rate λ of the MAP is defined as λ= θD1e . The coefficient cvar of
variation of intervals between customer arrivals is defined by cvar = 2λθ(−D0)

−1e−1. The coefficient of
correlation cvar of successive intervals between arrivals is computed as ccor = (λθ(−D0)

−1D1(−D0)
−1e−

− 1)/c2
var.
The servers are independent of each other. The service time of a customer by n-th server, n = 1,N,

is governed by the continuous-time Markov chain (directing process) η(n)t . This process has an absorbing
state 0 and the set

{
1, · · · ,M(n)

}
of transient states. The initial state of the process η(n)t at the epoch of

starting the service is chosen among the transient states with the probabilities defined by the entries
of the row-vector β(n) = (β

(n)
1 , ...,β

(n)
M(n)). The transitions of the process η

(n)
t inside the set of transient

states do not lead to service completion and are defined by the entries of the irreducible matrix S(n) of
size M(n). The diagonal entries of this matrix are negative. Their modules define the rates of the exit of
the process η(n)t from its transient states. The non-diagonal entries define the intensities of transitions
inside the set of the transient states. The rates of transition to the absorbing state, which lead to service
completion, are defined by the entries of the column vector S(n)0 = −S(n)e.

The mth initial moment b(n)m of the distribution of the service time in the nth server is computed as

b(n)m = m!β(n)((−S)(n))−me, m ⩾ 1.

The value µn defined by the formula µ−1
n = β(n)(−S(n))−1e, n = 1,N, is the mean service rate in the nth

server. The value b(n)2 −(b(n)1 )2

(b(n)1 )2
is the squared coefficient of variation of the service time in the nth server.

If the arriving customer meets all servers being idle, the customer enters the first server to receive
the service. If the first server is busy, then the customer enters the idle server with the minimum number.
If all servers are busy, then the customer goes to the virtual place called orbit. Capacity of the orbit is
unlimited. These customers are said to be repeated customers. These customers try their luck later until
they will be served. We assume that the total flow of retrials from the orbit is such that the probability of
generating the retrial attempt in the small interval (t, t +∆t) is equal to αi∆t +o(∆t) when the orbit size
(the number of customers on the orbit) is equal to i, i > 0, αi = 0. We do not fix the explicit dependence
of the intensities αi on i. We assume the infinitely increasing retrial rate: lim

i→∞
αi = ∞. This holds true, in

particular, for classic retrial strategy where αi = iα and the linear strategy αi = iα+γ.
Our goal is to obtain the sufficient condition for existence of stationary state distribution of the

system, this distribution itself, and the expressions for the key performance measures of the system
via this stationary distribution.

3. The random process defining the dynamics of the system

Let, at the moment t, t > 0,
it be the number of customers on the orbit, it ⩾ 0;
η
(n)
t be the state of the underlying process of the service in the nth server, n = 1,N. This state

belongs to the set {1, . . . ,M(n)} if this server is busy and is assumed to be 0 if the server is idle;
νt be the state of the directing process of the MAP, νt = 0,W .

Let R be the state space of the process {η(1)t , . . . ,η
(N)
t } defining the phases of service in all

servers of the system:

R= {(r(1), . . . ,r(N)) : r(n) = 0,M(n), n = 1,N}.

Consider the continuous time multi-dimensional process

ξt = {it ,η
(1)
t , . . . ,η

(N)
t ,νt}, t ⩾ 0.

It is easy to see that this process is an irreducible continuous-time Markov chain.
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Let us define the stationary probabilities of this Markov chain as the limits

π(i,r(1), . . . ,r(N),ν) = lim
t→∞

P{it = i,(η(1)t , . . . ,η
(N)
t ) = (r(1), . . . ,r(N)) ∈ R,νt = ν},

i ⩾ 0, ν= 0,W .

Sufficient condition for existence of these limits will be presented in Theorem 4.1 below.
Let us enumerate the states of the chain ζt , t ⩾ 0, in the lexicographic order and form the row-vector

π(i,r(1), . . . ,r(N)) = (π(i,r(1), . . . ,r(N),0), . . . ,π(i,r(1), . . . ,r(N),W ))

of the stationary probabilities π(i,r(1), . . . ,r(N),ν), and the row-vectors πi, consisting of the vectors
π(i,r(1), . . . ,r(N)), i ⩾ 0.

Note that the size of the vectors πi is equal to K = (W +1)M̂ where M̂ =
N
∏

n=1
(M(n)+1).

Define also the infinite-dimensional probability vector π = (π0,π1,π2, . . .).
For the use in the sequel, introduce the following notation:
I is an identity matrix of appropriate dimension (when needed, the dimension is identified with

a subscript);
On×n′ denotes zero matrices with n rows and n′ columns;⊗ and⊕ are the symbols of the Kronecker

product and sum of matrices, see, e. g., [11];

Jn =

(
O1×1 O1×M(n)

OM(n)×1 IM(n)

)
,n = 1,N;

m⊗
l=r

Jl = Jr ⊗ Jr+1 ⊗ ·· ·⊗ Jm, r ⩽ m, m = 1,N; J =
N⊗

l=1
Jl;

f(n) is column vector of size (M(n)+1) having the first entry equal to 1 and other entries equal to 0;
δi, j is Kronecker delta. It is equal to 1 if i = j and 0, otherwise;
Λ is the diagonal matrix with diagonal entries defined by the diagonal entries of the matrix D0;

Gn =

(
O1×1 O1×M(n)

S(n)0 S(n)

)
,n = 1,N;

G =
N
∑

n=1

In−1
∏

l=1
(M(l)+1)

⊗Gn ⊗ I N
∏

l=n+1
(M(l)+1)

;

Γn =
n−1⊗
l=1

Jl ⊗Gn ⊗
N⊗

l=n+1
Jl, n = 1,N;

Hn is the diagonal matrix with the diagonal entries coinciding with the corresponding diagonal
entries of the matrix Gn;

H =
N
∑

n=1

(
n−1⊗
l=1

Jl ⊗Hn ⊗
N⊗

l=n+1
Jl

)
;

C =−(H ⊕Λ)−1. The matrix H ⊕Λ is nonsingular as the irreducible sub-generator;

Bn =

(
O1×1 β(n)

OM(n)×1 OM(n)×M(n)

)
,n = 1,N;

Ĩβ =
N
∑

k=1

k−1⊗
l=1

Jl ⊗Bk ⊗ I N
∏

l=k+1
(M(l)+1)

;

Ī = (IM̂ − J);

the product of numbers
b
∏
l=a

cl or matrices
b
∏
l=a

Cl is supposed to be equal to 1 or I, correspondingly,

if b < a. The same relates to the Kronecker products.
The following statements hold true:
Lemma 3.1. If the vectorπ of stationary probabilities exists, then it satisfies the system of equilibrium

equations

πQ = 0,πe = 1
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where 0 is the infinite-size row-vector consisting of zeroes and the matrix Q, which is the infinitesimal
generator of the chain ζt , t ⩾ 0, has the following structure:

Q =


Q00 Q01 O O · · ·
Q10 Q11 Q12 O · · ·
O Q21 Q22 Q23 · · ·
O O Q32 Q33 · · ·
...

...
...

... . . .


where the blocks Qi, j, i, j ⩾ 0, j = {max{0, i−1} , i, i+1} , of the matrix Q have size K and are defined
as follows:

Qi,i+1 = J⊗D1, Qi,i−1 = αiĨβ⊗ IW̄ ,

Qi,i = IM̂ ⊗D0 −αiĪ ⊗ IW̄ +G⊗ IW̄ + Ĩβ⊗D1.

Proof. The presented form of the blocks Qi, j is easy explained if the intuitive meaning of some
denotations is taken into account. In particular:

the matrix Jn is used to distinguish the residing of the process η
(n)
t in the absorbing and transient

states during which service is not provided and provided, correspondingly;
the matrix J highlights the states of the vector process ηt = {η(1)t ,η

(2)
t , . . . ,η

(N)
t } at which all

servers are busy;
the matrix Ī highlights the states of the vector process ηt at which not all servers are busy;
the matrix Gn describes transition rates of the process η(n)t in its state space;
the matrix G contains the rates of all possible transitions of the process ηt ;
the matrix Bn is used to instal the initial state of the underlying process η

(n)
t at the service beginning

moment in the nth server;
the matrix Ĩβ describes transition rates of the process ηt at the moment of service beginning at

the available server having the minimal number. Here, the matrix Bk defines the installment of service

namely in the kth server, k = 1,N. This matrix is preceded by the Kronecker product
k−1⊗
l=1

Jl that guarantees

that the previous k − 1 servers are busy and service cannot start in these servers. Additionally this
matrix is multiplied from the right in Kronecker manner by the Kronecker product I N

∏
l=k+1

(M(l)+1)
that

shows that no transitions occur in underlying processes of customers service in the servers having the
numbers k + 1,k + 2, . . . ,N.

The increase in the number of customers in orbit occurs at the moment of a customer arrival to
the system (with the rates defined by the entries of the matrix D1) when all servers are busy. Therefore,
we evidently obtain that Qi,i+1 = J ⊗D1.

The decrease in the number of customers in orbit occurs at the moment when one of the customers
staying in orbit retries to enter the service (with the rate αi if i customers stay in the orbit) when there are
available servers and the server with the minimal number is occupied. The transition rates of the process
ηt in this scenario are defined by the matrix Ĩβ. Any transition in the underlying process of arrivals is
not possible. Therefore, we evidently obtain that Qi,i−1 = αiĨβ⊗ IW̄ .

The diagonal entries of the diagonal blocks Qi,i are negative. Their modules define the exit rate
of the Markov chain ζt , t ⩾ 0, from the corresponding states. The non-diagonal entries of the diagonal
blocks Qi,i are non-negative. They define the rates of the Markov chain ζt transitions that maintain the
value of the number i of customers in the orbit. There exist four scenarios of such exits or transitions.

One scenario corresponds to the exit or transition of the underlying process of arrivals the rates
of which are defined by the matrix D0. No transition of the process ηt are allowed in this scenario. This
scenario explains the first summand IM̂ ⊗D0 in the expression for Qi,i.

The second scenario of the exit from the current state due to successful retrial of a customer from
the orbit. This scenario explains the second summand −αiĪ ⊗ IW in the expression for Qi,i.
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The third scenario corresponds to the exit or transition of the underlying process ηt of service, the
rates of which are defined by the matrix G. No transition of the process νt are allowed in this scenario.
This scenario explains the third summand in the form G⊗ IW̄ .

The last scenario of transition of the Markov chain ζt corresponds to the new customer arrival, the
rates of which are defined by the matrix D1 and an immediate admission of this customer for service.
Transitions probabilities of the process ηt at this arrival moment are defined by the matrix Ĩβ. The proof
of the formula for the block Qi,i and of Lemma 3.1 is finished. □

Lemma 3.2. Markov chain ξt belongs to the class of asymptotically quasi-Toeplitz Markov chains,
see [12].

Proof. According to the definition of the asymptotically quasi-Toeplitz Markov chains given in [12],
we have to prove the existence of the limits

Y0 = lim
i→∞

Ri
−1Qi,i−1, Y2 = lim

i→∞
Ri

−1Qi,i+1, Y1 = lim
i→∞

Ri
−1Qi,i + I

where Ri is a diagonal matrix with diagonal entries defined as the moduli of the corresponding diagonal
entries of the matrix Qi,i, i ⩾ 0. It can be easily verified that Ri = αiĪ −H ⊕Λ.

Then, by direct calculations with account of the imposed above assumption that lim
i→∞

αi = ∞, it
can be verified that

Y0 = Ĩβ⊗ IW̄ , Y2 =C(J⊗D1), Y1 =C(
N

∑
k=1

Γk ⊕D0)+ I.

Lemma 3.2 is proven. □

4. Ergodicity condition

Theorem 4.1. (i) The Markov chain ζt is ergodic if the inequality

λ<
N

∑
k=1
µk (1)

is fulfilled.
(ii) The Markov chain ζt is non-ergodic if inequality (1) has an opposite sign.
Proof. (i) As follows from [12], the sufficient condition for ergodicity of the AQTMC ξn, n ⩾ 1,

is the fulfillment of the inequality

xY2e< xY0e, (2)

where x is the unique solution of the system

x(Y0 +Y1 +Y2) = x, xe= 1. (3)

Calculating the vector x from system (3) and substituting the expression obtained into inequality (2)
after some algebra we get inequality (1).

Statement (ii) of the theorem follows from (1) and the results of [12]. □
Remark 4.2. Condition for ergodicity is easy tractable: the average arrival rate λ is less than the

sum of the mean service rates in all servers of the system.
The numerically stable algorithm for computation of vectors πi, i ⩾ 0, can be found in [12].

5. Performance measures

As soon as the vectors πi, i ⩾ 0, have been calculated, we are able to find various performance
measures of the system.

Let us introduce the following denotations:
Rk, k = 1,N, is the set of the states {r(1), . . . ,r(N)} ∈ R of the process {η(1)t , . . . ,η

(N)
t } such that

r(l) > 0 for l = 1,k−1, r(k) = 0.
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For the fixed set (r(1), . . . ,r(N)), (r(1), . . . ,r(N)) ∈ R, the value l(r(1), . . . ,r(N)) defines the number
of states having nonzero value of the components r(n), n = 1,N:

l(r(1), . . . ,r(N)) =
N

∑
n=1

(1−δr(n),0).

The average number Lorbit of customers in the orbit is computed by
Lorbit =

∞

∑
i=1

iπie.

The probability Pempty−orbit that the orbit is empty at an arbitrary moment is computed by

Pempty−orbit = π0e.

The average number Nbusy of busy servers at an arbitrary moment is computed by

Nbusy =
∞

∑
i=0

∑
(r(1),...,r(N))∈R

l(r(1), . . . ,r(N))π(i,r(1), . . . ,r(N))e.

The probability P(n)
0 that the nth server, n = 1,N, is idle at an arbitrary moment is computed by

P(n)
0 =

∞

∑
i=0

πi(
n−1
⊗

r=1
eM(r)+1 ⊗ f(n)⊗

N
⊗

r=n+1
eM(r)+1 ⊗eW̄ ).

The row vector defining the stationary probability distribution pn of the status of the nth server at an
arbitrary moment is given by formula

pn =
∞

∑
i=0

πi((
n−1
⊗

r=1
eM(r)+1 ⊗ IM(n)+1 ⊗

N
⊗

r=n+1
eM(r)+1)⊗eW̄ ), n = 1,N.

The output rate φn from the nth server is defined by

φn = pn

(
0

S(n)0

)
, n = 1,N.

Relation λ=
N
∑

n=1
φn can be used for control of accuracy of computation of the stationary distribution

of the system states.
The probability P(serv)

0 that all servers are idle at an arbitrary moment is computed by

P(serv)
0 =

∞

∑
i=0

πi(
N
⊗

n=1
f(n)⊗eW̄ ).

The probability Pimm that an arbitrary customer will succeed to enter the service immediately
upon arrival is computed by

Pimm =
1
λ

∞

∑
i=0

πi
(
Ĩβ⊗D1

)
e.

The share of customers, which start service immediately upon arrival by the kth server, is computed by

Zk =
1
λ

∞

∑
i=0

∑
(r(1),...,r(N))∈Rk

(π(i,r(1), . . . ,r(N))⊗D1)e, k = 1,N.

6. Numerical results

To illustrate the feasibility and outcome of the presented algorithms as well to show the effect of
correlation in arrival process, we briefly consider the following example.

Let initially the MAP-input be characterized by the matrices

D0 =

(
−1.35164 0

0 −0.04387

)
,
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D1 =

(
1.34265 0.00899
0.02443 0.01944

)
.

This arrival process has the coefficient of correlation of two successive intervals between arrivals ccor = 0.2,
and the squared coefficient of variation of the intervals between customer arrivals cvar = 13.4. In the
presented experiment, we will vary the average rate of the MAP λ what is done by multiplying the
matrices D0 and D1 by the same scalar.

In parallel, we present the results of computation for the model where the arrival flow is defined as
the stationary Poisson process with the same intensity. Let us assume that the total number N of servers be
equal to 3 and M(1) = 2,M(2) = 2,M(3) = 3. The retrial rates are defined by α0 = 0, αi = iα, α= 1, i > 0.

We will denote the PH-distributions of service times on three devices as PH(serv)
1 , PH(serv)

2 , PH(serv)
2 .

PH(serv)
1 – the 2nd order hyperexponential distribution with c2

var = 4.55 – is characterized by the
following vector and matrix:

β(1) = (0.1,0.9),S(1) =
(

−2 0
0 −18

)
.

PH(serv)
2 – the 2nd order hyperexponential distribution with c2

var = 4.54 – is characterized by the
following vector and matrix:

β(2) = (0.1,0.9),S(2) =
(

−1.5 0
0 −13.5

)
.

PH(serv)
3 – the 3nd order hyperexponential distribution with c2

var = 4.28 – is characterized by the
following vector and matrix:

β(3) = (
1
15

,
2
15

,
12
15

),S(3) =

−0.2 0 0
0 −0.4
0 0 −2.4

 .

We can calculate the service rates at the corresponding servers as follows:

µ1 = 10,µ2 = 7.5,µ3 = 1

Let us assume that the total number N of servers be equal to 3. When we consider the service time
to be exponential, assuming service rates at the corresponding servers be µ1 = 10,µ2 = 7.5 and µ3 = 1,
correspondingly. Fig. 1 shows the behavior of the value Lorbit depending on the input rate λ. Fig. 2 shows
the behavior of the value Nbusy depending on the input rate λ. Fig. 3 shows the behavior of the value
Pimm depending on the input rate λ. Fig. 4 shows the behavior of the value P(n)

0 depending on the input
rate λ under different numbers of servers. Fig. 5–7 show the behavior of the value P(n)

0 depending on
the input rate λ when n = 1, 2, 3, respectively, with different models.

Fig. 1. Dependence of the number Lorbit on the
input rate λ when N = 3 with different models

Fig. 2. Dependence of the number Nbusy on the
input rate λ when N = 3 with different models
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Fig. 3. Dependence of the number Pimm on the
input rate λ when N = 3 with different models

Fig. 4. Dependence of the number
P(n)

0 on the input rate λ when N = 3

Fig. 5. Dependence of the number P(1)
0 on the

input rate λ when N = 3 with different models
Fig. 6. Dependence of the number P(2)

0 on the
input rate λ when N = 3 with different models

Fig. 7. Dependence of the number P(3)
0 on the input rate λ when N = 3 with different models

7. Conclusion

In this paper, the algorithmic analysis of the MAP/PH/N retrial queue with heterogeneous servers
is presented. The obtained results are numerically illustrated in brief.
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