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Аннотация. В работе доказана эквивалентность двух специальных матричных норм.
Обе нормы возникают в моделях, формулируемых в терминах взаимодействия бинарных
переменных. При этом одна норма связана со взаимодействием этих переменных внутри
одной группы, а другая – со взаимодействием переменных из разных групп. Утверждение
позволяет легко переносить содержательные результаты со второго (более простого)
случая на первый.
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Abstract. The paper proves the equivalence of two special matrix norms. Both norms arise in
models formulated in terms of interactions between binary variables. One norm is associated
with the interaction of these variables within a single group, while the other is related to the
interaction of variables from different groups. The statement allows for an easy transfer of
meaningful results from the second (simpler) case to the first.

1. Введение

Известно, что некоторые NP-трудные задачи (например, задачи коммивояжера, о раскраске
графа, о покрытии множества и др.) могут быть эффективно решены с помощью квантовых
компьютеров. Один из вариантов квантовых компьютеров основан на принципе квантового отжига
[1; 2]. Такой квантовый компьютер называется адиабатическим, а наиболее известными вариантами
исполнения являются компьютеры канадской компании D-Wave. Опуская тонкости, отметим, что
в итоге решение вышеупомянутых задач сводится к минимизации гамильтониана Изинга [3]

−∑
i< j

Ji jsis j −∑
j

h js j,

где si, j ∈ {−1,1} – значения проекций спинов частиц (кубитов); Ji j – энергия взаимодействия части-
цы i с частицей j, а h j – воздействие внешнего поля на частицу j, и нахождению минимизирующих
этот гамильтониан значений бинарных переменных si. Возникающее взаимодействие и динамика
соответствующих процессов частично описываются математическими моделями спиновых стекол
[4; 5]. Несколько более простая ситуация возникает, когда частицы разделены на две группы, и
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взаимодействий внутри групп нет. В таком случае и при отсутствии внешнего поля минимизируется
билинейная форма (вместо квадратичной)

−∑
i, j

Ji jsis′j,

где переменные si и s′j независимы, т. е. представляют спины из разных групп частиц.
Аналогично, в нейросетевых моделях ассоциативной памяти, основанных идейно на теории

Хебба [6], сети Хопфилда [7] и ограниченной машине Больцмана [8], минимизируются, соответ-
ственно, бинарная квадратичная форма

Q(x) := ∑
i< j

wi jxix j, xi ∈ {0,1}, x = (x1,x2, . . . ,xn),

и бинарная билинейная форма

B(y,y′) := ∑
i, j

wi jyiy′j, yi,y′j ∈ {0,1}, y = (y1,y2, . . . ,yn), y′ = (y′1,y
′
2, . . . ,y

′
m).

В других задачах (например, в задачах из геометрии банаховых пространств [9]) оцениваются
распределения абсолютных значений |S| бинарных квадратичных и/или билинейных форм:

S(t) := ∑
i< j

wi jri(t)r j(t) или S(t,s) := ∑
i, j

wi jri(t)r j(s), t ∈ [0,1],

где

ri(t) := (−1)[2
it], i = 1,2, . . . ,n,

– функции Радемахера (конкретная реализация последовательности независимых симметричных
бернуллиевских случайных величин в виде функций на отрезке [0,1] с мерой Лебега в роли
вероятности). При этом для многих задач распределения S и |S| достаточно уметь оценивать
лишь с точностью до фиксированных растяжений области значений. При такой постановке задачу
минимизации последней формы S(t,s) можно рассматривать как задачу нахождения так называ-
емой cut-нормы матрицы W = (wi j)i∈[1,n], j∈[1,m], используемой в аппроксимационных алгоритмах
комбинаторной оптимизации [10]:

∥W∥cut := max
{∣∣∣ ∑

i∈I, j∈J
wi j

∣∣∣ : I ⊂ [1,n],J ⊂ [1,m]
}
,

где через [1,n] здесь и далее обозначен отрезок {1,2, . . . ,n} натурального ряда. Как отмечено в [10],

∥W∥cut ⩽− min
t,s∈[0,1]

S(t,s) = max
t,s∈[0,1]

|S(t,s)|⩽ 4∥W∥cut.

Легко видеть также, что для введенной выше формы B(y,y′), отличающейся от S(s, t) условием
yi,y′j ∈ {0,1}, имеет место точное равенство

max
y∈{0,1}n,y′∈{0,1}m

|B(y,y′)|= ∥W∥cut.

Хотя задача точного вычисления cut-нормы является NP-трудной, равно как и задача хорошей
аппроксимации [11], существуют эффективные алгоритмы вычисления этой нормы с точностью
до некоторого фиксированного множителя [12].

Что касается квадратичных форм S(t) и Q(x), то для них, как легко видеть, справедливы
соотношения

∥W s∥□ = max
x∈{0,1}n

|Q(x)|⩽ max
t∈[0,1]

|S(t)|⩽ 5∥W s∥□,

где матрица W s определяется своими элементами

(W s)i, j :=


wi j/2, при i < j

0 , при i = j
w ji/2, при i > j

,
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а
∥W∥□ := max

{∣∣∣ ∑
i, j∈I

wi j

∣∣∣ : I ⊂ [1,n]
}

– симметричный вариант cut-нормы. Несложно показать также, что

∥W s∥□ ⩽ ∥W s∥cut ⩽ 4∥W s∥□.

Соотношения, аналогичные приведенным, имеют место и в многомерном случае. В частности,
для многомерной симметричной внедиагональной матрицы A справедливы неравенства (точные
определения норм и класса рассматриваемых матриц см. далее)

∥A∥□ ⩽ ∥A∥cut ⩽Cd∥A∥□, (1)

где константа Cd зависит от порядка (кратности) d матрицы A, но не зависит ни от размерности
этой матрицы (длины одномерных строк, столбцов и т. д.), ни от значений элементов матрицы. Это
соотношение не только связывает оценки максимумов абсолютных значений полиномиальных и
полилинейных форм, но позволяет решать и другие задачи, связанные с разделением переменных.
В работе [13] с помощью соотношения (1) осуществлен переход от многодольных гиперграфов
к полным гиперграфам в задаче о разбросе. Однако доказательство правого неравенства в (1) для
многомерного случая, по-видимому, не сводится к простым алгебраическим преобразованиям, как
это имеет место в двумерном случае, и требует более тонкого анализа. В [13] это неравенство
доказывается с помощью обращения к сильному инструменту – известной теореме о декаплинге
случайных величин (см. [14, теорема 3.1.1]). В настоящей работе мы даем прямое доказательство
неравенства (1), без обращения к теореме о декаплинге.

2. Определения и формулировка основного результата

Через [1,n], n ∈ N, будем обозначать множество {1,2, . . . ,n}, состоящее из первых n нату-
ральных чисел. Через π(d) будем обозначать множество всех перестановок множества [1,d] =
= {1,2, . . . ,d}, d ∈ N.

Рассмотрим кубическую матрицу A = (ai1,...id )i1∈I...id∈I , I = [1,n], порядка d с вещественными
или комплексными элементами, и определим для нее две полунормы:

∥A∥cut := max
{∣∣∣∑

i1∈I1

∑
i2∈I2

. . . ∑
id∈Id

ai1i2...id

∣∣∣ : Ik ⊂ [1,n], k = 1,2, . . . ,d
}

и
∥A∥□ := max

{∣∣∣∑
i1∈I

∑
i2∈I

. . . ∑
id∈I

ai1i2...id

∣∣∣ : I ⊂ [1,n]
}
.

Будем называть кубическую матрицу A порядка d симметричной, если для ее элементов
выполняются следующие условия:

ai1i2...id = aiσ(1)iσ(2)...iσ(d)

для произвольной перестановки σ ∈ π(d), и, кроме этого, ai1i2...id = 0 при совпадении хотя бы
двух индексов ik = il , 1 ⩽ k < l ⩽ d.

Оказывается, что для таких матриц справедлива следующая теорема, являющаяся основным
результатом настоящей работы.

Теорема 2.1. Для каждого натурального d ⩾ 2 существует константа Cd такая, что для
любой кубической симметричной матрицы A порядка d выполняются неравенства

∥A∥□ ⩽ ∥A∥cut ⩽Cd∥A∥□.

Перед доказательством теоремы сформулируем и докажем два следствия. Как отмечалось
во введении, для квадратичной формы Q(x) и билинейной формы B(y,y′) выполняются следующие
равенства

max
x∈{0,1}n

|Q(x)|= ∥W s∥□
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и

max
y∈{0,1}n,y′∈{0,1}m

|B(y,y′)|= ∥W∥cut.

Аналогично для полилинейной формы T (x1, . . . ,xd) и полиномиальной формы P(x) =
= T (x, . . . ,x) с кубической матрицей A порядка d верно

max
x j∈{0,1}n, j=1,d

|T (x1, . . . ,xd)|= ∥A∥cut

и

max
x∈{0,1}n

|P(x)|= ∥A∥□.

Тогда из теоремы 2.1 прямо вытекают следующие утверждения (с той же константой Cd ,
что и в теореме 2.1).

Следствие 2.2. Для полиномиальных форм P(x) и полилинейных форм T (x1, . . . ,xd) с матри-
цами, как в формулировке теоремы 2.1, выполняются неравенства

max
x∈{0,1}n

|P(x)|⩽ max
x j∈{0,1}n, j=1,d

|T (x1, . . . ,xd)|⩽Cd max
x∈{0,1}n

|P(x)|.

Доказательство. Прямо следует из теоремы, если принять во внимание приведенные выше
равенства для норм. □

Следствие 2.3. Для полиномиальных форм P(x) и полилинейных форм T (x1, . . . ,xd) с матри-
цами, как в формулировке теоремы 2.1, выполняются неравенства

max
x∈{−1,1}n

|P(x)|⩽ max
x j∈{−1,1}n, j=1,d

|T (x1, . . . ,xd)|⩽ 2dCd max
x∈{−1,1}n

|P(x)|.

Доказательство. Первое неравенство очевидно, докажем второе.
Пусть maxx j∈{−1,1}n, j∈[1,d] |T (x1, . . . ,xd)| достигается на наборе x′1, . . . ,x

′
d . Тогда

max
x j∈{−1,1}n, j∈[1,d]

|T (x1, . . . ,xd)|=
∣∣∣ n

∑
i1=0

. . .
n

∑
id=0

ai1...id x′1i1 . . .x
′
did

∣∣∣⩽
⩽

d

∑
k=0

∑
S⊂[1,d],|S|=k

∣∣∣ ∑
is : x′sis =+1,
it : x′tit =−1

s ∈ S, t ∈ [1,d]\S

ai1...id

∣∣∣⩽ 2d∥A∥cut.

Из теоремы 2.1 ∥A∥cut ⩽ Cd∥A∥□. Остается показать, что

∥A∥□ = max
x∈{0,1}n

|P(x)|⩽ max
x∈{−1,1}n

|P(x)|.

Здесь справедлива следующая цепочка рассуждений. Полиномиальная форма P(x) линейна по
каждому аргументу, так как элементы матрицы A с совпадающими индексами равны нулю. Тогда,
если рассматривать ее на кубе [−1,1]n, то максимум ее модуля достигается в крайних точках.
Отсюда и получаем, что maxx∈{0,1}n |P(x)|⩽ maxx∈{−1,1}n |P(x)|. Окончательно имеем

max
x j∈{−1,1}n, j∈[1,d]

|T (x1, . . . ,xd)|⩽ 2d∥A∥cut ⩽ 2dCd∥A∥□ ⩽ 2dCd max
x∈{−1,1}n

|P(x)|.

□
Вернемся к обсуждению теоремы 2.1. Константа в правом неравенстве теоремы 2.1, конечно,

зависит от порядка (кратности) d матрицыA. Важно, что эта константа не зависит от размерности n
этой матрицы, а также от значений ai1i2...id элементов этой матрицы. Например, C2 = 4, как это уже
отмечалось во введении, и эта константа подходит для обычной (в наших обозначениях, имеющей
порядок 2) симметричной внедиагональной матрицы с произвольными значениями элементов ai j

при i > j. Утверждение теоремы 2.1 для d = 2 легко следует из алгебраической формулы

2XY = (X +Y )2 −X2 −Y 2,
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примененной специальным (но достаточно очевидным) способом к алгебре всех формальных сумм
декартовых произведений вида

A1 ×B1 +A2 ×B2 + . . .+Ak ×Bk,

где Ai и Bi – подмножества множества I = [1,n]. Мы называем такую систему алгеброй в теоретико-
множественном смысле алгебры подмножеств множества I × I, так как эту систему можно
рассматривать как часть системы 2I×I , состоящей из всех подмножеств I × I. Однако прямое
применение подобного подхода к случаю d = 3 приводит к формуле

3(X2Y +Y 2X) = (X +Y )3 −X3 −Y 3,

в которой слагаемые X2Y и Y 2X , различные даже при условии коммутативности XY = Y X , не
разделены. Тем не менее, в настоящей работе мы приводим элементарное доказательство теоремы 2.1.
В следующем разделе проводится подготовительная работа перед доказательством основного
утверждения.

3. Вспомогательные утверждения

В этом разделе мы докажем несколько утверждений, которые будем использовать при
доказательстве теоремы 2.1. Первый результат можно назвать комбинаторно-алгебраическим. Мы
предполагаем, что он известен и следует из более общих конструкций алгебры или комбинаторики.
Однако, не найдя этого утверждения в известных и доступных нам учебниках, монографиях и
справочниках, мы решили привести здесь его с полным доказательством.

Лемма 3.1. В любом коммутативном кольце справедливо тождество

f (x1,x2, . . . ,xd) :=
d

∑
k=1

(−1)d−k
∑

S⊂[1,d]: |S|=k

(
∑
i∈S

xi

)d
= d! · x1x2 . . .xd .

Доказательство.
Для доказательства заметим, что

∑
S⊂[1,d]: |S|=k

(
∑
i∈S

xi

)d
∣∣∣∣
x1=0

= ∑
S⊂[2,d]: |S|=k−1

(
∑
i∈S

xi

)d
+ ∑

S⊂[2,d]: |S|=k

(
∑
i∈S

xi

)d
.

Поэтому

f (0,x2, . . . ,xd) =
d

∑
k=1

(−1)d−k
(

∑
S⊂[2,d]: |S|=k−1

(
∑
i∈S

xi

)d
+ ∑

S⊂[2,d]: |S|=k

(
∑
i∈S

xi

)d
)
=

=
d−1

∑
k=0

(−1)d−k−1
∑

S⊂[2,d]: |S|=k

(
∑
i∈S

xi

)d
+

d

∑
k=1

(−1)d−k
∑

S⊂[2,d]: |S|=k

(
∑
i∈S

xi

)d
= 0.

Здесь мы учли, что

∑
S⊂[2,d]: |S|=d

(
∑
i∈S

xi

)d
= 0 и ∑

S⊂[2,d]: |S|=0

(
∑
i∈S

xi

)d
= 0.

Ясно, что доказываемое тождество достаточно проверить только в кольце целых чисел (так как
в этом кольце различные полиномы являются разными функциями). Если в разложении однородного
полинома f (x1,x2, . . . ,xd) степени d в сумму мономов xd1

1 xd2
2 . . .xdd

d , d1 +d2 + . . .+dd = d, найдется
моном m = xd2

2 . . .xdd
d с d1 = 0, то при подстановке x1 = 0 в равенство

f (x1,x2, . . . ,xd) = cxd2
2 . . .xdd

d + . . . , c ̸= 0,

получится противоречие. Значит, таких мономов в разложении f (x1,x2, . . . ,xd) нет. Аналогично,
не будет и мономов без переменной x2, без переменной x3 и т. д. Получается, что

f (x1,x2, . . . ,xd) = ax1x2 . . .xd .

Так как слагаемые x1x2 . . .xd могут появиться в выражении
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(
∑
i∈S

xi

)d

лишь при |S|= d, коэффициент a совпадает с аналогичным коэффициентом у многочлена (x1 +x2 +
+ . . .+ xd)

d , и тогда a = d! □
Приведем пояснение, как применить лемму 3.1 к подмножествам Xk ⊂ [1,n] индексов сим-

метричной матрицы вместо элементов xk коммутативного кольца.
Напомним, что мультимножеством A с основанием Ω называется подмножество A ⊂ Ω,

в котором каждый элемент a представлен с некоторой кратностью c(a) ∈ N. На мультимножествах
естественным образом определена операция сложения +, при которой кратности элементов
складываются. Разрешая кратности элементов принимать произвольные целые значения, мы
очевидным образом превращаем систему всех мультимножеств с основанием Ω в модуль над
кольцом целых чисел, который мы обозначим через Mod(Ω). Применяя стандартную конструкцию
тензорного произведения модулей, превратим все мультимножества c основанием

Ω̃ := Ω∪Ω
2 ∪ . . .∪Ω

k ∪ . . .

в кольцо с операциями + (сложение мультимножеств) и × (тензорное произведение ⊗ мультимно-
жеств как элементов модуля Mod(Ω̃)) в качестве сложения и умножения. Мы считаем, что если
мультимножества A и B имеют основаниями Ωk и Ωm соответственно, то A⊗B – это мультимноже-
ство с основанием Ωk+m, поэтому введенная операция умножения действует в пределах Mod(Ω̃).
Если мы теперь применим к элементам из Ωk и к полученному кольцу функтор забывания порядка
умножения (декартова для Ωk и тензорного для кольца), в частности, отождествим мультимножества
A⊗B и B⊗A, то новое кольцо, которое мы обозначим через K, будет коммутативным. По смыслу
элементы кольца K – это мультимножества с основанием из множества всех неупорядоченных
конечных наборов [x1,x2, . . . ,xk] разной длины, xi ∈ Ω, а операции+ и× соответствуют объединению
(с учетом кратности) и коммутативному варианту тензорного произведения. При таком подходе
[x]+ [x] = 2[x] ̸= [x,x], {[x], [y]} = [x]+ [y] = [y]+ [x] ̸= [x,y] = [y,x] (мы опускаем фигурные скобки
для мультимножеств с одноточечным основанием). Для большей ясности рассмотрим пример. Пусть

A= {[x,y], [x,y], [x]} и B= {[x,x,y], [x,y], [x,y,x], [y]}, x,y ∈ Ω.

Тогда в кольце K будут справедливы равенства

A= 2[x,y]+ [x], B= 2[x,x,y]+ [x,y]+ [y], A+B= {[x], [y],3[x,y],2[x,x,y]}

и
A×B= {[x,y],2[x,y,y], [x,x,y],2[x,x,y,y],2[x,x,x,y],4[x,x,x,y,y]}.

Следствие 3.2. Предположим, что множества X1,X2, . . . ,Xd ⊂ Ω попарно не пересекаются.
Тогда в кольце K справедливо равенство

d! · (X1 ×X2 × . . .×Xd) =
d

∑
k=1

(−1)d−k
∑

S⊂[1,d]: |S|=k

(⊔
i∈S

Xi

)×d
.

В следствии 3.2, доказательство которого является прямым и очевидным применением
леммы 3.1 к кольцу K, мы использовали знак ⊔ для объединения попарно непересекающихся
множеств, как это принято, например, в теории меры.

Далее рассмотрим кубическую симметричную матрицу A = (ai1,...id )i1∈I...id∈I , I = [1,n], поряд-
ка d, размерности n× . . .×n︸ ︷︷ ︸

d

. Для произвольного мультимножества M, состоящего из элементов

i = (i1, i2 . . . id), i j ∈ I с кратностями c(i) определим «интеграл»

A(M) := ∑
i∈M

c(i)ai∈M.

Этот «интеграл» обладает на множествах из I×d свойством аддитивности по отношению к опера-
ции + в кольце K. Поэтому из следствия 3.2 вытекает
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Следствие 3.3. Для произвольного набора попарно непересекающихся множеств
X1,X2, . . . ,Xd ⊂ I = [1,n] и произвольной симметричной матрицы A = (ai1,...id )i1∈I...id∈I порядка
d справедливо равенство

∑
i1∈X1

· · · ∑
id∈Xd

ai1...id =
1
d!

d

∑
k=1

(−1)d−k
∑

S⊂[1,d]: |S|=k

(
∑

i1∈
⊔

j∈S X j

· · · ∑
id∈
⊔

j∈S X j

ai1...id

)
.

Еще одно утверждение, которое нам понадобится, по смыслу носит аналитический характер,
но доказывается снова обращением к алгебраическому тождеству.

Будем называть матрицу B = (bi1...ik)i1,...,ik∈[1,m] порядка k внедиагональной, если bi1i2...ik = 0
при совпадении хотя бы двух индексов is = it , 1 ⩽ s < t ⩽ k. В частности, любая симметричная
матрица порядка k в наших определениях будет и внедиагональной.

Лемма 3.4. Предположим, что внедиагональная матрица B = (bi1...ik)i1,...,ik∈[1,m] порядка k и
размерности m× . . .×m обладает следующим свойством: для любого разбиения X1 ⊔ . . .⊔Xk =
= [1,m] верно ∣∣∣ ∑

i1∈X1

· · · ∑
ik∈Xk

bi1...ik

∣∣∣⩽ c.

Тогда ∣∣∣ ∑
i1,...,ik∈[1,m]

bi1...ik

∣∣∣⩽ kkc.

Доказательство. Из легко проверяемого (простым подсчетом количества вхождений эле-
ментов в суммы) равенства

∑
i1,...,ik∈[1,m]

bi1...ik = kk−m
∑

X1 ,X2, . . .Xk :
X1 ⊔X2 ⊔ . . .⊔Xk = [1,m]

∑
i1∈X1

· · · ∑
ik∈Xk

bi1...ik ,

получим ∣∣∣ ∑
i1,...,ik∈[1,m]

bi1...ik

∣∣∣⩽ kk−m
∑

X1 ,X2 , . . .Xk :
X1 ⊔X2 ⊔ . . .⊔Xk = [1,m]

∣∣∣ ∑
i1∈X1

· · · ∑
ik∈Xk

bi1...ik

∣∣∣⩽ kk−mkmc = kkc.

4. Доказательство основного результата

Доказательство теоремы 2.1. Пусть матрица A порядка d имеет размерность n× . . .×n︸ ︷︷ ︸
d

и

∥A∥□ = M. В таком случае для любого множества X ⊂ [1,n]∣∣∣∣∣∑i1∈X
∑

i2∈X
. . . ∑

id∈X
ai1i2...id

∣∣∣∣∣⩽ M,

и далее мы будем этим пользоваться без специальных оговорок и ссылок.
Левое неравенство в теореме очевидно. В доказательстве нуждается только правое неравен-

ство, для доказательства которого нам нужно оценить абсолютные значения сумм вида

∑
i1∈Y1

· · · ∑
id∈Yd

ai1...id , Y1,Y2, . . .Yd ⊂ I = [1,n], (2)

сверху через M.
Обозначим

Y 0
j := [1,n]\Yj, Y 1

j := Yj, j ∈ [1,n],

и для каждого двоичного слова b = b1 . . .bd , где b1, . . . ,bd ∈ {0,1},

Ib = Ib1...bd :=
d⋂

j=1

Y b j
j .

Тогда все возможные 2d множеств Ib1...bd , b1, . . . ,bd ∈ {0,1} (или, что равносильно, Ib,b ∈
∈ {0, . . . ,2d −1}), попарно не пересекаются, и для каждого j множество Yj является объединением
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2d−1 подмножеств такого вида:

Yj =
⋃

b1, . . . ,bd ∈ {0,1}
b j = 1

Ib1...bd .

Значит сумму

∑
i1∈Y1

· · · ∑
id∈Yd

ai1...id

можно разбить на (2d−1)d слагаемых вида

∑
i1∈Ib1

· · · ∑
id∈Ibd

ai1...id , (3)

где b j = b j
1 . . .b

j
d , b j

1, . . . ,b
j
d ∈ {0,1}. В каждом таком слагаемом любые два множества из соответ-

ствующей этому слагаемому системы множеств {Ib1 , . . . , Ibd} либо совпадают, либо не пересекаются.
Если любые два множества из системы {Ib1 , . . . , Ibd} не пересекаются, то, в силу симмет-

ричности матрицы A,

∑
i1∈Ib1

· · · ∑
id∈Ibd

ai1...id =
1
d!

(
∑

σ∈π(d)
∑

i1∈I
bσ(1)

∑
i2∈I

bσ(2)

· · · ∑
id∈I

bσ(d)

ai1i2...id

)
,

и, согласно следствию 3.3,

∑
i1∈Ib1

· · · ∑
id∈Ibd

ai1...id =
1
d!

d

∑
k=1

(−1)d−k
∑

S⊂[1,d]: |S|=k

(
∑

i1∈
⊔

j∈S Ib j

· · · ∑
id∈
⊔

j∈S Ib j

ai1...id

)
.

Значит, для попарно непересекающихся множеств Ib1 . . . Ibd∣∣∣ ∑
i1∈Ib1

· · · ∑
id∈Ibd

ai1...id

∣∣∣= 1
d!

∣∣∣ d

∑
k=1

(−1)d−k
∑

S⊂[1,d]: |S|=k

(
∑

i1∈
⊔

j∈S Ib j

· · · ∑
id∈
⊔

j∈S Ib j

ai1...id

)∣∣∣⩽
⩽

1
d!

d

∑
k=1

∑
S⊂[1,d]: |S|=k

∣∣∣ ∑
i1∈
⊔

j∈S Ib j

· · · ∑
id∈
⊔

j∈S Ib j

ai1...id

∣∣∣⩽ 1
d!

d

∑
k=1

∑
S⊂[1,d]: |S|=k

M =
2d −1

d!
M. (4)

Осталось рассмотреть случай, когда среди множеств Ib1 , . . . , Ibd есть повторяющиеся. В силу
симметричности матрицы можно перегруппировать слагаемые так, чтобы повторяющиеся множества
шли подряд:

∑
i1∈Ib1

· · · ∑
id∈Ibd

ai1...id = ∑
i1∈J1

· · · ∑
id1∈J1

· · · ∑
idl−1+1∈Jl

· · · ∑
idl∈Jl

ai1...idl
.

Здесь Jk попарно не пересекаются и 1 ⩽ d1 < d2 < .. . < dl = d. Рассмотрим теперь матрицу B
порядка d1 и размерности |J1|× . . .×|J1|︸ ︷︷ ︸

d1

с элементами

bi1...id1
= ∑

idr+t ∈ Jr+1
r = 1, . . . , l −1

t = 1, . . . ,dr+1 −dr

ai1...id1 id1+1...id .

По лемме 3.4∣∣∣ ∑
i1∈Ib1

· · · ∑
id∈Ibd

ai1...id

∣∣∣= ∣∣∣ ∑
i1,...,id1∈J1

bi1...id1

∣∣∣⩽ dd1
1 max

F1,...,Fd1

∣∣∣ ∑
ik∈Fk,k=1,d1

bi1...id1

∣∣∣,
где максимум взят по всем попарно непересекающимся системам подмножеств Fk множества J1.
Аналогично, разбивая множества J2, . . . ,Jl , получим∣∣∣ ∑

i1∈Ib1

· · · ∑
id∈Ibd

ai1...id

∣∣∣⩽ dd1
1 (d2 −d1)

d2−d1 . . .(dl −dl−1)
dl−dl−1 max

X1,...,Xd

∣∣∣ ∑
ik∈Xk,k=1,d

ai1...id

∣∣∣,
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где максимум взят по всем попарно непересекающимся системам подмножеств Xk множества [1,n].
В силу оценки для попарно непересекающихся множеств (4) и неравенства

dd1
1 (d2 −d1)

d2−d1 . . .(dl −dl−1)
dl−dl−1 ⩽

⩽ (d1 +(d2 −d1)+ · · ·+(dl −dl−1))
d1+(d2−d1)+···+(dl−dl−1) = dd

имеем

∣∣∣ ∑
i1∈Ib1

· · · ∑
id∈Ibd

ai1...id

∣∣∣⩽ dd 2d −1
d!

M, (5)

где Ibi ∩ Ib j =∅ или Ibi = Ib j для всех пар i, j. Применяя теперь разложение суммы (2) на слагаемые
вида (3) и доказанное неравенство (5), получим

∣∣∣ n

∑
i1∈Y1

· · ·
n

∑
id∈Yd

ai1...id

∣∣∣⩽ 2d(d−1)dd 2d −1
d!

M ⩽
(d2d)d

d!
M ⩽ (2de)dM = (2de)d∥A∥□,

что завершает доказательство.
Работа К. В. Лыкова поддержана Институтом математики НАН Беларуси в рамках государ-

ственной программы «Конвергенция–2025» (задание 1.3.05).
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