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KioueBble cioBa: KoHed- AHHOTAIMs. J{/1s1 KOHEUHO! rpynmbl G U ee MaKCUMAJIbHOI MOArPYMNIbl M Mbl JOKA3aJIM, YTO
Hasl rpynmma; o0o0IIeHHast moq-  00o0ueHHas Bpicota ®urtuHra rpymisl G MUHYC 0000IeHHast BeicoTa PUTTHHTA TOATPYII-
rpymna PuTTHHra; 0000IIEeH- Mbl M He MPEeBOCXOAUT 2, a He-p-pa3pelunmast JUTHHA TPynisl G MUHYC He- p-pa3pelurmast
Hasg BbicoTa PUTTHHra; He-p- [UIMHA HOATPYIIBI M He NpeBocxomut 1. Mbl HOCTPOMIIN HAC/IEJCTBEHHYIO HACHILIEHHYIO
paspemmMasi JUiMHA; HacieA- opmanmio § tak, uto {ng(G,§) —ne(M,F) | G xoHeuna o-paspemmma u M siBIIsieTCs: MaK-
CTBeHHBIN pagukan [IoTkuHa; — cuMaiabHOR noarpymmoii rpynmsl G} = NU {0}, rae ng (G, §) 0603HaYaeT O-HUIBIOTEHTHYIO
O-HWIBIIOTEHTHAs IPyIIIa. IUIMHY §-KOpaJukaiia rpymmst G. DTa KOHCTPYKIMsI [TOKa3bIBAET, YTO PE3yJIbTAaTH 00 0000-
IIEHHBIX JITMHAX MaKCHMAJBHBIX MOATPYMI, omyOimkoBaHHele B Math. Nachr. (1994) n
Mathematics (2020), sBASAIOTCS HEKOPPEKTHBIMU.

1. Introduction and the Main results

All groups considered here are finite. One way to study the structure of finite groups is to study
their given normal series. An important parameter of such series is their length. For example the derived
length, the nilpotent length and the p-length encode information about the structure of a group. Note that
the series defining the nilpotent length were used for computations in soluble (polycyclic) groups [1].
One of the main disadvantages of the above mentioned lengths is that they are not defined for all groups.
Khukhro and Shumyatsky [2; 3] introduced the following lengths associated with every group.

Definition 1.1 (Khukhro, Shumyatsky). (1) The generalized Fitting height 4*(G) of a finite
group G is the least number / such that F; (G) = G, where Flo) (G)=1, and Fiin (G) is the inverse image
of the generalized Fitting subgroup F*(G/ Fiy (G)).

(2) Let pbeaprime, | =Gy < G1 < ... < Gopy1 = G be the shortest normal series in which for i odd
the factor G;11/G; is p-soluble (possibly trivial), and for i even the factor G /G; is a (non-empty) direct
product of nonabelian simple groups. Then /2 = A,(G) is called the non-p-soluble length of a group G.

(3) A2(G) = A(G) is the nonsoluble length of a group G.

For the properties and applications of these lengths see [2-7].

Note that if G is a soluble group, then 2*(G) = h(G) is the nilpotent length of G. K. Doerk [8, Satz 1]
proved that the difference of the nilpotent lengths of a soluble group and its maximal subgroup can be
only 0, 1 or 2. The analogues of this result were obtained for the 7t-length of a 7t-soluble group [9] and
the o-nilpotent length of a o-soluble group [10]. From [4, Theorem 5.6] it follows that for a group G
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and its subgroup H the differences 4*(G) — h*(H) and A,(G) —A,(H) are not bounded from below
by a constant. Here we prove
Theorem 1.2. Let M be a maximal subgroup of a group G and p be a prime. Then

1 (G) — (M) < 2,MG) — A(M) < 1 and A, (G) — Ap(M) < 1.

This theorem is the consequence of two general results obtained via the functorial method. According
to Plotkin [11] a functorial is a function y which assigns to each group G its subgroup y(G) satisfying
f(v(G)) =v(f(G)) for any isomorphism f : G — G*. From [12, p. 27 and Proposition 3.2.3] follows
the following definition:

Definition 1.3. A functorial vy is called a hereditary Plotkin radical if it satisfies:

(P1) f(v(G)) Cv(f(G)) for every epimorphism f : G — G*.

(P2) Y(G)NN =vy(N) forevery N < G.

Note that the F-radical for a Fitting formation is a hereditary Plotkin radical. Recall [11] that for
functorials y; and vy, the upper product y, x7y; is defined by (v2*v1)(G)/v2(G) =v1(G/v2(G)). This
operation is an associative one. With every functorial one can associate the following length.

Definition 1.4 [7, Definition 2.4]. Let v be a functorial. Then the y-series of G is defined
starting from y(g)(G) = 1, and then by induction v ;,1)(G) = (v(;y*Y)(G). The least number / such that
Y (G) = G is defined to be the y-length i (G) of G. If there is no such number, then 4 (G) = .

If v = F assigns to every group its Fitting subgroup, then the y-length is just the nilpotent length
(height) and for a group G is denoted by /(G) or h(G). For y = F* we get the generalized Fitting height.
One of our main results is

Theorem 1.5. Let 'y be a hereditary Plotkin radical which satisfies F*(G) C yv(G) for any group G
with hy (G) < oo, If M is a maximal subgroup of a group G and h, (G),h, (M) < oo, then h, (G) —h, (M) < 2.

From [13, Theorem 3.1 and Corollary 3.4(A)] it follows that if 7y is a hereditary Plotkin radical iff
§ = (G| v(G) = G) is a Q-closed Fitting class and vy is the §-radical. The example of a Q-closed Fitting
class of soluble groups which is not a formation follows from [14, IX, Examples 2.21(b)]. Theorem 1.5
gives the analogues of Doerk’s result for any Q-closed Fitting class of soluble groups.

Corollary 1.6. Let § be a Q-closed Fitting class of soluble groups, y assigns to every group its
§-radical and 7 = 7(§). If M is a maximal subgroup of a soluble mt-group G, then hy(G) —hy (M) < 2.

Note that 2(H) < h(G) holds for any soluble group G and its subgroup H. Hence from Theorem 1.5
for v = F follows

Corollary 1.7 [8]. Let M be a maximal subgroup of a soluble group G. Then h(G) —h(M) € {0, 1,2}.

Let 0 = {0, | i € I} be a partition of the set of all primes . Recall [15] that a group G is called
o-soluble if for every its chief factor H/K there exists 0; € o such that H/K is a 0;-group (i. e. all prime
divisors of |H/K| belong to 0;); o-nilpotent if it has a normal Hall o;-subgroup for every o; € 0. The
greatest normal o-nilpotent subgroup of G is denoted by F(G). The y-length of G for y = F is denoted
by I5(G). Note that a group is o-soluble iff /5(G) < eo.

Corollary 1.8 [10]. Let o be a partition of P and M be a maximal subgroup of a o-soluble group G.
Then I5(G) — (M) € {0,1,2}.

According to [12, p. 27 and Proposition 3.2.3] a hereditary Kurosh—-Amitsur radical can be defined
in the following way:

Definition 1.9. A hereditary Plotkin radical vy is called a hereditary Kurosh—Amitsur radical if it
satisfies (P3): y(G/v(G)) ~ 1 for every group G.

For a class of simple groups J the greatest normal subgroup O;(G) of G all whose composition
factors belong to J is the example of hereditary Kurosh—Amitsur radical. Kurosh—Amitsur radicals (of
groups) were studied in [16].

Theorem 1.10. Let p be a hereditary Kurosh—Amitsur radical which contains the soluble radical in
every group and y = pxF*xp. If M is a maximal subgroup of a group G and h,(G),hy,(M) < oo, then
Iy (G) — hy(M) < 1.

Recall that for a formation § and a group G the §-residual of G is denoted by GS. The nilpotent
and o-nilpotent lengths of the §-residual are denoted by nz(G) [17] and nq(G,F) [10] respectively. Let
§ be a hereditary saturated formation. In [17] it was claimed that ng(G) —nz(M) € {0,1,2} for any
soluble group G and its maximal subgroup M. For a partition ¢ of P in the paper [10] it was proved
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that n(G,§) — ne(M,§) € {0,1,2} for any o-soluble group G and its maximal subgroup M. Our next
result shows that the two above mentioned facts are wrong.
Theorem 1.11. Let 0 be a partition of P with |o| > 1. Then there exists a hereditary saturated
formation § = §(0) of soluble groups such that
{ns(G,T) —ns(M,5) | G is o-soluble and M is a maximal subgroup of G} = NU{0}.
In particular, there exists a hereditary saturated formation § such that
{nz(G) —nz(M) | G is soluble and M is a maximal subgroup of G} = NU{0}.

2. Preliminaries

All unexplained notations and terminologies are standard. The reader is referred to [14] if necessary.
Recall that N and P denote the sets of all natural and prime numbers respectively.

Recall that a class of groups is a collection § of groups with the property that if G € § and if H ~ G,
then H € §; a formation is a class of groups § which is closed under taking epimorphic images (i. e. from
G € § and N < G it follows that G/N € §) and subdirect products (i. e. from G/N; € § and G/N, € §
it follows that G/(Ny N N,) € F). A formation § is called: hereditary if H € § whenever H < G € §;
saturated if G € § whenever G/®(G) € §. The smallest normal subgroup of G with quotient in § is called
the §-residual of G. A group G is called p-closed if it has a normal Sylow p-subgroup. The class of all
soluble p-closed groups is the example of a hereditary saturated formation.

From [7, Proposition 2.3 and Lemma 2.6] the next result follows.

Lemma 2.1. Ify is a hereditary Plotkin radical, theny ) is a hereditary Plotkin radical for any
n € N and max{hy(N),h,(G/N)} < hy(G) < hy(G/N)+hy(N) for any N < G.

One of the characteristic properties of Kurosh—Amitsur radicals is the following

Lemma 2.2. Let 'y be a hereditary Kurosh-Amitsur radical. Then y(G/N) = v(G)/N for any
N <G with N Cy(G).

Proof. Assumethaty(G)/N <y(G/N)=H/N.Then1#H/y(G)=v(H/v(G)) Cv(G/Y(G))
~ 1, a contradiction.

01

3. Proves of the Main Results

3.1. Proof of Theorem 1.5

Assume the contrary. Let a group G be a minimal order counterexample. Hence G has a maximal
subgroup M with hy(G) — hy(M) > 2. It is clear that i, (G) > 3. Let M; = y(;(M) and G; =v(;)(G).
If MG, = G, then h(G) — 1 =h,(G/G) = hy(MG1/Gy) =h,(M/(MNG)) < hy(M) by Lemma 2.1.
It means that &, (G) — h, (M) < 1, a contradiction. Therefore G| C M.

If My = M, then G is a cyclic group of prime order and ,(G) —h,(M) = 1, a contradiction. So
My # M. Suppose that M; C G;;1 € M and M; # M for some i > 0. At least it is true for i = 0. Let
prove that M; ;1 C Gi3o C M and M| # M.

Note that i, (G) > i+ 1 and h, (M) > i. From M; C Giy C Gj; it follows that M; C M N Gj;».
If Giy2 € M, then by Definition 1.4 and Lemma 2.1

hy(G) = (i42) = hy(G/Gisz) = hy(MGi12/Giv2) = by (M/(MO\Gi2)) <y (M) — i

Therefore h,(G) — hy (M) < (i+2) —i = 2, a contradiction. Thus G;» C M.

Now Gii2,Mi11 IM. Let I = Gi12NM;1 I M. From I < M; it follows that vy (1) = I by
Lemma 2.1. From the other hand [ Sl G,'+2 and G,‘+1 = Y(i—o—l)(G) = Y(i—i—l)(G) N G,‘+2 = Y(i—o—l)(GHZ)
by (P2) and Lemma 2.1. Thus I < Giy; by (P2).

Let F/Git1 =F"(G/Gjt1). From hy (G) < e it follows that &, (G/Giy1) < oo. Therefore F /Gj; C
CvY(G/Git1) = Giy2/Git+1. Hence F < Gjin. Now

(Mi+1Git1/Gis1)NGiz2/Gip1 = (Miy1NGiy2)Gi1/Gig1 = Gig1/Gip1 ~ 1.
From [18, X, Theorem 13.12] it follows that
M;1Giv1/Giv1 € Cgg,,,(Giv2/Git1) € Cgya,,, (F/Git1) € F/Git1 C Giva/Giyr.
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Thus M1 € Gijr. If Miy1 = M, then Gi» =M < G. By our assumption M; # M. Hence h, (M) =i+ 1
and i, (G) =i+ 3. Therefore h,(G) — hy (M) = 2, a contradiction. Thus M, # M.
It means M; C Giy1 C M and M; # M for every natural i. Thus &, (G) = oo, the contradiction.

3.2. Proof of Corollary 1.6

Since § is a Q-closed Fitting class of soluble groups, we see that y is a hereditary Plotkin
radical by [13, Theorem 3.1 and Corollary 3.4(A)] and § contains a group of order p for any p € 7.
It means that A, (G) < o iff G is a soluble 7-group and § contains all nilpotent 7t-groups by [14, IX,
Theorem 1.9]. So F*(G) = F(G) C v(G) for any group G with 4, (G) < co. Thus Corollary 1.6 directly
follows from Theorem 1.5.

3.3. Proof of Theorem 1.10

Note that y is a hereditary Plotkin radical by [7, Proposition 2.3].

Assume the contrary. Let a group G be a minimal order counterexample. Hence G has a maximal
subgroup M with h,(G) —hy (M) > 1. It is clear that h,(G) > 1.

If My(G) = G, then by Definition 1.4 and Lemma 2.1

1(G) — 1 = hy(G/Y(G)) = hy (M/(MOY(G))) <y (M),

Therefore i, (G) —hy (M) < 1, acontradiction. Hence y(G) C M. Since p satisfies (P2), we see that p(G) C
C p(M). Note that (M/p(G))/(p(M/p(G))) = (M/p(G))/(p(M)/p(G)) = M/p(M) and p(G/p(G)) =
~ 1 by Lemma 2.2 and (P3). From the definition of y it follows that y(G)/p(G) = v(G/p(G)) and
Y(M/p(G)) =v(M)/p(G). If p(G) =M, then hy,(G) —h,(M) =1—1=0, a contradiction. Hence
hy(G/p(G)) = hy(G) and hy (M /p(G)) = h(M). From our assumption it follows that p(G) = 1. So
p(v(G)) = 1. From y(G),p(M) < M it follows that p(M) Ny(G) < y(G). Hence p(M)Nvy(G) =
= p(v(G)) = 1. Now from [18, X, Theorem 13.12] it follows that

p(M) C Ce(v(G)) € C6(F*(G)) CF(G) Cv(G).

It means that p(M) = 1. Now Mg = 1. Therefore F*(M) is the direct products of minimal normal
non-abelian subgroups of M by [18, X, Definition 13.14 and Lemma 13.16]. Let M; be one of them.
If My Z F*(G), then M; NF*(G) = 1. So M; C C¢(F*(G)) C F*(G), a contradiction. Hence F*(M) C
C F*(G) Cy(G) C M. Thus F*(M) = F*(G).

Since p is a Kurosh-Amitsur radical and 4,(G) > 1, we see that h,(G/F*(G)) = h,(G) — 1.
If hy(M) > 1, then hy (M /F*(G)) = hy(M/F*(M)) = h,, (M) — 1 and we get the contradiction with the
initial assumption. Thus A, (M) = 1. It means that M /F*(G) = p(M/F*(G)). Therefore v»(G) Z M.
Now G/v(2)(G) =M/(MNy(2)(G)). So 1 = p(G/v(2)(G)) = p(M/(MNY()(G))) by Lemma 2.2 and
definition of y. From v(G) C v (2)(G) "M and M /y(G) = p(M /v(G)) it follows that M /(M "y 2)(G)) =
=p(M/(MNv@2)(G))) = 1. Thus hy(G) =2 and hy(M) = 1, the final contradiction.

3.4. Proof of Theorem 1.2

If v = F*, then from Theorem 1.5 it follows that 4*(G) —h*(M) < 2 for any group G and its
maximal subgroup M.

Assume that p is the p-soluble radical and vy = pxF* x p. Then vy satisfies the assumptions
of Theorem 1.10. Hence if H is not a p-soluble group, then &, (H) = A,(H) by [7, Lemma 2.7]. Let a
group G be a minimal order group with a maximal subgroup M such that A,(G) — A, (M) > 1. It means that
G is a non-p-soluble group, A,(G) > 1 and M is p-soluble. If My(G) = G, then from A,(G/v(G)) > 1
and G/v(G) ~M/(MNvy(G)) it follows that a p-soluble group M has a non-p-soluble composition
factor, a contradiction. Thus y(G) < M. Hence a p-soluble group M has a non-p-soluble composition
factor, the final contradiction. It means that A,(G) —A,(M) < 1 and A(G) —A(M) < 1 (A = A,) for any
group G and its maximal subgroup M.
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3.5. Proof of Theorem 1.11

From |o| > 1 it follows that there exists p € IP such that |oN (P\ {p})| > 1. Let § be a formation of
all p-closed soluble groups. Then § is a hereditary saturated formation. Note that ns(G,§) —ng(M,§) =0
for every soluble p-closed group G and its maximal subgroup M.

For every n > 0 there exists a sequence of not necessary different primes p = po, p1, P2, .-, Pn Such
that every two of its consecutive elements belong to different elements of o and p; # p for alli > 0. Let G
be a cyclic group of order p. Define a sequence of subgroups G; inductively. Note that for G; there exists a
faithful irreducible module V; over I, [14, B, Theorem 10.3]. Let G;; | be the semidirect product of V;
with G; corresponding to the action of G; on V; as an F,G;-module. Since p; and p;_1 belong to different
elements of o and V; is the unique minimal normal subgroup of G, we see that Fs(Gi11) = V.

Let G = G, and M; = V;V;_;...V;. Then M, is a maximal subgroup of G and a p’-group. Hence
ls(M$) = I5(1) = 0. Note that G has the unique chief series and G, ~ G/(V,V3...V,,) is not p-closed.
It means that GS = M, Note that M; < G, 1. Now Fo(M;) = F(G;11) "M; = V;\M; = V;. It means that
ls(M,) = n. Therefore ny(G,§) — ns(M,F) = n. Since every soluble group is o-soluble, we see that

{ns(G,¥) —ns(M,5) | G is o-soluble and M is a maximal subgroup of G} = NU{0}.
In particular if |o;| = 1 for every o; € o, then
{nz(G) —nz(M) | G is soluble and M is a maximal subgroup of G} = NU{0}.

4. Final Remarks and Open Questions

Note that 7(H™) = h(H) — 1 for any non-unit soluble group H and A(H™) = h(H) for a unit
group H. If a unit group is a maximal subgroup M of G, then G is cyclic and nz(G) —nz(M) =0.If M
is a non-unit subgroup of a soluble group G, then A(M™) = h(M) — 1 and h(G™) = h(G) — 1. Hence
nn(G) —nn(M) € {0,1,2} for any soluble group G and its maximal subgroup M by Corollary 1.7.
That is why the main result of [17] is wrong not for all hereditary saturated formations. Therefore the
following question seems natural:

Question 4.1. Describe all hereditary saturated formations § such that nz(G) —nz(M) € {0,1,2}
for any soluble group G and its maximal subgroup M.

Proposition 4.2. Let § be a hereditary saturated formation containing all nilpotent groups. Assume
that there exists a constant n such that h(G) < n for any soluble §-group G. Then nz(G) —nz(M) < n+1
for any soluble group G and its maximal subgroup M.

Proof. Note that H™' C H? for any group H. It means that 4(H) — h(HS) < n for any group H
by Lemma 2.1. If h(G) = h(GY), then G ~ 1 and has no maximal subgroups. Assume that G 2 1. Then
1 <h(G)—h(G®) <n,h(M) —h(MS) < nand h(G) —h(M) < 2.So (h(G) —h(GS)) — (h(M) — h(M?)) >
>1—norn+12h(G)—h(M)+n—13h(GS) —h(MS). Thus n3(G) — ng(M) < n+1. O

Example 4.3. There exist formations § for which the value ng(G) —nz(M) is bouded but not by 2.
Let p be a prime and § be a class of all p-closed soluble groups of nilpotent length at most 3. Then § is a
hereditary saturated formation and nz(G) — ng(M) < 4 by Proposition 4.2 for any soluble group G and its
maximal subgroup M.

Let G4 and M3 be the same as in the proof of Theorem 1.11. Note that 2(M3) < 3 and hence M§ =1.
Therefore ng(Gs) —ng(Mz) =3 > 2.

In the view of this example the following question seems interesting:

Question 4.4. Describe all hereditary saturated formations § such that there exists a constant n
with nz(G) — ng(M) < n for any soluble group G and its maximal subgroup M. For such formation § do
there exists a constant m with 1(G) < m for every soluble §-group G.

Recall that 91, denotes the formation of all o-nilpotent groups. With the help of Corollary 3.3 one
can prove that ns(G,MNg) — ne(M,Ng) € {0, 1,2} for any o-soluble group G and its maximal subgroup M.

Question 4.5. Consider analogues of Questions 4.1 and 4.4 for ny(G,F).
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