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Abstract. For a finite group G and its maximal subgroup M we proved that the generalized
Fitting height of G minus the generalized Fitting height of M is not greater than 2 and
the non-p-soluble length of G minus the non-p-soluble length of M is not greater than 1.
We constructed a hereditary saturated formation F such that {nσ(G,F)− nσ(M,F) | G is
finite σ-soluble and M is a maximal subgroup of G} = N∪{0} where nσ(G,F) denotes
the σ-nilpotent length of the F-residual of G. This construction shows the results about the
generalized lengths of maximal subgroups published in Math. Nachr. (1994) and Mathematics
(2020) are not correct.
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Аннотация. Для конечной группы G и ее максимальной подгруппы M мы доказали, что
обобщенная высота Фиттинга группы G минус обобщенная высота Фиттинга подгруп-
пы M не превосходит 2, а не-p-разрешимая длина группы G минус не-p-разрешимая
длина подгруппы M не превосходит 1. Мы построили наследственную насыщенную
формацию F так, что {nσ(G,F)−nσ(M,F) | G конечна σ-разрешима и M является мак-
симальной подгруппой группы G}= N∪{0}, где nσ(G,F) обозначает σ-нильпотентную
длину F-корадикала группы G. Эта конструкция показывает, что результаты об обоб-
щенных длинах максимальных подгрупп, опубликованные в Math. Nachr. (1994) и
Mathematics (2020), являются некорректными.

1. Introduction and the Main results

All groups considered here are finite. One way to study the structure of finite groups is to study
their given normal series. An important parameter of such series is their length. For example the derived
length, the nilpotent length and the p-length encode information about the structure of a group. Note that
the series defining the nilpotent length were used for computations in soluble (polycyclic) groups [1].
One of the main disadvantages of the above mentioned lengths is that they are not defined for all groups.
Khukhro and Shumyatsky [2; 3] introduced the following lengths associated with every group.

Definition 1.1 (Khukhro, Shumyatsky). (1) The generalized Fitting height h∗(G) of a finite
group G is the least number h such that F∗

h(G) = G, where F∗
(0)(G) = 1, and F∗

(i+1)(G) is the inverse image
of the generalized Fitting subgroup F∗(G/F∗

(i)(G)).
(2) Let p be a prime, 1=G0 ⩽G1 ⩽ . . .⩽G2h+1 =G be the shortest normal series in which for i odd

the factor Gi+1/Gi is p-soluble (possibly trivial), and for i even the factor Gi+1/Gi is a (non-empty) direct
product of nonabelian simple groups. Then h = λp(G) is called the non-p-soluble length of a group G.

(3) λ2(G) = λ(G) is the nonsoluble length of a group G.
For the properties and applications of these lengths see [2–7].
Note that if G is a soluble group, then h∗(G) = h(G) is the nilpotent length of G. K. Doerk [8, Satz 1]

proved that the difference of the nilpotent lengths of a soluble group and its maximal subgroup can be
only 0, 1 or 2. The analogues of this result were obtained for the π-length of a π-soluble group [9] and
the σ-nilpotent length of a σ-soluble group [10]. From [4, Theorem 5.6] it follows that for a group G
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and its subgroup H the differences h∗(G)− h∗(H) and λp(G)− λp(H) are not bounded from below
by a constant. Here we prove

Theorem 1.2. Let M be a maximal subgroup of a group G and p be a prime. Then

h∗(G)−h∗(M)⩽ 2,λ(G)−λ(M)⩽ 1 and λp(G)−λp(M)⩽ 1.

This theorem is the consequence of two general results obtained via the functorial method. According
to Plotkin [11] a functorial is a function γ which assigns to each group G its subgroup γ(G) satisfying
f (γ(G)) = γ( f (G)) for any isomorphism f : G → G∗. From [12, p. 27 and Proposition 3.2.3] follows
the following definition:

Definition 1.3. A functorial γ is called a hereditary Plotkin radical if it satisfies:
(P1) f (γ(G))⊆ γ( f (G)) for every epimorphism f : G → G∗.
(P2) γ(G)∩N = γ(N) for every N ⊴ G.
Note that the F-radical for a Fitting formation is a hereditary Plotkin radical. Recall [11] that for

functorials γ1 and γ2 the upper product γ2 ⋆γ1 is defined by (γ2 ⋆γ1)(G)/γ2(G) = γ1(G/γ2(G)). This
operation is an associative one. With every functorial one can associate the following length.

Definition 1.4 [7, Definition 2.4]. Let γ be a functorial. Then the γ-series of G is defined
starting from γ(0)(G) = 1, and then by induction γ(i+1)(G) = (γ(i) ⋆γ)(G). The least number h such that
γ(h)(G) = G is defined to be the γ-length hγ(G) of G. If there is no such number, then hγ(G) = ∞.

If γ= F assigns to every group its Fitting subgroup, then the γ-length is just the nilpotent length
(height) and for a group G is denoted by l(G) or h(G). For γ= F∗ we get the generalized Fitting height.
One of our main results is

Theorem 1.5. Let γ be a hereditary Plotkin radical which satisfies F∗(G)⊆ γ(G) for any group G
with hγ(G)<∞. IfM is a maximal subgroup of a groupG and hγ(G),hγ(M)<∞, then hγ(G)−hγ(M)⩽ 2.

From [13, Theorem 3.1 and Corollary 3.4(A)] it follows that if γ is a hereditary Plotkin radical iff
F= (G | γ(G) = G) is a Q-closed Fitting class and γ is the F-radical. The example of a Q-closed Fitting
class of soluble groups which is not a formation follows from [14, IX, Examples 2.21(b)]. Theorem 1.5
gives the analogues of Doerk’s result for any Q-closed Fitting class of soluble groups.

Corollary 1.6. Let F be a Q-closed Fitting class of soluble groups, γ assigns to every group its
F-radical and π= π(F). If M is a maximal subgroup of a soluble π-group G, then hγ(G)−hγ(M)⩽ 2.

Note that h(H)⩽ h(G) holds for any soluble group G and its subgroup H. Hence from Theorem 1.5
for γ = F follows

Corollary 1.7 [8]. LetM be a maximal subgroup of a soluble groupG. Then h(G)−h(M)∈ {0,1,2}.
Let σ= {σi | i ∈ I} be a partition of the set of all primes P. Recall [15] that a group G is called

σ-soluble if for every its chief factor H/K there exists σi ∈ σ such that H/K is a σi-group (i. e. all prime
divisors of |H/K| belong to σi); σ-nilpotent if it has a normal Hall σi-subgroup for every σi ∈ σ. The
greatest normal σ-nilpotent subgroup of G is denoted by Fσ(G). The γ-length of G for γ= Fσ is denoted
by lσ(G). Note that a group is σ-soluble iff lσ(G) < ∞.

Corollary 1.8 [10]. Let σ be a partition of P and M be a maximal subgroup of a σ-soluble group G.
Then lσ(G)− lσ(M) ∈ {0,1,2}.

According to [12, p. 27 and Proposition 3.2.3] a hereditary Kurosh–Amitsur radical can be defined
in the following way:

Definition 1.9. A hereditary Plotkin radical γ is called a hereditary Kurosh–Amitsur radical if it
satisfies (P3): γ(G/γ(G))≃ 1 for every group G.

For a class of simple groups J the greatest normal subgroup OJ(G) of G all whose composition
factors belong to J is the example of hereditary Kurosh–Amitsur radical. Kurosh–Amitsur radicals (of
groups) were studied in [16].

Theorem 1.10. Let ρ be a hereditary Kurosh–Amitsur radical which contains the soluble radical in
every group and γ= ρ⋆F∗ ⋆ρ. If M is a maximal subgroup of a group G and hγ(G),hγ(M)< ∞, then
hγ(G)−hγ(M)⩽ 1.

Recall that for a formation F and a group G the F-residual of G is denoted by GF. The nilpotent
and σ-nilpotent lengths of the F-residual are denoted by nF(G) [17] and nσ(G,F) [10] respectively. Let
F be a hereditary saturated formation. In [17] it was claimed that nF(G)− nF(M) ∈ {0,1,2} for any
soluble group G and its maximal subgroup M. For a partition σ of P in the paper [10] it was proved
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that nσ(G,F)−nσ(M,F) ∈ {0,1,2} for any σ-soluble group G and its maximal subgroup M. Our next
result shows that the two above mentioned facts are wrong.

Theorem 1.11. Let σ be a partition of P with |σ| > 1. Then there exists a hereditary saturated
formation F= F(σ) of soluble groups such that

{nσ(G,F)−nσ(M,F) | G is σ-soluble and M is a maximal subgroup of G}= N∪{0}.
In particular, there exists a hereditary saturated formation F such that

{nF(G)−nF(M) | G is soluble and M is a maximal subgroup of G}= N∪{0}.

2. Preliminaries

All unexplained notations and terminologies are standard. The reader is referred to [14] if necessary.
Recall that N and P denote the sets of all natural and prime numbers respectively.

Recall that a class of groups is a collection F of groups with the property that if G ∈ F and if H ≃ G,
then H ∈ F; a formation is a class of groups F which is closed under taking epimorphic images (i. e. from
G ∈ F and N ⊴ G it follows that G/N ∈ F) and subdirect products (i. e. from G/N1 ∈ F and G/N2 ∈ F
it follows that G/(N1 ∩N2) ∈ F). A formation F is called: hereditary if H ∈ F whenever H ⩽ G ∈ F;
saturated if G ∈ F whenever G/Φ(G) ∈ F. The smallest normal subgroup of G with quotient in F is called
the F-residual of G. A group G is called p-closed if it has a normal Sylow p-subgroup. The class of all
soluble p-closed groups is the example of a hereditary saturated formation.

From [7, Proposition 2.3 and Lemma 2.6] the next result follows.
Lemma 2.1. If γ is a hereditary Plotkin radical, then γ(n) is a hereditary Plotkin radical for any

n ∈ N and max{hγ(N),hγ(G/N)}⩽ hγ(G)⩽ hγ(G/N)+hγ(N) for any N ⊴ G.
One of the characteristic properties of Kurosh–Amitsur radicals is the following
Lemma 2.2. Let γ be a hereditary Kurosh–Amitsur radical. Then γ(G/N) = γ(G)/N for any

N ⊴ G with N ⊆ γ(G).
Proof. Assume thatγ(G)/N <γ(G/N)=H/N. Then 1 ̸≃H/γ(G)=γ(H/γ(G))⊆γ(G/γ(G))≃

≃ 1, a contradiction. □

3. Proves of the Main Results

3.1. Proof of Theorem 1.5

Assume the contrary. Let a group G be a minimal order counterexample. Hence G has a maximal
subgroup M with hγ(G)− hγ(M) > 2. It is clear that hγ(G) ⩾ 3. Let Mi = γ(i)(M) and Gi = γ(i)(G).
If MG1 = G, then hγ(G)−1 = hγ(G/G1) = hγ(MG1/G1) = hγ(M/(M∩G1))⩽ hγ(M) by Lemma 2.1.
It means that hγ(G)− hγ(M) ⩽ 1, a contradiction. Therefore G1 ⊆ M.

If M0 = M, then G is a cyclic group of prime order and hγ(G)−hγ(M) = 1, a contradiction. So
M0 ̸= M. Suppose that Mi ⊆ Gi+1 ⊆ M and Mi ̸= M for some i ⩾ 0. At least it is true for i = 0. Let
prove that Mi+1 ⊆ Gi+2 ⊆ M and Mi+1 ̸= M.

Note that hγ(G) > i+ 1 and hγ(M) > i. From Mi ⊆ Gi+1 ⊆ Gi+2 it follows that Mi ⊆ M ∩Gi+2.
If Gi+2 ̸⩽ M, then by Definition 1.4 and Lemma 2.1

hγ(G)− (i+2) = hγ(G/Gi+2) = hγ(MGi+2/Gi+2) = hγ(M/(M∩Gi+2))⩽ hγ(M)− i.

Therefore hγ(G)− hγ(M) ⩽ (i+ 2)− i = 2, a contradiction. Thus Gi+2 ⊆ M.
Now Gi+2,Mi+1 ⊴ M. Let I = Gi+2 ∩Mi+1 ⊴ M. From I ⊴ Mi+1 it follows that γ(i+1)(I) = I by

Lemma 2.1. From the other hand I ⊴ Gi+2 and Gi+1 = γ(i+1)(G) = γ(i+1)(G)∩Gi+2 = γ(i+1)(Gi+2)
by (P2) and Lemma 2.1. Thus I ⩽ Gi+1 by (P2).

Let F/Gi+1 = F∗(G/Gi+1). From hγ(G)< ∞ it follows that hγ(G/Gi+1)< ∞. Therefore F/Gi+1 ⊆
⊆ γ(G/Gi+1) = Gi+2/Gi+1. Hence F ⩽ Gi+2. Now

(Mi+1Gi+1/Gi+1)∩Gi+2/Gi+1 = (Mi+1 ∩Gi+2)Gi+1/Gi+1 = Gi+1/Gi+1 ≃ 1.

From [18, X, Theorem 13.12] it follows that

Mi+1Gi+1/Gi+1 ⊆CG/Gi+1(Gi+2/Gi+1)⊆CG/Gi+1(F/Gi+1)⊆ F/Gi+1 ⊆ Gi+2/Gi+1.
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Thus Mi+1 ⊆ Gi+2. If Mi+1 = M, then Gi+2 = M < G. By our assumption Mi ̸= M. Hence hγ(M) = i+1
and hγ(G) = i+3. Therefore hγ(G)−hγ(M) = 2, a contradiction. Thus Mi+1 ̸= M.

It means Mi ⊆ Gi+1 ⊆ M and Mi ̸= M for every natural i. Thus hγ(G) = ∞, the contradiction.

3.2. Proof of Corollary 1.6

Since F is a Q-closed Fitting class of soluble groups, we see that γ is a hereditary Plotkin
radical by [13, Theorem 3.1 and Corollary 3.4(A)] and F contains a group of order p for any p ∈ π.
It means that hγ(G) < ∞ iff G is a soluble π-group and F contains all nilpotent π-groups by [14, IX,
Theorem 1.9]. So F∗(G) = F(G)⊆ γ(G) for any group G with hγ(G)< ∞. Thus Corollary 1.6 directly
follows from Theorem 1.5.

3.3. Proof of Theorem 1.10

Note that γ is a hereditary Plotkin radical by [7, Proposition 2.3].
Assume the contrary. Let a group G be a minimal order counterexample. Hence G has a maximal

subgroup M with hγ(G)− hγ(M) > 1. It is clear that hγ(G) > 1.
If Mγ(G) = G, then by Definition 1.4 and Lemma 2.1

hγ(G)−1 = hγ(G/γ(G)) = hγ(M/(M∩γ(G)))⩽ hγ(M).

Therefore hγ(G)−hγ(M)⩽ 1, a contradiction. Henceγ(G)⊆M. Since ρ satisfies (P2), we see that ρ(G)⊆
⊆ ρ(M). Note that (M/ρ(G))/(ρ(M/ρ(G))) = (M/ρ(G))/(ρ(M)/ρ(G))≃ M/ρ(M) and ρ(G/ρ(G))≃
≃ 1 by Lemma 2.2 and (P3). From the definition of γ it follows that γ(G)/ρ(G) = γ(G/ρ(G)) and
γ(M/ρ(G)) = γ(M)/ρ(G). If ρ(G) = M, then hγ(G)− hγ(M) = 1− 1 = 0, a contradiction. Hence
hγ(G/ρ(G)) = hγ(G) and hγ(M/ρ(G)) = hγ(M). From our assumption it follows that ρ(G) = 1. So
ρ(γ(G)) = 1. From γ(G),ρ(M) ⊴ M it follows that ρ(M)∩ γ(G) ⊴ γ(G). Hence ρ(M)∩ γ(G) =
= ρ(γ(G)) = 1. Now from [18, X, Theorem 13.12] it follows that

ρ(M)⊆CG(γ(G))⊆CG(F∗(G))⊆ F∗(G)⊆ γ(G).

It means that ρ(M) = 1. Now MS = 1. Therefore F∗(M) is the direct products of minimal normal
non-abelian subgroups of M by [18, X, Definition 13.14 and Lemma 13.16]. Let M1 be one of them.
If M1 ̸⊆ F∗(G), then M1 ∩F∗(G) = 1. So M1 ⊆ CG(F∗(G)) ⊆ F∗(G), a contradiction. Hence F∗(M) ⊆
⊆ F∗(G) ⊆ γ(G) ⊆ M. Thus F∗(M) = F∗(G).

Since ρ is a Kurosh-Amitsur radical and hγ(G) > 1, we see that hγ(G/F∗(G)) = hγ(G)− 1.
If hγ(M) > 1, then hγ(M/F∗(G)) = hγ(M/F∗(M)) = hγ(M)−1 and we get the contradiction with the
initial assumption. Thus hγ(M) = 1. It means that M/F∗(G) = ρ(M/F∗(G)). Therefore γ2(G) ̸⊆ M.
Now G/γ(2)(G) = M/(M∩γ(2)(G)). So 1 ≃ ρ(G/γ(2)(G)) = ρ(M/(M∩γ(2)(G))) by Lemma 2.2 and
definition of γ. From γ(G)⊆ γ(2)(G)∩M and M/γ(G) = ρ(M/γ(G)) it follows that M/(M∩γ(2)(G)) =
= ρ(M/(M ∩γ(2)(G))) ≃ 1. Thus hγ(G) = 2 and hγ(M) = 1, the final contradiction.

3.4. Proof of Theorem 1.2

If γ = F∗, then from Theorem 1.5 it follows that h∗(G)− h∗(M) ⩽ 2 for any group G and its
maximal subgroup M.

Assume that ρ is the p-soluble radical and γ = ρ ⋆ F∗ ⋆ ρ. Then γ satisfies the assumptions
of Theorem 1.10. Hence if H is not a p-soluble group, then hγ(H) = λp(H) by [7, Lemma 2.7]. Let a
group G be a minimal order group with a maximal subgroup M such that λp(G)−λp(M)> 1. It means that
G is a non-p-soluble group, λp(G)> 1 and M is p-soluble. If Mγ(G) = G, then from λp(G/γ(G))⩾ 1
and G/γ(G) ≃ M/(M ∩γ(G)) it follows that a p-soluble group M has a non-p-soluble composition
factor, a contradiction. Thus γ(G)⊴ M. Hence a p-soluble group M has a non-p-soluble composition
factor, the final contradiction. It means that λp(G)−λp(M)⩽ 1 and λ(G)−λ(M)⩽ 1 (λ= λ2) for any
group G and its maximal subgroup M.
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3.5. Proof of Theorem 1.11
From |σ|> 1 it follows that there exists p ∈ P such that |σ∩ (P\{p})|> 1. Let F be a formation of

all p-closed soluble groups. Then F is a hereditary saturated formation. Note that nσ(G,F)−nσ(M,F) = 0
for every soluble p-closed group G and its maximal subgroup M.

For every n > 0 there exists a sequence of not necessary different primes p = p0, p1, p2, . . . , pn such
that every two of its consecutive elements belong to different elements of σ and pi ̸= p for all i > 0. Let G1
be a cyclic group of order p. Define a sequence of subgroups Gi inductively. Note that for Gi there exists a
faithful irreducible module Vi over Fpi [14, B, Theorem 10.3]. Let Gi+1 be the semidirect product of Vi
with Gi corresponding to the action of Gi on Vi as an FpGi-module. Since pi and pi−1 belong to different
elements of σ and Vi is the unique minimal normal subgroup of Gi+1, we see that Fσ(Gi+1) =Vi.

Let G = Gn+1 and Mi =ViVi−1 . . .V1. Then Mn is a maximal subgroup of G and a p′-group. Hence
lσ(MF

n ) = lσ(1) = 0. Note that G has the unique chief series and G2 ≃ G/(V2V3 . . .Vn) is not p-closed.
It means that GF = Mn. Note that Mi ⊴ Gi+1. Now Fσ(Mi) = Fσ(Gi+1)∩Mi =Vi ∩Mi =Vi. It means that
lσ(Mn) = n. Therefore nσ(G,F)−nσ(M,F) = n. Since every soluble group is σ-soluble, we see that

{nσ(G,F)−nσ(M,F) | G is σ-soluble and M is a maximal subgroup of G}= N∪{0}.
In particular if |σi| = 1 for every σi ∈ σ, then

{nF(G)−nF(M) | G is soluble and M is a maximal subgroup of G}= N∪{0}.

4. Final Remarks and Open Questions

Note that h(HN) = h(H)− 1 for any non-unit soluble group H and h(HN) = h(H) for a unit
group H. If a unit group is a maximal subgroup M of G, then G is cyclic and nF(G)−nF(M) = 0. If M
is a non-unit subgroup of a soluble group G, then h(MN) = h(M)− 1 and h(GN) = h(G)− 1. Hence
nN(G)− nN(M) ∈ {0,1,2} for any soluble group G and its maximal subgroup M by Corollary 1.7.
That is why the main result of [17] is wrong not for all hereditary saturated formations. Therefore the
following question seems natural:

Question 4.1. Describe all hereditary saturated formations F such that nF(G)−nF(M) ∈ {0,1,2}
for any soluble group G and its maximal subgroup M.

Proposition 4.2. Let F be a hereditary saturated formation containing all nilpotent groups. Assume
that there exists a constant n such that h(G)⩽ n for any soluble F-group G. Then nF(G)−nF(M)⩽ n+1
for any soluble group G and its maximal subgroup M.

Proof. Note that HNn ⊆ HF for any group H. It means that h(H)−h(HF) ⩽ n for any group H
by Lemma 2.1. If h(G) = h(GF), then G ≃ 1 and has no maximal subgroups. Assume that G ̸≃ 1. Then
1⩽ h(G)−h(GF)⩽ n, h(M)−h(MF)⩽ n and h(G)−h(M)⩽ 2. So (h(G)−h(GF))−(h(M)−h(MF))⩾
⩾ 1−n or n+1 ⩾ h(G)−h(M)+n−1 ⩾ h(GF)−h(MF). Thus nF(G)−nF(M)⩽ n+1. □

Example 4.3. There exist formations F for which the value nF(G)−nF(M) is bouded but not by 2.
Let p be a prime and F be a class of all p-closed soluble groups of nilpotent length at most 3. Then F is a
hereditary saturated formation and nF(G)−nF(M)⩽ 4 by Proposition 4.2 for any soluble group G and its
maximal subgroup M.

Let G4 and M3 be the same as in the proof of Theorem 1.11. Note that h(M3)⩽ 3 and hence MF
3 = 1.

Therefore nF(G4)−nF(M3) = 3 > 2.
In the view of this example the following question seems interesting:
Question 4.4. Describe all hereditary saturated formations F such that there exists a constant n

with nF(G)−nF(M)⩽ n for any soluble group G and its maximal subgroup M. For such formation F do
there exists a constant m with h(G)⩽ m for every soluble F-group G.

Recall thatNσ denotes the formation of all σ-nilpotent groups. With the help of Corollary 3.3 one
can prove that nσ(G,Nσ)−nσ(M,Nσ) ∈ {0,1,2} for any σ-soluble group G and its maximal subgroup M.

Question 4.5. Consider analogues of Questions 4.1 and 4.4 for nσ(G,F).
The work was supported by BRFFR grant no. Φ23PHΦ-237.
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