
Национальная академия наук Беларуси
Труды Института математики НАН Беларуси. 2025. Том 33. № 1. С. 7–14

АЛГЕБРА И ТЕОРИЯ ЧИСЕЛ
ALGEBRA AND NUMBER THEORY

UDC 511.42

BENFORD’S LAW AND APPROXIMATION OF LOGARITHMS OF NATURAL
NUMBERS BY RATIONAL NUMBERS

V. I. Bernik, N. I. Kalosha, D. V. Vasilyev

Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, Belarus
e-mail: bernik.vasili@mail.ru, kalosha@im.bas-net.by, vasilyev@im.bas-net.by

Received: 02.04.2025 Revised: 19.05.2025 Accepted: 23.05.2025
Keywords: diophantine
approximation, Benford’s law,
first digit distribution, powers of
integers.

Abstract. The paper is devoted to studying the frequencies at which first digits occur in
series formed by powers of integer numbers. A number of generalizations of this problem are
considered, and the relation between the distribution of first digits and Diophantine properties
of logarithms is discussed. In conclusion of the article, several interesting problems in modern
theory of Diophantine approximation are proposed.
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Аннотация. В статье исследованы частотные свойства первых цифр в последователь-
ности, образованной степенями целых чисел. Рассматривается ряд обобщений этой
проблемы, а также обсуждается связь между распределением первых цифр и дио-
фантовыми свойствами логарифмов. Предлагается ряд актуальных проблем в теории
диофантовых приближений.

1. Introduction

If we exclude initial zeros in the decimal representation of any non-zero real number, there will
be nine possibilities for the leading digit: a = 1,2, . . . ,9. Surprisingly, in most cases these digits occur
with different frequencies, and the frequency of a digit a is roughly equal to

lg
a+1

a
. (1)

The first publication describing this phenomenon is due to astronomer and mathematician Simon
Newcomb [1]. Frank Benford [2] provided numerous real-world examples that exhibit this distribution
of first digits. Newcomb’s observation became known as Benford’s law, and the distribution (1) as
Benford’s distribution.

Benford’s law holds for many random and deterministic sequences, and the sequence 2n, n = 1,2, . . .,
is a notable example. Recently, Benford’s law for power sequences was studied by Hürlimann [3].

We are going to prove that sequences an, where a = 2,3, follow Benford’s law. We are also going to
estimate the residual term and show how our estimate is related to Diophantine properties of logarithms
of natural numbers and their combinations. Several generalizations of these facts will be discussed, and
computer simulations will be used to evaluate the strength of the obtained theoretical results.
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This study originates from a conversation between Vasili Bernik and academician Yuri Prokhorov
at a number-theoretic conference in Bielefeld. Not every result presented in the paper is new; some of
them are repeated for completeness and ease of understanding.

2. The main results

Let ν(A,Q) be the frequency with which a positive integer A occurs as leading digits in the
first Q values of the sequence 2n (1 ⩽ n ⩽ Q). Let [β] and {β} denote respectively the integer and
fractional parts of a real number β.

Theorem 2.1. Let A be an arbitrary positive integer. Then there are infinitely many positive integers
n = n(A) such that the decimal representation of A coincides with the leading digits in the decimal
representation of 2n.

The proof of the theorem is based on two simple lemmas.
Lemma 2.2. The number lg2 is irrational.
Lemma 2.3. For any irrational number α, the sequence {nα}, n = 1,2, . . ., is everywhere

dense in [0,1).
The proof of Lemma 2.2 is commonly known, and Lemma 2.3 can be proved using Dirichlet’s

pigeonhole principle. In fact, Weyl’s criterion [4] implies a much stronger result.
Lemma 2.4. The sequence {nα}, n = 1,2, . . ., is uniformly distributed on [0,1) if and only if α is

an irrational number.
Now it is easy to prove Theorem 2.1. Let A have k decimal digits, A = a1a2 . . .ak, 0 ⩽ a j ⩽ 9,

a1 ̸= 0. Let us write 2n in the form

2n = 10nlg2 = 10[10lg2] ·10{nlg2}.

The leading digits of 2n coincide with A if

lg
A

10k−1 ⩽ {nlg2}< lg
A+1
10k−1

or
{nlg2} ∈ [lgA, lg (A+1))mod 1. (2)

It follows from Lemmas 2.2–2.4 that the condition (2) holds for infinitely many n.
Let I ⊂ [0,1) be an interval or a finite union of intervals, and let NI (α,Q) be the number of positive

integers n, 1 ⩽ n ⩽ Q, such that {nα} ∈ I. If {nα} is uniformly distributed, we have

NI (Q) = (1+o(1))Q |I| .

Now taking α = lg2, I = [lgA, lg (A+1))mod 1 yields

NI (lg2,Q) = (1+o(1))Qlg
A+1

A
= Qlg

A+1
A

+R(Q) , (3)

lim
Q→∞

Q−1R(Q) = 0,

i. e., the frequency with which the leading digits of 2n coincide with the digits of A is asymptotically
equal to ν(A) = lg A+1

A . In particular,

ν(1) = lg2 = 0.3010 . . . , ν(2) = lg
3
2
= 0.1760 . . . ,

ν(8) = lg
9
8
= 0.0511 . . . , ν(9) = lg

10
9

= 1− lg9 = 0.0457 . . . .

Thus decimal representations of the numbers 2n start with the digit 1 more than 6 times more frequently
compared to the digit 9.

A natural question arises: how accurately is the value NI (lg2,Q) approximated by the number
Qlg A+1

A ? To answer this question, we must estimate from above the remainder R(Q) in (3). This estimate,
in turn, is determined by the measure of irrationality of lg2, i. e., by how well lg2 is approximated
by rational numbers.
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Lemma 2.5. Let the following inequality hold for an irrational number β and any integers
p,q ∈ Z×N: ∣∣∣∣β− p

q

∣∣∣∣> c(β)q−λ, λ⩾ 2. (4)

Then for any interval I ⊂ [0,1) we have

NI (β,Q) = |I|Q+O
(

Q1− 1
λ−1 lnQ

)
, (5)

where the implicit constant in the Vinogradov symbol O does not exceed 22λ+4

c(β) +1.
Lemma 2.5 can be proved using Vinogradov’s “little glasses” method [5] by decomposing the

characteristic function of the interval I into a Fourier series. Then the residual term can be estimated
from the inequality

L

∑
ν=1

||νβ||−1 <
2λ+1

c(β)
Lλ−1lnL, L ⩾ 8,

where ||x|| is the distance from the real number x to the nearest integer.
The class of numbers M (λ) such that the inequality (4) holds is very broad. All real numbers with

bounded partial quotients in their continued fraction representations (for example, all quadratic irrationals)
lie in the class M (2). For an arbitrary λ> 2, all real algebraic numbers (Roth, [6]) and almost all real
numbers in the sense of Lebesgue measure (Khinchine, [7]) lie in M (λ). Today it is known [8] that
lg2 ∈ M (λ) for λ= λ0 = 242, and thus Lemma 2.5 leads to the following quantitative form of Theorem 2.1.

Theorem 2.6. Let B(A,Q) be the number of positive integers n, 1 ⩽ n ⩽ Q, such that the leading
decimal digits of 2n coincide with the decimal representation of A. Then for any ε> 0 we have

B(A,Q) = Qlg
A+1

A
+O

(
Q1−1/(λ0−1)+ε

)
. (6)

If we replace the sequence 2n, n= 1,2 . . ., by the sequence en, 1,2, . . ., then from results ofMasayoshi
Hata and Elena Rukhadze [9; 10] we obtain that the residual term in (6) can be replaced by

O
(
Q0,66) .

It is easy to see that the number 2 in Theorems 2.1 and 2.6 can be replaced by an arbitrary natural
number b ⩾ 2, b ̸= 10l , l = 0,1,2, . . .. This yields results similar to Theorem 2.6 with the same residual
term as in (5) if for all p,q ∈ Z×N the inequality∣∣∣∣lgb− p

q

∣∣∣∣> c(b)q−λ(b) (7)

is satisfied [8].
Another natural generalization of the problem can be stated as follows. Take two natural numbers

A1 and A2. Let B(A1,A2,Q) be the number of integers n, 1 ⩽ n ⩽ Q, for which 2n starts with A1, and
3n starts with A2.

Theorem 2.7. There exists a real number µ, 0 < µ< 1, such that for any 0 < ε< 1−µ we have

B(A1,A2,Q) = Qlg
A1 +1

A1
lg

A2 +1
A2

+Oε
(
Qµ+ε

)
as Q → ∞.

Theorem 2.7 can be proved similarly to Theorem 2.6 since the sequence of two-dimensional
vectors a⃗n = ({nlg2} ,{nlg3}) is uniformly distributed in the square [0,1)× [0,1). Hence, these vectors
infinitely often belong to the rectangle

[lgA, lg (A+1))× [lgB, lg (B+1))mod 1.

This follows from the fact that the numbers 1, lg2, lg3 are linearly independent over the field of rational
numbers and the multivariate Weyl criterion [4]. Moreover, there exists a constant λ1 = λ1 (2,3) that
provides a quantitative characteristic of this linear independence of the form

|a3lg3+a2lg2+a1|> c(2,3)H−λ1 , (8)
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where a j ∈ Z, a2
2 + a2

3 ̸= 0, H = max1⩽ j⩽3
∣∣a j
∣∣.

The estimates (8) and more general estimates

|aklg pk +ak−1lg pk−1 + . . .+a2lg2+a1|> c(2, . . . , pk)H−λ2 , (9)

a j ∈ Z, ∑
k
j=2 a2

j ̸= 0, where p j is the jth prime number, were first obtained by A. Baker [11]. In the
paper [8], Baker wrote these estimates in the form (8), (9). From these estimates, we can obtain quantitative
results about the uniform distribution of fractions in a k-dimensional unit cube, which are similar to (5).
Having obtained such results, we can directly prove Theorem 2.7 and the following more general theorem.

Theorem 2.8. Let pk be the kth prime number, and for arbitrary natural numbers A1,A2, . . . ,Ak
let B(A1, . . . ,Ak,Q) be the number of positive integers n, 1 ⩽ n ⩽ Q, such that the leading digits of 2n

coincide with the digits A1, 3n has the same property with respect to A2, . . . , pn
k – to Ak. Then we can

specify µ1, 0 < µ1 < 1, such that for any ε1, 0 < ε1 < 1−µ1, as Q → ∞ we have

B(A1, . . . ,Ak,Q) = Q
k

∏
s=1

lg
As +1

As
+Oε1

(
Qµ1+ε1

)
.

Note that estimates from below for linear forms of the type (9) can be much more accurate if we
take particular combinations of numbers b1, . . . ,bk.

Of course, it isn’t necessary to restrict Theorem 2.8 only to prime numbers. The result holds for
composite numbers, as long as the set b1, . . . ,bk satisfies the requirement that their logarithms, taken
together with the number 1, are linearly independent over the field of rational numbers. For example, we
can take b1 = 4 and b2 = 9, but can’t take b1 = 2, b2 = 4 or b1 = 2, b2 = 3, b3 = 6.

Let us consider another generalization. Let B(s)
2 (Q) be the number of positive integers n, 1 ⩽ n ⩽ Q,

such that the decimal digits of the number 2n, starting from the (s+1)-th position, coincide with the
number A1. From now on, we allow A1 to have leading zeros, for example, A1 = 002). Further, let

νs (A1) =
10s−1

∑
t=10s−1

lg
10st +A1 +1

10st +A1
.

Theorem 2.9. As Q → ∞, we have

B(s)
2 (Q) = Qνs (A1)+Oε

(
Q1−1/(λ0−1)+ε

)
. (10)

The proof of Theorem 2.9 is similar to the proof of Theorem 2.6, since in the decimal representation
of 2n, the digits of A1 appear starting from the (s+1)-th position if {nlg2} lies in the interval
[lg (10st +A) , lg (10st +A+1))mod 1 for some s-digit number t. Theorem 2.6 holds for any such
interval. Now it remains to calculate a sum of the right-hand sides of the expressions of the type (6)
over all 9 · 10s−1 possible values of t.

Clearly, this direct approach leads to a significant increase of the residual term in (10) because of
the implicit constant in the Vinogradov symbol. Take, for example, s = 6, then the residual term in (10)
for the sequence en becomes at least 106. Therefore, to obtain meaningful estimates of the remainder
term of (10), we need to take Q of the order 1021, which is very large.

The results of numerical experiments (see Section 3) suggest that fluctuations of the residual term for
the individual intervals cancel each other out, to a degree, when summation is performed. We were able to
formally prove that this type of interference does occur for a union of evenly spaced intervals of equal length.

Lemma 2.10. Let the inequality (7) hold for an irrational β and all (p,q) ∈ Z×N. Then for all
integers M > 1, S ⩽ M, real numbers a and b, 0 < b−a < M−1, and

V = ∪S
j=0
[
a+ jM−1,b+ jM−1) ,

the asymptotic equality

NV (β,Q) = |V |Q+Oε
(

Q1− 1
λ−1 lnQ

)
,

holds, where the implicit constant in the Vinogradov symbol O does not exceed

22λ+10lnM
(

1
c(Mβ)Mλ−2 +

1
c(β)

)
.
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The result of Lemma 2.10 depends on Diophantine properties of both β and Mβ. The relation
between c(β) and c(Mβ) is not simple, but for most numbers (in the sense of Lebesgue measure) these
quantities can be considered to be equal.

Recall that the integer base 2 can be replaced with an arbitrary real base a > 1. Take

lga1 =

√
5−1
2

, lg a2 =
√

2, lg a3 = e, lga4 = π

and let Ba j (Q), 1 ⩽ j ⩽ 4, be the number of integers n, 1 ⩽ n ⩽ Q, such that the leading digits of the
number an

j coincide with the digits of a positive integer A. Using well-known results about rational
approximation of lga j, we can retrace the proof of Theorem 2.6 to obtain the following result.

Theorem 2.11. As Q → ∞, we have

Ba1 (Q) = Qlg
A+1

A
+O(lnQ) ; (11)

Ba2 (Q) = Qlg
A+1

A
+O(lnQ) ; (12)

Ba3 (Q) = Qlg
A+1

A
+O

(
ln2Q

)
; (13)

Ba4 (Q) = Qlg
A+1

A
+O

(
Q

5
6

)
. (14)

For almost all a and an arbitrary positive constant ε> 0, we have

Ba (A,Q) = Qlg
A+1

A
+O

(
ln2+εQ

)
. (15)

There is every reason to expect that the estimate of the residual term in (11) will be the tightest
among (11)–(15) since the golden ratio

√
5−1
2 has the continued fraction representation [1,1, . . .], leading

to the estimate (4) with c(a1) = (
√

5)−1 − δ, λ = 2, for any δ > 0 and q > q0 (δ).
Let us consider another generalization of the original problem. Take m1 = 10x, . . . ,mk = 10xk .

For these sequences, we can define B′ (A1, . . . ,Ak,Q) similarly to B(A1, . . . ,Ak,Q) in Theorem 2.8 by
replacing p j with m j. Then the well-known metric lower bound on values of polynomials with integer
coefficients [12] can be used to obtain the following theorem.

Theorem 2.12. For almost all x and any δ> 0, we have

B′ (A1, . . . ,Ak,Q) = Q
k

∏
s=1

lg
As +1

As
+Oδ

(
lnk+δQ

)
.

3. Results of computational experiments

In order to evaluate the accuracy of our theoretical bounds, we have performed a number of
computations for large numbers Q, obtaining the following results.

Calculation of B(A,Q) for b = 2 and all A = 1,2, . . . ,9 shows that the deviation of B(A,Q) from
the asymptotic estimate Qlg A+1

A does not exceed 7 for 1 ⩽ Q ⩽ 106. This suggests that lg2 is like most
real numbers, i. e., that it lies in the class M(2).

Looking at the sequences 2n and 3n simultaneously, for the quantity B(A1,A2,Q) we have obtained
that for all combination of the numbers (A1,A2), 1 ⩽ A1 ⩽ 9, 1 ⩽ A2 ⩽ 9, Q ⩽ 106, we have∣∣∣∣B(A1,A2,Q)−Qlg

A1 +1
A1

lg
A2 +1

A2

∣∣∣∣⩽ 12.

Finally, considering the second, third, fourth, fifth and sixth digits for bases 2 and 3, and for all
possible digits 0 ⩽ A1 ⩽ 9, we obtain that the maximum deviation of B(s)

2 (A1,Q) and B(s)
3 (A1,Q) from

Qνs (A1) for 0 ⩽ Q ⩽ 106 does not exceed 22 (s = 2), 65 (s = 3), 122 (s = 4), 405 (s = 5), 921 (s = 6).
These results are visualized in the Figures 1 and 2 below.
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Fig. 2 suggests that the asymptotic growth of the respective deviation is proportional to es and
not 10s−1, as expected from considering the 10s−1 intervals.
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4. Conclusion

The problem of quantitative characterization of statistical properties of the first digits of integer
powers has a long history. We have established the connection between this problem and Diophantine
properties of logarithms, and obtained estimates for the remainder term in the asymptotic expression for
the number of integer powers with specific first digits. We have also proposed numerous generalizations
of this problem and provided state of the art solutions. Our results rely on known theorems establishing
Diophantine properties of the respective real logarithms. However, these theorems are often very inexact,
and improving them often requires solving difficult classical problems of Diophantine approximation.
In certain cases, metric approach allows researches to circumvent this obstacle by proving the desired
Diophantine properties for a subset of a box T ⊂ Rn of sufficiently large Lebesgue measure [12].

5. Topical problems in the theory of Diophantine approximation

The results presented in the paper show how Diophantine properties of numbers can have surprising
consequences in other areas of mathematics. To close out the article, let us formulate several topical
problems in Diophantine approximation.

Problem 1. Consider the well-known Dirichlet-type theorem on solutions of the inequality

|P(x)|< Q−n (16)

in polynomials P(x), degP ⩽ n, H(P)⩽ Q. Obtain bounds on the measure of sets σ(P) such that inequality
(16) holds for points in these sets.

Problem 2. Study inequality (16) for a) irreducible polynomials and b) reducible polynomials.
Problem 3. Generalize inequality (16) to the fields of a) complex numbers and b) p-adic numbers.
Problem 4. Consider the inequality

|D(P)|< 22n−2−2v, v ⩾ 0, (17)

where D(P) is the discriminant of a polynomial P with integer coefficients of degree n and height
H(P)⩽ Q. Find upper and lower bounds for the number of such polynomials satisfying the inequality (17)
in the fields of real and p-adic numbers.

The authors would like to thank Y. V. Prokhorov, Y. V. Nesterenko, A. Dubickas, F. Goetze and
V. G. Safonov for a number of useful constructive comments.

This work was supported by the Institute of Mathematics of the National Academy of Sciences
of Belarus within the framework of the state programme “Convergence–2020”.

References

1. Newcomb S. On the frequency of use of the different digits in natural numbers. American Journal
of Mathematics, 1881, vol. 4, pp. 39–40.

2. Benford F. The law of anomalous numbers. Proceedings of the American Philosophical Society,
1938, vol. 78, pp. 551–572.

3. Hürlimann W. Generalizing Benford’s Law Using Power Laws: Application to Integer
Sequences. International Journal of Mathematics and Mathematical Sciences, 2009, art. 970284, 10 pp.
https://doi.org/10.1155/2009/970284.

4. Kuipers L., Niederreiter H. Uniform Distribution of Sequences. New York, Wiley, 1974, 390 p.
(Pure and Applied Mathematics).

5. Vinogradov I. M. Selected Papers. Berlin, Springer-Verlag, 1985, 401 p.
6. Roth K. Rational approximations to algebraic numbers. Mathematica, 1955, vol. 2, pp. 1–20.
7. Khinchine A. Zur metrischen Theorie der diophantischen Approximationen. Mathematische

Annalen, 1924, vol. 92, pp. 115–125.
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