УДК 512.542

О КРИТИЧЕСКИХ σ-ЛОКАЛЬНЫХ ФОРМАЦИЯХ КОНЕЧНЫХ ГРУПП

И. Н. Сафонова

Белорусский государственный университет e-mail: in.safonova@mail.ru
Поступила 08.12.2023

В работе изучаются минимальные σ -локальные не \mathfrak{H} -формации конечных групп (или, иначе, \mathfrak{H}_{σ} -критические формации), т. е. такие σ -локальные формации, не входящие в класс групп \mathfrak{H} , все собственные σ -локальные подформации которых содержатся в \mathfrak{H} . Получено описание минимальных σ -локальных не \mathfrak{H} -формаций для произвольной σ -локальной формации \mathfrak{H} классического типа, т. е. σ -локальной формации, имеющей такое σ -локальное определение, все неабелевы значения которого σ -локальны. Основной результат работы в классе σ -локальных формаций решает задачу π . А. Шеметкова (1980 г.) об описании критических формаций для заданных классов конечных групп. В качестве следствий приведены описания π -критических формаций для ряда конкретных классов конечных групп, таких как классы всех π -нильпотентным, мета- π -нильпотентных групп, а также класс всех групп с π -нильпотентным коммутантом.

Введение. Изучение свойств формаций конечных групп и их классификация тесно связаны с исследованием вопросов наличия или отсутствия у изучаемой формации подформаций того или иного вида, а также их взаимного расположения в структуре подформаций данной формации. Поскольку решетка подформаций любой неединичной локальной формации бесконечна, то при изучении подформаций такой формации довольно затруднительно применение индуктивных рассуждений. Данное обстоятельство привело к необходимости разработки специальных методов исследования локальных формаций, связанных с понятием критической формации. В частности, при исследовании структурного строения локальных формаций важную роль играют минимальные локальные не \mathfrak{H} -формации [1] или, иначе, \mathfrak{H} -критические формации [2], т. е. такие локальные формации $\mathfrak{F} \not\subseteq \mathfrak{H}$, все собственные локальные подформации которых содержатся в классе групп \mathfrak{H} .

Общая задача изучения критических формаций была поставлена Л. А. Шеметковым на VI Всесоюзном симпозиуме по теории групп [1]. Решение этой задачи для локальных формаций было получено А. Н. Скибой в цикле работ 1980–1993 гг., завершающим результатом которого стало описание \mathfrak{H}_l -критических формаций для случая, когда \mathfrak{H}_l произвольная формация классического типа [3], т. е. формация, имеющая такой локальный экран, все неабелевы значения которого локальны. Результаты теории \mathfrak{H}_l -критических формаций широко использовались в вопросах классификации локальных формаций, при исследовании их структурного строения, а также при изучении несократимых факторизаций ограниченных и однопорожденных локальных формаций [4; 5].

В дальнейшем теория критических формаций конечных групп была развита для многих других типов формаций, таких как n-кратно локальные формации [6; 7], частично локальные [8–16], композиционные [17; 18] и ω -композиционные формации [19–25], тотально насыщенные формации [26; 27], Ω -расслоенные [28; 29] и ω -веерные [30] формации и др. В частности, в работах автора [9–11; 13; 16] разработана теория критических ω -локальных формаций. Некоторые ее приложения были найдены при изучении ω -локальных формаций

с заданной структурой подформаций, а также при исследовании свойств полугруппы ω-локальных формаций [31; 32].

Разработка обобщенно локальных методов в теории формаций приводит к необходимости изучения и классификации критических σ -локальных формаций. При этом, следуя [1; 2], минимальной σ -локальной не \mathfrak{H} -формацией или \mathfrak{H}_{σ} -критической формацией мы называем σ -локальную формацию \mathfrak{H} \mathfrak{H} \mathfrak{H} , все собственные σ -локальные подформации которой содержатся в классе групп \mathfrak{H} . Изучение \mathfrak{H}_{σ} -критических формаций начато автором в работе [33], где доказан критерий для \mathfrak{H}_{σ} -критической формации, а также получено описание минимальных σ -локальных не \mathfrak{H} -формаций для таких формаций конечных групп, как формации всех \mathfrak{H} -групп и всех \mathfrak{H} -групп, где \mathfrak{H} \mathfrak

Следуя [2], σ -локальную формацию $\mathfrak H$ будем называть σ -локальной формацией классического типа, если $\mathfrak H$ имеет такое σ -локальное определение, все неабелевы значения которого σ -локальны.

В данной работе, в рамках общей задачи Л. А. Шеметкова по изучению критических формаций [1], нами получено описание минимальных σ -локальных не \mathfrak{H} -формаций для произвольной σ -локальной формации \mathfrak{H} классического типа, а также даны описания \mathfrak{H}_{σ} -критических формаций для ряда конкретных классов конечных групп, таких как класс всех σ -нильпотентных групп, класс всех мета- σ -нильпотентных групп, класс всех групп с σ -нильпотентным коммутантом.

Основным результатом работы является следующая теорема.

Теорема А. Пусть $\mathfrak{H} - \sigma$ -локальная формация классического типа и H – ее каноническое σ -локальное определение. Тогда и только тогда \mathfrak{H} является минимальной σ -локальной не \mathfrak{H} -формацией, когда $\mathfrak{H} = l_{\sigma} \text{form}(G)$, где G – такая монолитическая группа c монолитом $P = G^{\mathfrak{H}}$, что выполняется одно из следующих условий:

- 1) $G = P npocmas \sigma_i$ -rpynna, $\sigma_i \notin \sigma(\mathfrak{H})$;
- 2) P не σ -примарная группа и $P = G^{H(\sigma_i)}$ для всех $\sigma_i \in \sigma(P)$;
- 3) $G = P \rtimes K$, где $P = C_G(P) p$ -группа, $p \in \sigma_i$, а K такая монолитическая группа c монолитом $Q = K^{H(\sigma_i)}$, что $\sigma_i \notin \sigma(Q)$ и либо $\Phi(K) = 1$ и $K^{H(\sigma_j)} \subseteq Q$ для всех $\sigma_j \in \sigma(Q)$, либо K минимальная не $H(\sigma_i)$ -группа одного из следующих типов:
 - а) группа кватернионов порядка 8, если $2 \notin \sigma_i$;
 - б) неабелева группа порядка q^3 простой нечетной экспоненты $q \notin \sigma_i$;
 - в) циклическая q-группа, $q \notin \sigma_i$.

Мы докажем теорему А в разделе 2 и приведем некоторые следствия данного результата.

1. Некоторые определения и вспомогательные результаты. Основные определения, обозначения и ряд свойств σ -локальных формаций представлены в работах [34–43]. Пусть $\sigma = \{\sigma_i \mid i \in I\}$ – некоторое разбиение множества всех чисел \mathbb{P} . Если n целое число, то $\sigma(n)$ обозначает множество $\{\sigma_i \mid \sigma_i \cap \sigma(n) \neq \varnothing\}$; $\sigma(G) = \sigma(|G|)$.

Группу G называют [34]: σ -примарной, если G является σ_i -группой для некоторого i; σ -нильпотентной, если каждый главный фактор H/K группы G является σ -центральным в G, т. е. полупрямое произведение $(H/K) \rtimes (G/C_G(H/K))$ является σ -примарным; σ -разрешимой, если G=1 или $G\neq 1$ и каждый главный фактор G является σ -примарным.

Отметим, что класс всех σ -разрешимых групп обозначают через \mathfrak{S}_{σ} , а через \mathfrak{N}_{σ} – класс всех σ -нильпотентных групп. Напомним также, что через (1) обозначают класс всех единичных групп.

Пусть $\varnothing \neq \Pi \subseteq \sigma$. Тогда $\Pi' = \sigma \setminus \Pi$. Группу G называют Π -группой, если $\sigma(G) \subseteq \Pi$. Через \mathfrak{G}_{Π} обозначают класс всех Π -групп, а через \mathfrak{N}_{Π} – класс всех σ -нильпотентных Π -групп. В частности, если $\Pi = \{\sigma_i\}$, то \mathfrak{G}_{σ_i} – класс всех σ_i -групп, а $\mathfrak{G}_{\sigma_i'}$ – класс всех σ_i' -групп.

Символом $O_{\sigma_i',\sigma_i}(G)$ обозначают $(\mathfrak{G}_{\sigma_i'}\mathfrak{G}_{\sigma_i})$ -радикал группы G (наибольшую нормальную $(\mathfrak{G}_{\sigma_i'}\mathfrak{G}_{\sigma_i})$ -подгруппу группы G), т. е. $O_{\sigma_i',\sigma_i}(G) = G_{\mathfrak{G}_{\sigma_i'}\mathfrak{G}_{\sigma_i}}$.

Функцию f вида $f: \sigma \to \{$ формации групп $\}$ называют формационной σ -функцией. Для всякой формационной σ -функции f класс $LF_{\sigma}(f)$ определяется следующим образом:

$$LF_{\sigma}(f)=(G\mid G=1$$
 или $G\neq 1$ и $G/O_{\sigma'_i,\sigma_i}(G)\in f(\sigma_i)$ для всех $\sigma_i\in \sigma(G)$).

Если для некоторой формационной σ -функции f имеет место $\mathfrak{F} = LF_{\sigma}(f)$, то говорят, что формация \mathfrak{F} является σ -локальной, а f – σ -локальное определение \mathfrak{F} .

Если f – формационная σ -функция, то через $\mathrm{Supp}(f)$ обозначают носитель f, т. е. множество всех σ_i таких, что $f(\sigma_i) \neq \varnothing$.

Формационную σ -функцию f называют: внутренней, если $f(\sigma_i) \subseteq LF_{\sigma}(f)$ для всех i; полной, если $f(\sigma_i) = \mathfrak{G}_{\sigma_i} f(\sigma_i)$ для всех i. Если f – полная внутренняя формационная σ -функция и $\mathfrak{F} = LF_{\sigma}(f)$, то f называют каноническим σ -локальным определением формации \mathfrak{F} .

Пусть $\mathfrak X$ – некоторая совокупность групп. Через $l_\sigma \mathrm{form}(\mathfrak X)$ обозначают пересечение всех σ -локальных формаций, содержащих $\mathfrak X$, и называют σ -локальной формацией, порожденной совокупностью групп $\mathfrak X$. Если $\mathfrak F=l_\sigma \mathrm{form}(G)$ для некоторой группы G, то $\mathfrak F$ называют однопорожденной σ -локальной формацией.

Для всякого класса групп \mathfrak{F} и всякого $\sigma_i \in \sigma$ полагают

$$\mathfrak{F}(\sigma_i) = egin{cases} (G/O_{\sigma_i',\sigma_i}(G) \mid G \in \mathfrak{F}), & \text{если } \sigma_i \in \sigma(\mathfrak{F}), \ \varnothing, & \text{если } \sigma_i \notin \sigma(\mathfrak{F}). \end{cases}$$

Пусть \mathfrak{H} – некоторый класс групп. Формацию \mathfrak{F} называют минимальной не \mathfrak{H} -формацией или \mathfrak{H} -критической формацией, если $\mathfrak{F} \not\subseteq \mathfrak{H}$, но все собственные подформации из \mathfrak{F} содержатся в \mathfrak{H} .

 σ -Локальную формацию $\mathfrak F$ будем называть *минимальной* σ -локальной не $\mathfrak F$ -формацией или $\mathfrak F_{\sigma}$ -критической формацией [33], если $\mathfrak F \not\subseteq \mathfrak F$, но все ее собственные σ -локальные подформации содержатся в классе групп $\mathfrak F$.

Будем называть σ -локальную формацию \mathfrak{F} неприводимой σ -локальной формацией (или, иначе, l_{σ} -неприводимой формацией), если l_{σ} form ($\mathfrak{X}_i \mid i \in I$) $\subset \mathfrak{F}$, где { $\mathfrak{X}_i \mid i \in I$ } – набор всех собственных σ -локальных подформаций из \mathfrak{F} . В противном случае формацию \mathfrak{F} будем называть приводимой σ -локальной формацией (или, иначе, l_{σ} -приводимой формацией).

Для доказательства основного результата работы нам понадобятся некоторые известные факты теории формаций.

Следующие две леммы являются частными случаями лемм 2.3 и 2.6 работы [37] соответственно.

Лемма 1.1 [37]. Если класс групп \mathfrak{F}_j является σ -локальной формацией для всех $j \in J$, то класс $\bigcap_{i \in J} \mathfrak{F}_i$ также является σ -локальной формацией.

Лемма 1.2 [37]. Пусть $\mathfrak{F} = l_{\sigma} \text{form}(\mathfrak{X}) = LF_{\sigma}(f) - \sigma$ -локальная формация, порожденная \mathfrak{X} , и $\Pi = \sigma(\mathfrak{X})$. Пусть m – формационная σ -функция, такая что $m(\sigma_i) = \text{form}(\mathfrak{X}(\sigma_i))$ для всех $\sigma_i \in \Pi$ и $m(\sigma_i) = \varnothing$ для всех $\sigma_i \in \Pi'$. Тогда:

- (1) $\Pi = \sigma(\mathfrak{F})$,
- (2) m является σ -локальным определением \mathfrak{F} ,
- (3) $m(\sigma_i) \subseteq f(\sigma_i) \cap \mathfrak{F}$ для всех i.

Необходимо отметить, что σ -локальное определение m формации \mathfrak{F} из леммы 1.2 является наименьшим σ -локальным определением формации \mathfrak{F} .

Лемма 1.3 [37]. Пусть f и h – формационые σ -функции и пусть $\Pi = \operatorname{Supp}(f)$. Допустим, что $\mathfrak{F} = LF_{\sigma}(f) = LF_{\sigma}(h)$. Тогда:

- (1) $\Pi = \sigma(\mathfrak{F})$.
- (2) $\mathfrak{F}=(\cap_{\sigma_i\in\Pi}\mathfrak{G}_{\sigma_i'}\mathfrak{G}_{\sigma_i}f(\sigma_i))\cap\mathfrak{G}_{\Pi}$. Следовательно, \mathfrak{F} насыщенная формация.

- (3) Если каждая группа из $\mathfrak F$ σ -разрешима, то $\mathfrak F=(\cap_{\sigma_i\in\Pi}\mathfrak S_{\sigma_i'}\mathfrak G_{\sigma_i}f(\sigma_i))\cap\mathfrak S_\Pi.$
- (4) Если $\sigma_i \in \Pi$, то $\mathfrak{G}_{\sigma_i}(f(\sigma_i) \cap \mathfrak{F}) = \mathfrak{G}_{\sigma_i}(h(\sigma_i) \cap \mathfrak{F}) \subseteq \mathfrak{F}$.
- (5) $\mathfrak{F} = LF_{\sigma}(F)$, где F единственная формационная σ -функция, такая что $F(\sigma_i) = \mathfrak{G}_{\sigma_i}F(\sigma_i) \subseteq \mathfrak{F}$ для всех $\sigma_i \in \Pi$ и $F(\sigma_i) = \varnothing$ для всех $\sigma_i \in \Pi'$. Более того, $F(\sigma_i) = \mathfrak{G}_{\sigma_i}(f(\sigma_i) \cap \mathfrak{F})$ для всех i.

Отметим, что формационная σ -функция F из условия леммы 1.3 является каноническим σ -локальным определением формации \mathfrak{F} .

Лемма 1.4 [33]. Пусть $\mathfrak{F}_j = LF_{\sigma}(f_j)$, где f_j – наименьшее σ -локальное определение формации \mathfrak{F}_i , j=1,2. Тогда в том и только том случае $\mathfrak{F}_1 \subseteq \mathfrak{F}_2$, когда $f_1 \leq f_2$.

Лемма 1.5 [33]. *Если* $\mathfrak{F} = LF_{\sigma}(f)$ и $G/O_{\sigma_i}(G) \in f(\sigma_i) \cap \mathfrak{F}$ для некоторого $\sigma_i \in \sigma(G)$, то $G \in \mathfrak{F}$.

Лемма 1.6 [4, с. 167]. Пусть A – монолитическая группа с монолитом P. Тогда если $P \not\subseteq \Phi(A)$, то form(A/P) – единственная максимальная подформация формации form(A).

Лемма 1.7 [37]. Пусть $\mathfrak{M} = LF_{\sigma}(m)$, где m – внутренняя формационная σ -функция, $\Pi = \sigma(\mathfrak{M})$ и пусть \mathfrak{H} – непустая формация. Допустим, что либо

- (i) $\mathfrak{H} = LF_{\sigma}(h)$, где h внутренняя формационная σ -функция, либо
- (ii) $\mathfrak{G}_{\sigma_i}\mathfrak{H}\subseteq\mathfrak{H}$ для всех $\sigma_i\in\sigma\setminus\Pi$.

Тогда $\mathfrak{M} \circ \mathfrak{H} = LF_{\sigma}(f)$, где

$$f(\sigma_i) = \begin{cases} m(\sigma_i) \circ \mathfrak{H}, & \textit{если } \sigma_i \in \Pi, \\ h(\sigma_i), & \textit{если } \sigma_i \in \sigma \setminus \Pi \textit{ в случае (i)}, \\ \mathfrak{H}, & \textit{если } \sigma_i \in \sigma \setminus \Pi \textit{ в случае (ii)}. \end{cases}$$

Лемма 1.8 [33]. Пусть $\mathfrak{H} = LF_{\sigma}(H)$, $\mathfrak{F} = LF_{\sigma}(f)$, где H – каноническое σ -локальное определение формации \mathfrak{F} . Тогда и только тогда \mathfrak{F} является минимальной σ -локальной не \mathfrak{H} -формацией, когда $\mathfrak{F} = l_{\sigma} \text{form}(G)$, где G – такая группа минимального порядка из $\mathfrak{F} \setminus \mathfrak{H}$ с монолитом $P = G^{\mathfrak{H}}$, что для всех $\sigma_i \in \sigma(P)$ формация $f(\sigma_i)$ является $(H(\sigma_i))$ -критической.

Частным случаем теоремы 1.13 [37] является следующая лемма.

Лемма 1.9 [37]. Множество l_{σ} всех σ -локальных формаций образует подполугруппу полугруппы всех формаций $G\mathfrak{G}$. Более того, $|l_{\sigma}|=2^{\aleph_0}$ для каждого σ , где $|\sigma|>1$, а \mathfrak{G}_{σ_i} является минимальным идемпотентом в l_{σ} для всех $i\in I$.

Лемма 1.10 [4, с. 171]. Если в группе G имеется лишь одна минимальная нормальная подгруппа и $O_p(G)=1$ (p – некоторое простое число), то существует точный неприводимый F_pG -модуль, где F_p – поле из p элементов.

Следующая лемма является прямым следствием лемм 1.3 и 1.4.

Лемма 1.11. Пусть $\mathfrak{F}_i = LF_{\sigma}(F_i)$, где F_i – каноническое σ -локальное определение формации \mathfrak{F}_i , i=1,2. Тогда $\mathfrak{F}_1 \subseteq \mathfrak{F}_2$ тогда и только тогда, когда $F_1 \leqslant F_2$.

Лемма 1.12 [3, с. 175]. Тогда и только тогда \mathfrak{F} – минимальная неабелева формация, когда $\mathfrak{F} = \text{form}(A)$, где A – одна из следующих групп:

- 1) ненильпотентная монолитическая группа с таким монолитом P, что $P \not\subseteq \Phi(A)$ и факторгруппа A/P абелева;
 - 2) группа кватернионов порядка 8;
 - 3) неабелева группа порядка q^3 простой нечетной экспоненты q.

Следующая лемма является частным случаем следствия 19.16 [4].

Лемма 1.13 [4, с. 194]. Тогда и только тогда формация $\mathfrak F$ нильпотентна, когда каждая подформация из $\mathfrak F$ наследственна.

2. Минимальные σ-локальные не *\$***-формации.** Прежде чем мы докажем основной результат, установим справедливость следующих вспомогательных утверждений.

Лемма 2.1. Пусть Π – непустое подмножество из σ . Тогда класс \mathfrak{G}_{Π} всех Π -групп и класс \mathfrak{R}_{Π} всех σ -нильпотентных Π -групп являются σ -локальными формациями и справедливы следующие утверждения:

- (1) $\mathfrak{G}_{\Pi} = LF_{\sigma}(g)$, где g каноническое σ -локальное определение формации \mathfrak{G}_{Π} . При этом, $g(\sigma_i) = \mathfrak{G}_{\Pi}$ для всех $\sigma_i \in \Pi$ и $g(\sigma_i) = \varnothing$ для всех $\sigma_i \in \Pi'$.
- (2) $\mathfrak{N}_{\Pi} = LF_{\sigma}(n) = LF_{\sigma}(N)$, где n и N, соответственно, наименьшее и каноническое σ -локальные определения формации \mathfrak{N}_{Π} . При этом $n(\sigma_i) = (1)$ для всех $\sigma_i \in \Pi$ и $n(\sigma_i) = \varnothing$ для всех $\sigma_i \in \Pi'$, $N(\sigma_i) = \mathfrak{G}_{\sigma_i}$ для всех $\sigma_i \in \Pi$ и $N(\sigma_i) = \varnothing$ для всех $\sigma_i \in \Pi'$.

Доказательство. (1) См. замечание 2.4 [37].

(2) Пусть n — наименьшее и N — каноническое σ -локальные определения формации \mathfrak{N}_{Π} . Поскольку, формации \mathfrak{G}_{Π} и \mathfrak{N}_{σ} σ -локальны (см. пример 1.2(iv) [37]) и, очевидно, $\mathfrak{N}_{\Pi} = \mathfrak{N}_{\sigma} \cap \mathfrak{G}_{\Pi}$, то формация \mathfrak{N}_{Π} σ -локальна по лемме 1.1.

Понятно, что $\mathfrak{N}_{\Pi} = l_{\sigma} \text{form}(\mathfrak{N}_{\Pi})$. Тогда в силу леммы 1.2 имеем

$$n(\sigma_i) = \text{form}(\mathfrak{X}(\sigma_i)) = \text{form}(G/O_{\sigma'_i,\sigma_i}(G) \mid G \in \mathfrak{N}_{\Pi}) = (1)$$

для всех $\sigma_i \in \Pi$ и $n(\sigma_i) = \emptyset$ для всех $\sigma_i \in \Pi'$. Применяя теперь лемму 1.3(5) получаем, что $N(\sigma_i) = \mathfrak{G}_{\sigma_i} n(\sigma_i) = \mathfrak{G}_{\sigma_i}$ для всех $\sigma_i \in \Pi$ и $N(\sigma_i) = \emptyset$ для всех $\sigma_i \in \Pi'$.

Лемма 2.2. Пусть $G = P \rtimes K$, где $P = C_G(P)$ – минимальная нормальная p-подгруппа группы G, $p \in \sigma_i$ для некоторого i, а K – такая монолитическая группа c монолитом Q, что $\sigma_i \not\in \sigma(Q)$ и $\Phi(K) = 1$. Тогда формация $\mathfrak{F} = l_\sigma \mathrm{form}(G)$ является l_σ -неприводимой и ее максимальная σ -локальная подформация \mathfrak{H} имеет такое внутреннее σ -локальное определение h, что

$$h(\sigma_i) = \text{form}(K/Q), \ h(\sigma_j) = \text{form}(G/O_{\sigma'_i,\sigma_j}(G))$$

для всех $\sigma_j \in \sigma(G) \setminus \{\sigma_i\}$ и $h(\sigma_j) = \emptyset$ для всех $\sigma_j \notin \sigma(G)$.

Доказательство. Пусть h – формационная σ -функция, удовлетворяющая условиям леммы, и $\mathfrak{H} = LF_{\sigma}(h)$. Вначале покажем, что $G/P \in \mathfrak{H}$.

Пусть $\sigma_j \in \sigma(G) \setminus \{\sigma_i\}$. Тогда поскольку $P - \sigma_i$ -группа, то $P \subseteq O_{\sigma'_j}(G) \subseteq O_{\sigma'_j,\sigma_j}(G)$. Следовательно, $O_{\sigma'_i,\sigma_j}(G/P) = O_{\sigma'_i,\sigma_j}(G)/P$. Поэтому

$$G/O_{\sigma_j',\sigma_j}(G) \simeq (G/P)/(O_{\sigma_j',\sigma_j}(G)/P) = (G/P)/O_{\sigma_j',\sigma_j}(G/P).$$

Поскольку по условию $h(\sigma_j) = \text{form}(G/O_{\sigma_j',\sigma_j}(G))$, то $(G/P)/O_{\sigma_j',\sigma_j}(G/P) \in h(\sigma_j)$.

Пусть при каноническом изоморфизме $K\simeq G/P$ подгруппе Q в группе G/P соответствует подгруппа R/P. Тогда, ввиду условия леммы, $\sigma_i\notin\sigma(R/P)$. Значит, $R/P\subseteq O_{\sigma_i'}(G/P)$. Следовательно, $R/P\subseteq O_{\sigma_i'}(G/P)\subseteq O_{\sigma_i',\sigma_i}(G/P)$. Так как при этом

$$(G/P)/(R/P) \simeq K/Q \in \text{form}(K/Q) = h(\sigma_i),$$

то $(G/P)/O_{\sigma'_i,\sigma_i}(G/P)\in h(\sigma_i)$. Таким образом, для любого $\sigma_k\in\sigma(G/P)$ имеет место $(G/P)/O_{\sigma'_k,\sigma_k}(G/P)\in h(\sigma_k)$. Отсюда следует, что $G/P\in LF_\sigma(h)=\mathfrak{H}$.

Покажем теперь, что h является внутренней формационной σ -функцией. Поскольку по условию леммы $h(\sigma_i) = \text{form}(K/Q)$ и $G/P \in \mathfrak{H}$, то

$$h(\sigma_i) \subseteq \text{form}(K) = \text{form}(G/P) \subseteq \mathfrak{H}.$$

Пусть теперь $\sigma_j \in \sigma(G) \setminus \{\sigma_i\}$. Тогда $O_{\sigma'_j,\sigma_j}(G)/P = O_{\sigma'_j,\sigma_j}(G/P)$. Значит, поскольку $G/O_{\sigma'_j,\sigma_j}(G) \simeq (G/P)/O_{\sigma'_j,\sigma_j}(G/P)$ и $G/P \in \mathfrak{H}$, то $G/O_{\sigma'_j,\sigma_j}(G) \in \mathfrak{H}$. Следовательно,

$$h(\sigma_j) = \text{form}(G/O_{\sigma'_j,\sigma_j}(G)) \subseteq \mathfrak{H}.$$

Таким образом, h – внутреннее σ -локальное определение формации \mathfrak{H} .

Пусть теперь \mathfrak{M} – произвольная собственная σ -локальная подформация \mathfrak{F} и m – ее наименьшее σ -локальное определение. Покажем, что $\mathfrak{M} \subseteq \mathfrak{H}$. Обозначим через f наименьшее σ -локальное определение формации \mathfrak{F} . Ввиду леммы $1.2\ f(\sigma_k) = \mathrm{form}(G/O_{\sigma_k',\sigma_k}(G))$ для всех $\sigma_k \in \sigma(G)$ и $f(\sigma_k) = \varnothing$ для всех $\sigma_k \notin \sigma(G)$.

Согласно лемме 1.4 имеем $m \le f$. Пусть $\sigma_j \in \sigma(G) \setminus \{\sigma_i\}$. Тогда, ввиду условия леммы, имеет место равенство $h(\sigma_i) = f(\sigma_i)$. Значит, для всех $\sigma_i \in \sigma(G) \setminus \{\sigma_i\}$ имеем $m(\sigma_i) \subseteq h(\sigma_i)$.

Покажем, что $m(\sigma_i) \subset f(\sigma_i)$. Допустим $m(\sigma_i) = f(\sigma_i)$. Тогда поскольку единственная минимальная нормальная подгруппа P группы G является σ_i -группой и $O_{\sigma_i}(K) = 1$ по условию, то $P = O_{\sigma_i}(G)$. Поэтому $G/O_{\sigma_i}(G) = G/P \in m(\sigma_i)$. Значит, по лемме 1.5 имеем $G \in \mathfrak{M}$. Следовательно, $\mathfrak{F} = l_{\sigma} \text{form}(G) \subseteq \mathfrak{M}$. Последнее противоречит определению формации \mathfrak{M} . Таким образом, $m(\sigma_i) \subset f(\sigma_i)$.

В силу леммы 1.6 формация $\mathrm{form}(K/Q)=h(\sigma_i)$ является единственной максимальной подформацией формации $\mathrm{form}(G/O_{\sigma_i',\sigma_i}(G))=\mathrm{form}(G/P)=\mathrm{form}(K)$. Поэтому $m(\sigma_i)\subseteq \subseteq \mathrm{form}(K/Q)=h(\sigma_i)$. Таким образом, для всех $\sigma_k\in \sigma$ имеет место $m(\sigma_k)\subseteq h(\sigma_k)$. Последнее влечет $\mathfrak{M}\subset \mathfrak{H}$.

Покажем, что $\mathfrak{H}\subseteq\mathfrak{F}$. Для этого достаточно установить, что $h\leqslant f$. По лемме $1.2\ f(\sigma_i)=$ = form(G/P)= form(K). Следовательно, $K/Q\in f(\sigma_i)$. Поэтому $h(\sigma_i)\subseteq f(\sigma_i)$. С другой стороны, по условию $h(\sigma_j)=$ form $(G/O_{\sigma'_j,\sigma_j}(G))=f(\sigma_j)$ для всех $\sigma_j\in\sigma(G)\setminus\{\sigma_i\}$. Таким образом, для всех σ_k справедливо включение $h(\sigma_k)\subseteq f(\sigma_k)$. Поэтому $h\leqslant f$ и $\mathfrak{H}\subseteq\mathfrak{F}$.

Докажем теперь, что $\mathfrak{H} \subset \mathfrak{F}$. Допустим, что $\mathfrak{H} = \mathfrak{F}$ и пусть k — наименьшее σ -ло-кальное определение формации \mathfrak{H} . Тогда k = f и, кроме того, $k \leq h$. Но $h(\sigma_i) \subset f(\sigma_i)$. Значит, $k(\sigma_i) \subset f(\sigma_i)$. Противоречие. Следовательно, $\mathfrak{H} \subset \mathfrak{F}$. Таким образом, формация \mathfrak{F} является l_{σ} -неприводимой и \mathfrak{H} — единственная максимальная σ -локальная подформация формации \mathfrak{F} .

Лемма 2.3. Пусть \mathfrak{M} – непустая формация, $\mathfrak{H} = \mathfrak{G}_{\Pi'}\mathfrak{N}_{\Pi}\mathfrak{M}$, где Π – некоторое непустое подмножество из σ . Тогда $\mathfrak{H} = \sigma$ -локальная формация σ 0 е каноническое σ -локальное определение σ 1 такое, что σ 2 σ 3 для всех σ 4 σ 6 σ 7.

Доказательство. Положим $\mathfrak{F}=\mathfrak{G}_{\Pi'}\mathfrak{N}_{\Pi}$ и пусть H – каноническое σ -локальное определение формации \mathfrak{H} . По лемме 2.1 формация $\mathfrak{G}_{\Pi'}$ имеет такое внутреннее σ -локальное определение g, что $g(\sigma_i)=\mathfrak{G}_{\Pi'}$ для всех $\sigma_i\in\Pi'$ и $g(\sigma_i)=\varnothing$ для всех $\sigma_i\in\Pi$, а формация \mathfrak{N}_{Π} имеет такое внутреннее σ -локальное определение n, что $n(\sigma_i)=\mathfrak{G}_{\sigma_i}$ для всех $\sigma_i\in\Pi$ и $n(\sigma_i)=\varnothing$ для всех $\sigma_i\in\Pi'$. Значит, по лемме 1.7 формация \mathfrak{F} имеет такое σ -локальное определение f, что $f(\sigma_i)=g(\sigma_i)\mathfrak{N}_{\Pi}=\mathfrak{G}_{\Pi'}\mathfrak{N}_{\Pi}$ для всех $\sigma_i\in\Pi'$ и $f(\sigma_i)=n(\sigma_i)=\mathfrak{G}_{\sigma_i}$ для всех $\sigma_i\in\Pi$. В свою очередь формация \mathfrak{H} , ввиду леммы 1.7, имеет такое σ -локальное определение h, что $h(\sigma_i)=f(\sigma_i)\mathfrak{M}=\mathfrak{G}_{\Pi'}\mathfrak{N}_{\Pi}\mathfrak{M}$ для всех $\sigma_i\in\Pi'$ и $h(\sigma_i)=f(\sigma_i)\mathfrak{M}=\mathfrak{G}_{\sigma_i}\mathfrak{M}$ для всех $\sigma_i\in\Pi'$ и $h(\sigma_i)=f(\sigma_i)\mathfrak{M}=\mathfrak{G}_{\sigma_i}\mathfrak{M}$ для всех $\sigma_i\in\Pi'$ и $h(\sigma_i)=\mathfrak{G}_{\sigma_i}\mathfrak{M}\subseteq\mathfrak{H}$ для всех $\sigma_i\in\Pi$. Поскольку $h(\sigma_i)=\mathfrak{H}$ для всех $\sigma_i\in\Pi'$ и $h(\sigma_i)=\mathfrak{G}_{\sigma_i}\mathfrak{M}\subseteq\mathfrak{H}$ для всех $\sigma_i\in\Pi$. То σ -локальное определение σ является внутренним. Кроме того, очевидно, σ_i σ_i для всех σ_i . Таким образом, σ_i σ_i на σ_i для всех σ_i от σ_i для всех σ_i . Таким образом, σ_i на σ_i на σ_i для всех σ_i от σ_i от σ_i для всех σ_i . Таким образом, σ_i на σ_i

Лемма 2.4. Пусть G – монолитическая группа c не σ -примарным монолитом P. Тогда формация $\mathfrak{F} = l_{\sigma} \mathrm{form}(G)$ является l_{σ} -неприводимой u ее максимальная σ -локальная подформация \mathfrak{H} имеет такое внутреннее σ -локальное определение h, что $h(\sigma_i) = \mathrm{form}(G/P)$ для всех $\sigma_i \in \sigma(P)$, $h(\sigma_i) = \mathrm{form}(G/O_{\sigma_i',\sigma_i}(G))$ для всех $\sigma_i \in \sigma(G) \setminus \sigma(P)$ u $h(\sigma_i) = \emptyset$ для всех $\sigma_i \notin \sigma(G)$.

Доказательство. Пусть h – формационная σ -функция, удовлетворяющая условиям леммы, $\mathfrak{H} = LF_{\sigma}(h)$. Покажем, что $G/P \in \mathfrak{H}$.

Пусть $\sigma_i \in \sigma(G/P)$. Допустим, что $\sigma_i \in \sigma(P)$. Тогда $h(\sigma_i) = \text{form}(G/P)$ и поэтому $(G/P)/O_{\sigma_i',\sigma_i}(G/P) \in h(\sigma_i)$. Пусть $\sigma_i \in \sigma(G/P) \setminus \sigma(P)$. Тогда поскольку $G \in \mathfrak{F}$, то

 $G/O_{\sigma'_i,\sigma_i}(G)\in f(\sigma_i)$, где f — наименьшее σ -локальное определение формации \mathfrak{F} . По лемме 1.2 имеем $f(\sigma_i)=\mathrm{form}(G/O_{\sigma'_i,\sigma_i}(G))=h(\sigma_i)$. Значит, $G/O_{\sigma'_i,\sigma_i}(G)\in h(\sigma_i)$. Таким образом, для всех $\sigma_i\in\sigma(G/P)$ имеет место $(G/P)/O_{\sigma'_i,\sigma_i}(G/P)\in h(\sigma_i)$. Последнее влечет $G/P\in LF_{\sigma}(h)=\mathfrak{H}$. В частности, для всех $\sigma_i\in\sigma(P)$ имеет место $h(\sigma_i)=\mathrm{form}(G/P)\subseteq\mathfrak{H}$.

Пусть $\sigma_i \in \sigma(G) \setminus \sigma(P)$. Тогда $P \subseteq O_{\sigma_i',\sigma_i}(G)$ и поэтому $G/O_{\sigma_i',\sigma_i}(G)$ – гомоморфный образ G/P. Следовательно, $G/O_{\sigma_i',\sigma_i}(G) \in \text{form}(G/P) \subseteq \mathfrak{H}$. Последнее означает, что $h(\sigma_i) \subseteq \mathfrak{H}$. Таким образом, h – внутреннее σ -локальное определение \mathfrak{H} .

Пусть \mathfrak{M} – произвольная собственная σ -локальная подформация формации \mathfrak{F} , m – ее наименьшее σ -локальное определение. Покажем, что $\mathfrak{M}\subseteq\mathfrak{H}$. Ввиду леммы 1.4 имеем $m\leq f$. Кроме того, по лемме 1.2 для всех $\sigma_i\in\sigma(G)\setminus\sigma(P)$ имеет место $h(\sigma_i)=f(\sigma_i)$. Значит, $m(\sigma_i)\subseteq h(\sigma_i)$ для всех $\sigma_i\in\sigma(G)\setminus\sigma(P)$. Пусть теперь $\sigma_i\in\sigma(P)$. Тогда $O_{\sigma_i',\sigma_i}(G)=1$ и по лемме 1.2 имеет место равенство $f(\sigma_i)=\mathrm{form}(G/O_{\sigma_i',\sigma_i}(G))=\mathrm{form}(G)$. Если $f(\sigma_i)=m(\sigma_i)$, то $G\in m(\sigma_i)$. Но m – внутреннее σ -локальное определение формации \mathfrak{M} . Следовательно, $G\in\mathfrak{M}$ и поэтому $\mathfrak{F}=l_\sigma\mathrm{form}(G)\subseteq\mathfrak{M}\subset\mathfrak{F}$. Противоречие. Следовательно, $m(\sigma_i)\subset f(\sigma_i)$. По лемме 1.6 формация $f(\sigma_i)=\mathrm{form}(G)$ имеет единственную максимальную подформацию в $\mathrm{form}(G/P)=h(\sigma_i)$. Значит, $m(\sigma_i)\subseteq h(\sigma_i)$. Таким образом, $m\leq h$ и поэтому $\mathfrak{M}\subset\mathfrak{F}$ по лемме 1.4.

По определению формационной σ -функции h имеем $h(\sigma_i)\subseteq f(\sigma_i)$ для всех σ_i . Следовательно, $\mathfrak{H}\subseteq\mathfrak{F}$. Если $\sigma_i\in\sigma(P)$, то $h(\sigma_i)=\mathrm{form}(G/P)\subset f(\sigma_i)$. Значит, если t – минимальное σ -локальное определение формации \mathfrak{H} , то $t(\sigma_i)\subset f(\sigma_i)$. Последнее означает, что $\mathfrak{H}\subseteq\mathfrak{F}$. Следовательно, формация \mathfrak{F} является l_{σ} -неприводимой и \mathfrak{H} – единственная максимальная σ -локальная подформация \mathfrak{F} .

Лемма 2.5. Пусть \mathfrak{M} – σ -локальная формация, $\mathfrak{H} = \mathfrak{G}_{\sigma'_i} \mathfrak{G}_{\sigma_i} \mathfrak{M}$. Тогда и только тогда \mathfrak{F} является минимальной σ -локальной не \mathfrak{H} -формацией, когда $\mathfrak{F} = l_{\sigma} \text{form}(G)$, где G – такая монолитическая группа c монолитом $P = G^{\mathfrak{H}}$, что $\sigma_i \in \sigma(P)$, и либо P – не σ -примарная группа и $P = G^{\mathfrak{G}_{\sigma_i} \mathfrak{M}}$, либо $G = P \rtimes K$, где $P = C_G(P)$ – абелева p-группа, $p \in \sigma_i$, а K – такая монолитическая группа c монолитом $Q = K^{\mathfrak{G}_{\sigma_i} \mathfrak{M}}$, что $Q \not\subseteq \Phi(K)$ и $\sigma_i \notin \sigma(Q)$.

Доказательство. Обозначим через f минимальное σ -локальное определение формации \mathfrak{F} , а через H – каноническое σ -локальное определение формации \mathfrak{F} .

Heoбxoдимость. Пусть \mathfrak{F} — минимальная σ -локальная не \mathfrak{H} -формация. Тогда по лемме $1.8~\mathfrak{F}=l_{\sigma}\mathrm{form}(G)$, где G — такая группа минимального порядка из $\mathfrak{F}\setminus\mathfrak{H}$ с монолитом $P=G^{\mathfrak{H}}$, что для всех $\sigma_i\in\sigma(P)$ формация $f(\sigma_i)$ является $(H(\sigma_i))$ -критической. Кроме того, поскольку $\mathfrak{H}=\mathfrak{G}_{\sigma'_i}\mathfrak{H}$, то $\sigma_i\in\sigma(P)$.

Пусть P — не о-примарная группа. Тогда ввиду леммы 2.4 формация $\mathfrak F$ является l_{σ} -неприводимой и ее максимальная σ -локальная подформация $\mathfrak L$ имеет такое внутреннее σ -локальное определение l, что $l(\sigma_j)=\mathrm{form}(G/P)$ для всех $\sigma_j\in\sigma(P)$. Поскольку $\mathfrak F$ минимальная σ -локальная не $\mathfrak F$ -формация, то $\mathfrak L\subseteq\mathfrak F$. Значит, с учетом лемм 1.3 и 1.4, имеет место $l\le H$. Ввиду леммы 2.3 имеем $H(\sigma_i)=\mathfrak G_{\sigma_i}\mathfrak M$. Таким образом, $G/P\in\mathfrak G_{\sigma_i}\mathfrak M$. Понятно также, что $G\notin\mathfrak G_{\sigma_i}\mathfrak M$. Значит, $P=G^{\mathfrak G_{\sigma_i}\mathfrak M}$.

Пусть теперь $P-\sigma_i$ -группа. Заметим, что поскольку $P=G^{\mathfrak{H}}$ и $P\leqslant O_{\sigma_i',\sigma_i}(G)$, то с учетом леммы 1.2 имеем $f(\sigma_i)=\mathrm{form}(G/O_{\sigma_i',\sigma_i}(G))\subseteq \mathfrak{H}$. Пусть K- группа минимального порядка из $f(\sigma_i)\setminus H(\sigma_i)$. Тогда K- монолитическая группа с монолитом $Q=K^{H(\sigma_i)}=K^{\mathfrak{G}_{\sigma_i}\mathfrak{M}}$. Покажем, что $Q\not\subseteq\Phi(K)$. Предположим противное. Тогда поскольку $K/Q\in H(\sigma_i)$, то $K/\Phi(K)\in H(\sigma_i)$. Но ввиду леммы $1.9\ H(\sigma_i)=\mathfrak{G}_{\sigma_i}\mathfrak{M}-$ насыщенная формация. Следовательно, $K\in H(\sigma_i)$. Противоречие. Поэтому $\Phi(K)=1$.

Поскольку $H(\sigma_i)=\mathfrak{G}_{\sigma_i}\mathfrak{M}$, то $O_{\sigma_i}(K)=1$ и, следовательно, $O_p(K)=1$, где $p\in\sigma_i$. Ввиду леммы 1.10 существует точный неприводимый F_pK -модуль P. Пусть $L=P\rtimes K$. Тогда $P=C_L(P)$ — минимальная нормальная p-подгруппа группы L. Поскольку σ -локальное опре-

деление f является внутренним и $O_{\sigma_i}(L)=P$, то по лемме 1.5 имеем $L\in\mathfrak{F}$. Понятно также, что $P=O_{\sigma_i',\sigma_i}(L)$. Обозначим через l минимальное σ -локальное определение формации $\mathfrak{L}=l_{\sigma}\mathrm{form}(L)$. По лемме 1.2 имеет место равенство

$$l(\sigma_i) = \mathrm{form}(L/O_{\sigma_i',\sigma_i}(L)) = \mathrm{form}(K).$$

Если $\mathfrak{L} \subset \mathfrak{F}$, то по условию $\mathfrak{L} \subseteq \mathfrak{H}$. Значит, с учетом леммы 1.4, имеет место $l \leq H$. Поэтому $l(\sigma_i) = \text{form}(K) \subseteq H(\sigma_i)$. Последнее противоречит определению группы K. Таким образом, $\mathfrak{L} = \mathfrak{F}$. Значит, $\mathfrak{F} = l_{\sigma} \text{form}(L)$.

Предположим, что $\sigma_i \in \sigma(Q)$. Так как при этом $O_{\sigma_i}(K)=1$, то Q – не σ -примарная группа. Поскольку $K \in f(\sigma_i) \subseteq \mathfrak{H}$ и $O_{\sigma_i',\sigma_i}(K)=1$, то $K \simeq K/O_{\sigma_i',\sigma_i}(K) \in H(\sigma_i)$. Получаем противоречие с определением группы K. Поэтому $\sigma_i \notin \sigma(Q)$. Таким образом, $\mathfrak{F} = l_\sigma \mathrm{form}(L)$, где L – группа, удовлетворяющая условиям леммы.

Достаточность. Пусть \mathfrak{F} – формация из условия леммы. В силу леммы 1.8 достаточно установить, что $f(\sigma_k)$ – минимальная не $H(\sigma_k)$ -формация для всех $\sigma_k \in \sigma(P)$.

Пусть P – не σ -примарная группа. Тогда $O_{\sigma'_k,\sigma_k}(G)=1$ для всех $\sigma_k\in\sigma(P)$. Следовательно, ввиду леммы 1.2 для всех таких σ_k имеет место равенство $f(\sigma_k)=\mathrm{form}(G)$. По лемме 1.6 формация $f(\sigma_k)$ неприводима и ее максимальная подформация совпадает с form(G/P). По условию $P=G^{\mathfrak{G}_{\sigma_i}\mathfrak{M}}$. Значит, $G/P\in H(\sigma_i)=\mathfrak{G}_{\sigma_i}\mathfrak{M}$. Поэтому с учетом леммы 1.3(5) имеет место включение

$$form(G/P) \subseteq H(\sigma_i) = \mathfrak{G}_{\sigma_i} \mathfrak{M} \subseteq \mathfrak{H} = H(\sigma_k)$$

при всех $\sigma_k \in \sigma(P) \setminus \{\sigma_i\}$. Так как при этом $P = G^{\mathfrak{H}} = G^{\mathfrak{H}}$, то $f(\sigma_k)$ не содержится в $H(\sigma_k)$ для всех $\sigma_k \in \sigma(P)$. Таким образом, если P – не σ -примарная группа, то $f(\sigma_k)$ – минимальная не $H(\sigma_k)$ -формация для всех $\sigma_k \in \sigma(P)$.

Пусть $P-\sigma_i$ -группа. Тогда поскольку $O_{\sigma_i'}(G)=1$ и $O_{\sigma_i}(K)=1$, то $O_{\sigma_i',\sigma_i}(G)=P$. Следовательно, в силу леммы 1.2 имеет место равенство

$$f(\sigma_i) = \text{form}(G/O_{\sigma'_i,\sigma_i}(G)) = \text{form}(K).$$

Поскольку группа K монолитична и $\Phi(K)=1$, то form(K/Q) – единственная максимальная подформация формации $f(\sigma_i)$ по лемме 1.6. Так как по условию $Q=K^{\mathfrak{G}_{\sigma_i}\mathfrak{M}}$, то

form
$$(K/Q) \subseteq H(\sigma_i) = \mathfrak{G}_{\sigma_i}\mathfrak{M}$$
.

Значит, $f(\sigma_i)$ — минимальная не $H(\sigma_i)$ -формация. Таким образом, \mathfrak{F} — минимальная σ -локальная не \mathfrak{H} -формация по лемме 1.6.

Лемма 2.6. Пусть \mathfrak{M} – непустая абелева формация, $\mathfrak{H} = \mathfrak{G}_{\sigma'_i} \mathfrak{G}_{\sigma_i} \mathfrak{M}$. Тогда и только тогда \mathfrak{H} является минимальной σ -локальной не \mathfrak{H} -формацией, когда $\mathfrak{H} = l_{\sigma} \text{form}(G)$, где G – такая монолитическая группа c монолитом $P = G^{\mathfrak{H}}$, что $\sigma_i \in \sigma(P)$, и либо $P = G^{\mathfrak{G}_{\sigma_i} \mathfrak{M}}$ – не σ -примарная группа, либо $G = P \rtimes K$, где $P = C_G(P)$ – p-группа, $p \in \sigma_i$, а K одна из следующих групп:

- 1) монолитическая группа с таким монолитом $Q=K^{\mathfrak{G}_{\sigma_i}\mathfrak{M}}\not\subseteq\Phi(K)$, что $\sigma_i\notin\sigma(Q)$;
- 2) минимальная не *M-группа одного из следующих типов*:
 - а) группа кватернионов порядка 8, если $2 \notin \sigma_i$;
 - б) неабелева группа порядка q^3 простой нечетной экспоненты $q \notin \sigma_i$;
 - в) циклическая q-группа, $q \notin \sigma_i$.

Доказательство. Пусть f — наименьшее σ -локальное определение формации $\mathfrak F$ и H — каноническое σ -локальное определение формации $\mathfrak S$.

Heoбxoдимость. Пусть $\mathfrak F$ минимальная σ -локальная не $\mathfrak F$ -формация и предположим, что $\mathfrak F$ не содержится в $(\mathfrak G_{\sigma'_i}\mathfrak G_{\sigma_i})\mathfrak N_{\sigma}=\mathfrak L.$ Так как $\mathfrak M$ содержится в классе всех σ -нильпотентных групп $\mathfrak N_{\sigma}$, то $(\mathfrak G_{\sigma'_i}\mathfrak G_{\sigma_i})\mathfrak M\subseteq (\mathfrak G_{\sigma'_i}\mathfrak G_{\sigma_i})\mathfrak N_{\sigma}=\mathfrak L.$ Поэтому $\mathfrak F$ является минимальной σ -локальной

не \mathfrak{L} -формацией. Поскольку формация \mathfrak{N}_{σ} σ -локальна, то в силу леммы 2.5 имеем $\mathfrak{F}=$ $=l_{\sigma}$ form(G), где G – такая монолитическая группа с монолитом $P=G^{\mathfrak{L}}$, что $\sigma_{i}\in\sigma(P)$, и либо P – не σ -примарная группа и $P=G^{\mathfrak{G}_{\sigma_{i}}\mathfrak{N}_{\sigma}}$, либо $G=P\rtimes K$, где $P=C_{G}(P)$ – p-группа, $p\in\sigma_{i}$, а K – такая монолитическая группа с монолитом $Q=K^{\mathfrak{G}_{\sigma_{i}}\mathfrak{N}_{\sigma}}$, что $Q\not\subseteq\Phi(K)$ и $\sigma_{i}\notin\sigma(Q)$.

Обозначим через \mathfrak{F}_1 максимальную σ-локальную подформацию формации \mathfrak{F} и F_1 – ее каноническое σ-локальное определение. В силу леммы 2.3 имеем $H(\sigma_i) = \mathfrak{G}_{\sigma_i}\mathfrak{M}$. Заметим также, что поскольку $\mathfrak{F} \not\subseteq \mathfrak{H}$, то $G \notin \mathfrak{H}$ и $P \leqslant G^{\mathfrak{H}}$.

Пусть P – не σ -примарная группа. Тогда поскольку $\sigma_i \in \sigma(P)$, то ввиду леммы 2.4 формация \mathfrak{F}_1 имеет такое внутреннее σ -локальное определение f_1 , что $f_1(\sigma_i) = \text{form}(G/P)$. В силу леммы 1.3 имеет место $f_1 \leq F_1$. Поскольку по условию $\mathfrak{F}_1 \subseteq \mathfrak{H}$, то $f_1 \leq F_1 \leq H$ по лемме 1.11. Значит, $G/P \in H(\sigma_i) = \mathfrak{G}_{\sigma_i}\mathfrak{M} \subseteq \mathfrak{H}$ и $G^{\mathfrak{H}} \subseteq F$. Таким образом, если F – не σ -примарная группа, то $F = G^{\mathfrak{H}}$ и группа G удовлетворяет условию леммы.

Пусть P – σ -примарная группа. Тогда по лемме 2.2 формация \mathfrak{F}_1 имеет такое внутреннее σ -локальное определение f_1 , что $f_1(\sigma_i) = \text{form}(K/Q)$. Поскольку $\mathfrak{F}_1 \subseteq \mathfrak{H}$, то в силу леммы 1.11 имеют место неравенства $f_1 \leq F_1 \leq H$. Следовательно, имеем

$$f_1(\sigma_i) = \text{form}(K/Q) \subseteq H(\sigma_i) = \mathfrak{G}_{\sigma_i}\mathfrak{M}.$$

Кроме того, так как $Q = K^{\mathfrak{G}_{\sigma_i}\mathfrak{N}_{\sigma}}$, то $K \notin \mathfrak{G}_{\sigma_i}\mathfrak{M} \subseteq \mathfrak{G}_{\sigma_i}\mathfrak{N}_{\sigma}$. Поэтому $Q = K^{\mathfrak{G}_{\sigma_i}\mathfrak{M}}$. Таким образом, K удовлетворяет условию 1) леммы. Покажем теперь, что $P = G^{\mathfrak{H}}$. Так как $K/Q \in H(\sigma_i) = \mathfrak{G}_{\sigma_i}\mathfrak{M}$ и, кроме того, $\sigma_i \notin \sigma(Q)$, то $K \in \mathfrak{G}_{\sigma_i'}\mathfrak{G}_{\sigma_i}\mathfrak{M} = \mathfrak{H}$. Поэтому $G/P \simeq K \in \mathfrak{H}$ и $G^{\mathfrak{H}} \leqslant P$. Таким образом, $P = G^{\mathfrak{H}}$ и группа G удовлетворяет условию леммы.

Пусть теперь $\mathfrak{F} \subseteq \mathfrak{L}$. Тогда по лемме 1.8 имеем $\mathfrak{F} - \sigma$ -локальная формация, порожденная такой монолитической группой A с монолитом $A^{\mathfrak{H}}$, что $f(\sigma_k)$ – минимальная не $H(\sigma_k)$ -формация для всех $\sigma_k \in \sigma(A^{\mathfrak{H}})$.

Понятно, что $\sigma_i \in \sigma(A^{\mathfrak{H}})$. Пусть L – каноническое σ -локальное определение формации \mathfrak{L} . По лемме 2.3 $L(\sigma_i) = \mathfrak{G}_{\sigma_i}\mathfrak{N}_{\sigma}$. Поскольку $\mathfrak{F} \subseteq \mathfrak{L}$, то $f(\sigma_i) \subseteq L(\sigma_i) = \mathfrak{G}_{\sigma_i}\mathfrak{N}_{\sigma}$. Ввиду леммы 1.2 имеем $f(\sigma_i) = \text{form}(B \mid B \in f(\sigma_i), O_{\sigma_i}(B) = 1)$. Поэтому $f(\sigma_i) \subseteq \mathfrak{N}_{\sigma_i'}$.

Поскольку все собственные подформации формации $f(\sigma_i)$ входят в $H(\sigma_i) = \mathfrak{G}_{\sigma_i}\mathfrak{M}$, то с учетом $\mathfrak{N}_{\sigma_i'} \subseteq \mathfrak{N}_{\sigma_i'}\mathfrak{M}$ все собственные подформации $f(\sigma_i)$ входят в

$$\mathfrak{N}_{\sigma'_i}\cap\mathfrak{G}_{\sigma_i}\mathfrak{M}\subseteq\mathfrak{N}_{\sigma'_i}\mathfrak{M}\cap\mathfrak{G}_{\sigma_i}\mathfrak{M}=(\mathfrak{N}_{\sigma'_i}\cap\mathfrak{G}_{\sigma_i})\mathfrak{M}=\mathfrak{M}.$$

С другой стороны, $f(\sigma_i)$ не входит в \mathfrak{M} , иначе $f(\sigma_i) \subseteq \mathfrak{G}_{\sigma_i} \mathfrak{M} = H(\sigma_i)$, что невозможно. Значит, $f(\sigma_i)$ – минимальная не \mathfrak{M} -формация.

Пусть $f(\sigma_i) \not\subseteq \mathfrak{A}$. Тогда поскольку $\mathfrak{M} \subseteq \mathfrak{A}$, то $f(\sigma_i)$ – минимальная неабелева формация. По лемме 1.12 $f(\sigma_i)$ – формация, порожденная группой K, где K – либо ненильпотентная монолитическая группа с таким монолитом Q, что $Q \not\subseteq \Phi(K)$ и факторгруппа K/Q абелева, либо группа кватернионов порядка 8, либо неабелева группа порядка q^3 простой нечетной экспоненты q.

Поскольку в каждом из этих случаев K является монолитической группой, $f(\sigma_i)\subseteq\mathfrak{N}_{\sigma_i'}$ и $f(\sigma_i)\not\subseteq\mathfrak{G}_{\sigma_i}\mathfrak{M}=H(\sigma_i)$, то в первом случае K является σ_j -группой для некоторого $j\neq i$, во втором случае $-2\notin\sigma_i$ и, соответственно, в последнем $-q\notin\sigma_i$. Пусть $p\in\sigma_i$. Тогда в силу леммы 1.10 существует точный неприводимый F_pK -модуль P. Положим $G=P\rtimes K$. Тогда поскольку $O_{\sigma_i}(K)=1$, то $P=O_{\sigma_i}(G)=O_{\sigma_i',\sigma_i}(G)$. Так как

$$G/O_{\sigma_i}(G) = G/P \simeq K \in f(\sigma_i) = \text{form}(K),$$

то $G \in \mathfrak{F}$ ввиду леммы 1.5. Допустим, что $l_{\sigma} \mathrm{form}(G) \neq \mathfrak{F}$. Тогда по условию $l_{\sigma} \mathrm{form}(G) \subseteq \mathfrak{H}$ и $G/O_{\sigma'_i,\sigma_i}(G) \simeq K \in H(\sigma_i)$. Поэтому $f(\sigma_i) \subseteq H(\sigma_i)$. Противоречие. Значит, $l_{\sigma} \mathrm{form}(G) = \mathfrak{F}$. При этом, очевидно, $P = C_G(P) = G^{\mathfrak{H}}$.

Допустим, что K – ненильпотентная группа с таким монолитом Q, что $Q \not\subseteq \Phi(K)$ и факторгруппа K/Q абелева. Тогда по лемме 1.6 формация $f(\sigma_i) = \text{form}(K)$ имеет единственную максимальную подформацию form(K/Q). Поскольку $f(\sigma_i)$ – минимальная не \mathfrak{M} -формация, то $K/Q \in \mathfrak{M}$. Поэтому $Q = K^{\mathfrak{M}}$ и K удовлетворяет условию 1) леммы.

Пусть теперь группа K нильпотентна. Тогда по лемме 1.13 формация $f(\sigma_i) = \text{form}(K)$ наследственна. Так как все собственные подгруппы группы K абелевы, а сама формация $f(\sigma_i)$ – неабелева, и при этом $f(\sigma_i)$ – минимальная не \mathfrak{M} -формация, то K – минимальная не \mathfrak{M} -группа. Таким образом, группа K удовлетворяет условию 2) леммы.

Пусть теперь $f(\sigma_i)\subseteq \mathfrak{A}$. Тогда по лемме 1.13 формация $f(\sigma_i)$ наследственна. Пусть K – группа минимального порядка из $f(\sigma_i)\setminus \mathfrak{M}$. Тогда K – минимальная не \mathfrak{M} -группа. Поскольку при этом $f(\sigma_i)$ – минимальная не \mathfrak{M} -формация, то $f(\sigma_i)=\mathrm{form}(K)$. Так как формация $f(\sigma_i)$ абелева и $f(\sigma_i)\subseteq \mathfrak{N}_{\sigma_i'}$, то K – циклическая q-группа, где $q\in \sigma_j$ для некоторого $\sigma_j\neq \sigma_i$. Пусть $p\in \sigma_i$. Ввиду леммы 1.10 существует точный неприводимый F_pK -модуль P. Пусть $G=P\rtimes K$. Тогда $P=C_G(P)$ и, кроме того, $P=O_{\sigma_i}(G)=O_{\sigma_i',\sigma_i}(G)$. Поскольку K не принадлежит формации \mathfrak{M} , то с помощью рассуждений, аналогичных приведенным выше, можно показать, что $\mathfrak{F}=l_\sigma\mathrm{form}(G)$, $P=G^\mathfrak{S}$ и группа K удовлетворяет условию 2) леммы.

Достаточность. Пусть $\mathfrak{F}=l_{\sigma}\mathrm{form}(G)$, где G – группа из условия леммы. Ввиду леммы 1.8 достаточно доказать, что при всех $\sigma_k \in \sigma(P)$ формация $f(\sigma_k)$ является минимальной не $H(\sigma_k)$ -формацией.

Пусть P – не σ -примарная группа. Тогда $O_{\sigma'_k,\sigma_k}(G)=1$ для всякого $\sigma_k\in\sigma(P)$. Значит, $f(\sigma_k)=\mathrm{form}(G)$. В силу леммы 1.6 формация $f(\sigma_k)$ имеет единственную максимальную подформацию $\mathrm{form}(G/P)$. Поскольку по условию $P=G^{\mathfrak{G}_{\sigma_i}\mathfrak{M}}$, то $G/P\in\mathfrak{G}_{\sigma_i}\mathfrak{M}=H(\sigma_i)$. Следовательно, имеет место включение $\mathrm{form}(G/P)\subseteq H(\sigma_i)$. С другой стороны, поскольку в силу леммы 2.3 при любом $\sigma_k\in\sigma\setminus\{\sigma_i\}$ имеет место $H(\sigma_k)=\mathfrak{G}_{\sigma'_i}\mathfrak{G}_{\sigma_i}\mathfrak{M}=\mathfrak{H}$, то $\mathrm{form}(G/P)\subseteq G(\sigma_k)$ для всех $\sigma_k\in\sigma\setminus\{\sigma_i\}$. Так как $G(\sigma_k)$ то $G(\sigma_k)$ при всех $G(\sigma_k)$ при всех $G(\sigma_k)$. Таким образом, если $G(\sigma_k)$ при всех $G(\sigma_k)$ при вс

Пусть теперь $P - \sigma_i$ -группа. Тогда $P = O_{\sigma'_i,\sigma_i}(G)$. По лемме 1.2 имеем

$$f(\sigma_i) = \text{form}(G/O_{\sigma'_i,\sigma_i}(G)) = \text{form}(K).$$

Понятно, что $f(\sigma_i) \not\subseteq H(\sigma_i) = \mathfrak{G}_{\sigma_i}H(\sigma_i)$.

Пусть группа K удовлетворяет условию 1). Тогда по лемме 1.6 формация $f(\sigma_i)$ имеет единственную максимальную подформацию $\mathrm{form}(K/Q)$. По условию $Q = K^{\mathfrak{G}_{\sigma_i}\mathfrak{M}}$ или $Q = K^{\mathfrak{M}}$. Значит, $\mathrm{form}(K/Q) \subseteq H(\sigma_i) = \mathfrak{G}_{\sigma_i}\mathfrak{M}$. Поскольку при этом $f(\sigma_i)$ не входит в $H(\sigma_i)$, то $f(\sigma_i)$ — минимальная не $H(\sigma_i)$ -формация.

Рассмотрим теперь случай, когда группа K удовлетворяет условию 2). Пусть $2 \notin \sigma_i$ и K – группа кватернионов порядка 8. Обозначим через $\mathfrak B$ формацию всех абелевых групп экспоненты, делящей 4. Допустим, что $\mathfrak B \not\subseteq f(\sigma_i)$ и пусть B – группа минимального порядка из $\mathfrak B \setminus f(\sigma_i)$. Тогда B – монолитическая абелева группа и, следовательно, B – циклическая примарная группа. Значит, либо |B|=4, либо |B|=2. Поскольку в группе кватернионов порядка 8 имеются циклические подгруппы порядков 2 и 4, то $B\in f(\sigma_i)=\mathrm{form}(K)$, ввиду наследственности формации $\mathrm{form}(K)$. Полученное противоречие показывает, что $\mathfrak B\subseteq f(\sigma_i)$.

Пусть \mathfrak{L} — произвольная собственная подформация формации $f(\sigma_i)$. Тогда ввиду леммы 1.12 имеем $\mathfrak{L}\subseteq\mathfrak{A}$. Допустим, что $\mathfrak{L}\nsubseteq\mathfrak{B}$. Пусть M — группа минимального порядка из $\mathfrak{L}\setminus\mathfrak{M}$. Тогда группа M монолитична. Поскольку M — абелева группа, то она циклична. Ввиду леммы 8.12 [4] экспонента группы M делит экспоненту группы K. Значит, экспонента группы M равна 2 или 4. Но тогда, очевидно, $M\in\mathfrak{B}$. Полученное противоречие показывает, что $\mathfrak{L}\subseteq\mathfrak{B}$. Поскольку K минимальная не \mathfrak{M} -группа и $2\notin\sigma_i$, то $K\notin\mathfrak{G}_{\sigma_i}\mathfrak{M}=H(\sigma_i)$. Следовательно, $f(\sigma_i)$ — минимальная не $H(\sigma_i)$ -формация.

Пусть теперь K – неабелева группа порядка q^3 простой нечетной экспоненты $q \notin \sigma_i$. Тогда ввиду леммы 1.12 имеем form $(K) = f(\sigma_i)$ – минимальная неабелева формация. Пусть $\mathfrak L$ – максимальная подформация формации $f(\sigma_i)$. Тогда $\mathfrak L$ – абелева формация и всякая неединичная группа из $\mathfrak L$ имеет экспоненту q. Поскольку K – минимальная не $\mathfrak M$ -группа, то в формации $H(\sigma_i)$ имеются группы порядка q. Но тогда $\mathfrak L \subseteq H(\sigma_i)$. Так как при этом $q \notin \sigma_i$, то $K \notin \mathfrak G_{\sigma_i} \mathfrak M = H(\sigma_i)$. Поэтому $f(\sigma_i)$ – минимальная не $H(\sigma_i)$ -формация.

Наконец, пусть K – циклическая q-группа, $q \notin \sigma_i$. И пусть M – максимальная подгруппа группы K. Поскольку form(M) – единственная максимальная подформация формации form $(K) = f(\sigma_i)$ и по условию K – минимальная не \mathfrak{M} -группа, то $M \in H(\sigma_i)$. Так как $q \notin \sigma_i$, то $K \notin \mathfrak{G}_{\sigma_i}\mathfrak{M} = H(\sigma_i)$ и $f(\sigma_i)$ – минимальная не $H(\sigma_i)$ -формация.

Таким образом, в силу леммы 1.8 формация $\mathfrak F$ является минимальной σ -локальной не $\mathfrak H$ -формацией.

Доказательство теоремы А. Обозначим через f – наименьшее σ -локальное определение формации \mathfrak{F} и H – каноническое σ -локальное определение формации \mathfrak{F} .

Heoбxoдимость. Пусть \mathfrak{F} — минимальная σ -локальная не \mathfrak{H} -формация. Тогда \mathfrak{H} имеет такое σ -локальное определение h, каждое неабелево значение которого σ -локально. Без ограничения общности можно считать, что h является внутренним σ -локальным определением \mathfrak{H} . Ввиду леммы 1.3 имеет место равенство

$$\mathfrak{H} = (\cap_{\sigma_i \in \sigma(\mathfrak{H})} \mathfrak{G}_{\sigma_i'} \mathfrak{G}_{\sigma_i} h(\sigma_i)) \cap \mathfrak{G}_{\sigma(\mathfrak{H})}.$$

Поскольку $\mathfrak{F} \not\subseteq \mathfrak{H}$, но каждая собственная σ -локальная подформация из \mathfrak{F} содержится в \mathfrak{H} , то либо \mathfrak{F} – минимальная σ -локальная не $\mathfrak{G}_{\sigma(\mathfrak{H})}$ -формация, либо найдется такое $\sigma_i \in \sigma(\mathfrak{H})$, что \mathfrak{F} – минимальная σ -локальная не $(\mathfrak{G}_{\sigma'}\mathfrak{G}_{\sigma_i}h(\sigma_i))$ -формация.

Пусть \mathfrak{F} – минимальная σ -локальная не $\mathfrak{G}_{\sigma(\mathfrak{H})}$ -формация и G – группа минимального порядка из $\mathfrak{F}\setminus\mathfrak{G}_{\sigma(\mathfrak{H})}$. Тогда G – монолитическая группа с монолитом $P=G^{\mathfrak{G}_{\sigma(\mathfrak{H})}}$. Ясно, что $\sigma(P)\not\subseteq\sigma(\mathfrak{H})$, так как в противном случае $G\in\mathfrak{G}_{\sigma(\mathfrak{H})}$. Поэтому найдется такое σ_i , что $\sigma_i\in\sigma(P)\setminus\sigma(\mathfrak{H})$. Поскольку в силу леммы 1.3 имеет место $\mathfrak{G}_{\sigma_i}\subseteq\mathfrak{F}$ и $\mathfrak{G}_{\sigma_i}\not\subseteq\mathfrak{H}$, то $\mathfrak{F}=\mathfrak{G}_{\sigma_i}$. Поэтому $G-\sigma_i$ -группа. Но тогда, ввиду монолитичности группы G, имеем G=P – простая σ_i -группа. Таким образом, группа G удовлетворяет условию 1).

Пусть \mathfrak{F} – σ -локальная не $(\mathfrak{G}_{\sigma'_i}\mathfrak{G}_{\sigma_i}h(\sigma_i))$ -формация для некоторого $\sigma_i \in \sigma(\mathfrak{H})$. Обозначим через \mathfrak{F}_1 максимальную σ -локальную подформацию формации \mathfrak{F} . Тогда имеет место $\mathfrak{F}_1 \subseteq \mathfrak{H} \cap \mathfrak{G}_{\sigma'_i}\mathfrak{G}_{\sigma_i}h(\sigma_i)$. Ввиду леммы 2.3 имеем $H(\sigma_j) = \mathfrak{G}_{\sigma_i}h(\sigma_j)$ для любого σ_j .

Рассмотрим вначале случай, когда $h(\sigma_i)$ – σ -локальная формация. По лемме 1.9 произведение $\mathfrak{G}_{\sigma_j}h(\sigma_j)$ является σ -локальной формацией. Значит, в силу леммы 2.5, имеем $\mathfrak{F}=l_{\sigma}\mathrm{form}(G)$, где G – такая монолитическая группа с монолитом $P=G^{\mathfrak{G}_{\sigma_i'}h(\sigma_i)}=G^{\mathfrak{G}_{\sigma_i'}h(\sigma_i)}$, что $\sigma_i\in\sigma(P)$ и либо P – не σ -примарная группа, $P=G^{\mathfrak{G}_{\sigma_i'}h(\sigma_i)}=G^{H(\sigma_i)}$, либо $G=P\rtimes K$, где $P=C_G(P)$ – абелева p-группа, $p\in\sigma_i$, а K – такая монолитическая группа с монолитом $Q=K^{\mathfrak{G}_{\sigma_i}h(\sigma_i)}=K^{H(\sigma_i)}$, что $Q\not\subseteq\Phi(K)$ и $\sigma_i\not\in\sigma(Q)$.

Пусть P — не σ -примарная группа. Тогда по лемме 2.4 формация \mathfrak{F}_1 имеет такое внутреннее σ -локальное определение f_1 , что $f_1(\sigma_j) = \mathrm{form}(G/P)$ для всех $\sigma_j \in \sigma(P)$. Ввиду лемм 1.4 и 1.11 имеем $f_1 \leq H$. Поэтому при всех $\sigma_j \in \sigma(P)$ справедливо $G/P \in H(\sigma_j) \subseteq \mathfrak{H}$. Предположим, что найдется такое $\sigma_j \in \sigma(P)$, что $G \in H(\sigma_j)$. Тогда

$$G \in H(\sigma_j) \subseteq \mathfrak{H} \subseteq \mathfrak{G}_{\sigma'_i} \mathfrak{G}_{\sigma_i} h(\sigma_i).$$

Но $P=G^{\mathfrak{G}_{\sigma'_i}\mathfrak{G}_{\sigma_i}h(\sigma_i)}$. Полученное противоречие показывает, что $P=G^{H(\sigma_j)}$ для всех $\sigma_j\in\sigma(P)$, а также $P=G^{\mathfrak{H}_{\sigma_i}}$. Значит, в рассматриваемом случае $\mathfrak{F}=l_{\sigma}\mathrm{form}(G)$, где G – такая монолитическая группа с монолитом $P=G^{\mathfrak{H}_{\sigma_i}}$, что P – не σ -примарная группа и $P=G^{H(\sigma_j)}$ для всех $\sigma_j\in\sigma(P)$. Таким образом, группа G удовлетворяет условию 2).

Пусть P — σ -примарная группа. По лемме 2.2 формация \mathfrak{F}_1 имеет такое внутреннее σ -локальное определение f_1 , что $f_1(\sigma_i)=\mathrm{form}(K/Q), f_1(\sigma_j)=\mathrm{form}(G/O_{\sigma'_j,\sigma_j}(G))$ для всех $\sigma_j\in\sigma(G)\setminus\{\sigma_i\}$ и $f_1(\sigma_j)=\varnothing$ для всех $\sigma_j\notin\sigma(G)$. По условию $\mathfrak{F}_1\subseteq\mathfrak{H}$. Следовательно, $f_1\leq H$. Поскольку $f_1(\sigma_j)=\mathrm{form}(G/O_{\sigma'_j,\sigma_j}(G))$ для всех $\sigma_j\in\sigma(G)\setminus\{\sigma_i\}$, то для всех таких σ_j имеет место $G/O_{\sigma'_j,\sigma_j}(G)\in H(\sigma_j)$. Заметим, что $G/O_{\sigma'_j,\sigma_j}(G)\simeq K/O_{\sigma'_j,\sigma_j}(K)$. Действительно, так как $\sigma_i\neq\sigma_j$, то $O_{\sigma'_i,\sigma_i}(G)/P=O_{\sigma'_i,\sigma_i}(G/P)$. Значит,

$$K/O_{\sigma_j',\sigma_j}(K) \simeq (G/P)/O_{\sigma_j',\sigma_j}(G/P) = (G/P)/(O_{\sigma_j',\sigma_j}(G)/P) \simeq G/O_{\sigma_j',\sigma_j}(G).$$

Поэтому для всех $\sigma_j \in \sigma(G) \setminus \{\sigma_i\}$ имеет место $K/O_{\sigma'_j,\sigma_j}(K) \in H(\sigma_j)$. Докажем, что $P = G^{\mathfrak{H}}$ и $K^{H(\sigma_j)} \subseteq Q$ для всех $\sigma_j \in \sigma(Q)$. Ясно, что $G \notin \mathfrak{H}$. Если Q — не σ -примарная группа и $\sigma_j \in \sigma(Q)$, то $O_{\sigma'_j,\sigma_j}(K) = 1$. Следовательно,

$$G/P \simeq K \simeq K/O_{\sigma'_i,\sigma_j}(K) \in H(\sigma_j) \subseteq \mathfrak{H}.$$

Отсюда $K^{H(\sigma_j)}=1\subseteq Q$ для всех $\sigma_j\in\sigma(Q)$. Если же $Q-\sigma_j$ -группа, то $Q\subseteq O_{\sigma_j}(K)==O_{\sigma_j',\sigma_j}(K)$. Значит, $K/O_{\sigma_j}(K)\in H(\sigma_j)$. Поэтому

$$G/P \simeq K \in \mathfrak{G}_{\sigma_i}H(\sigma_j) = H(\sigma_j) \subseteq \mathfrak{H}.$$

Следовательтно, $P = G^{\mathfrak{H}}$ и $K^{H(\sigma_j)} = 1 \subseteq Q$. Таким образом, группа G удовлетворяет условию 3).

Рассмотрим теперь случай, когда $h(\sigma_i)$ — абелева формация. Применяя лемму 2.6, видим, что $\mathfrak{F}=l_{\sigma}$ form G, где G — такая монолитическая группа с монолитом $P=G^{\mathfrak{G}_{\sigma'_i}\mathfrak{G}_{\sigma_i}h(\sigma_i)}$, что $\sigma_i\in\sigma(P)$, и либо $P=G^{\mathfrak{G}_{\sigma_i}h(\sigma_i)}=G^{H(\sigma_i)}$ — не σ -примарная группа, либо $G=P\rtimes K$, где $P=C_G(P)$ — p-группа, $p\in\sigma_i$, а K — одна из следующих групп:

- 1) монолитическая группа с таким монолитом $Q = K^{\mathfrak{G}_{\sigma_i} h(\sigma_i)} = K^{H(\sigma_i)} \not\subseteq \Phi(K)$, что $\sigma_i \notin \sigma(Q)$;
 - 2) ненильпотентная монолитическая σ_j -группа с монолитом $Q=K^{h(\sigma_i)}\not\subseteq \Phi(K),\ j\neq i;$
 - 3) минимальная не $h(\sigma_i)$ -группа одного из следующих типов:
 - а) группа кватернионов порядка 8, если $2 \notin \sigma_i$;
 - б) неабелева группа порядка q^3 простой нечетной экспоненты $q \notin \sigma_i$;
 - в) циклическая *q*-группа, $q \notin \sigma_i$.

Пусть P – не σ -примарная группа. По лемме 2.4 формация \mathfrak{F}_1 имеет такое внутреннее σ -локальное определение f_1 , что $f_1(\sigma_j)=\mathrm{form}(G/P)$ для всех $\sigma_j\in\sigma(P)$. Согласно условию $\mathfrak{F}_1\subseteq\mathfrak{H}$. Следовательно, $f_1\leq H$. Таким образом, $G/P\in H(\sigma_j)$ для всех $\sigma_j\in\sigma(P)$. Предположим, что найдется такое $\sigma_k\in\sigma(P)$, что $G\in H(\sigma_k)$. Тогда поскольку σ -локальное определение H внутреннее, то $G\in\mathfrak{H}(\sigma_i)$. Полученное противоречие показывает, что $P=G^{H(\sigma_j)}$ для всех $\sigma_j\in\sigma(P)$. Ясно также, что $P=G^{\mathfrak{H}}$. Таким образом, в рассматриваемом случае $\mathfrak{F}=I_\sigma\mathrm{form}(G)$, где G – монолитическая группа с монолитом $P=G^{\mathfrak{H}}$, удовлетворяющая условию 2).

Пусть P – σ -примарная группа и K удовлетворяет условию 1). Тогда согласно лемме 2.2 формация \mathfrak{F}_1 имеет такое внутреннее σ -локальное определение f_1 , что $f_1(\sigma_i) = \text{form}(H/Q)$. Ввиду условия $\mathfrak{F}_1 \subseteq \mathfrak{H}$. Значит, $f_1 \leq H$. Следовательно,

$$H/Q \subseteq H(\sigma_i) = \mathfrak{G}_{\sigma_i} f(\sigma_i).$$

Если $K\in H(\sigma_i)$, то $G/P\simeq K\in H(\sigma_i)$. Значит, $G\in \mathfrak{G}_{\sigma_i}H(\sigma_i)=H(\sigma_i)\subseteq \mathfrak{H}$. Противоречие. Значит, $H/Q\in h(\sigma_i)$ и $Q=H^{h(\sigma_i)}$.

Покажем, что $P=G^{\mathfrak{H}}$. Очевидно, $G\notin \mathfrak{H}$. Предположим, что $G/P\notin \mathfrak{H}$. Тогда $K\notin \mathfrak{H}$. Значит, $\mathfrak{F}=l_{\sigma}\mathrm{form}(G)=l_{\sigma}\mathrm{form}(K)$. Применяя теперь лемму 1.2 имеем

$$\mathrm{form}(G/O_{\sigma'_{:},\sigma_{i}}(G))=\mathrm{form}(G/P)=\mathrm{form}(K)=\mathrm{form}(K/O_{\sigma'_{:},\sigma_{i}}(K)).$$

Если группа K удовлетворяет условию 1), то по лемме 1.6 формация $\mathrm{form}(K/Q)$ является единственной максимальной подформацией формации $\mathrm{form}(K)$. Так как Q – σ_i' -группа, то $Q \subseteq O_{\sigma_i',\sigma_i}(K)$. Значит, $K/O_{\sigma_i',\sigma_i}(K) \in \mathrm{form}(K/Q)$. Таким образом,

$$K/O_{\sigma_i',\sigma_i}(K) \in \mathrm{form}(K/Q) \subset \mathrm{form}(K) = \mathrm{form}(K/O_{\sigma_i',\sigma_i}(K)).$$

Противоречие. Пусть теперь группа K удовлетворяет одному из условий 2). Тогда K – примарная группа. Следовательно, $K = O_{\sigma'_i,\sigma_i}(K)$. Значит, $\mathrm{form}(K) = \mathrm{form}(K/O_{\sigma'_i,\sigma_i}(K))$ – формация всех единичных групп. Полученное противоречие показывает, что $G/P \in \mathfrak{H}$. Поэтому $P = G^{\mathfrak{H}}$.

Таким образом, группа G удовлетворяет условию 3).

Достаточность. Пусть f — минимальное σ -локальное определение формации \mathfrak{F} . Ввиду леммы 1.8 для доказательства достаточно установить, что формация $f(\sigma_j)$ является минимальной не $H(\sigma_j)$ -формацией для всех $\sigma_i \in \sigma(P)$.

Если группа G удовлетворяет условию 1), то, очевидно, \mathfrak{F} – минимальная σ -локальная не \mathfrak{H} -формация.

Пусть группа G удовлетворяет условию 2) и $\sigma_j \in \sigma(P)$. Тогда $O_{\sigma'_j,\sigma_j}(G)=1$ и по лемме 1.2 $f(\sigma_j)=\mathrm{form}(G/O_{\sigma'_j,\sigma_j}(G))=\mathrm{form}(G)$. По условию $G/P\in H(\sigma_j)$ и $P=G^{\mathfrak{H}}$. Поскольку по лемме 1.6 form(G/P) – единственная максимальная подформация формации form(G), то $f(\sigma_j)$ – минимальная не $H(\sigma_j)$ -формация для всех $\sigma_j \in \sigma(P)$.

Пусть теперь группа G удовлетворяет условию 3). Тогда поскольку $\sigma_i \notin \sigma(Q)$, то $P = O_{\sigma_i}(G) = O_{\sigma_i',\sigma_i}(G)$ и по лемме 1.2 имеем

$$f(\sigma_i) = \text{form}(G/O_{\sigma'_i,\sigma_i}(G)) = \text{form}(K).$$

Если $K \in H(\sigma_i)$, то $G/P = G/O_{\sigma_i}(G) \simeq K \in H(\sigma_i)$ и $G \in \mathfrak{H}$ по лемме 1.5. Полученное противоречие показывает, что $K \notin H(\sigma_i)$.

Пусть $\Phi(K)=1$. По условию $K/Q\in H(\sigma_i)$. Значит, $\mathrm{form}(K/Q)\subseteq H(\sigma_i)$. Поскольку по лемме 1.6 $\mathrm{form}(K/Q)$ — единственная максимальная подформация формации $f(\sigma_i)=\mathrm{form}(K)$, то $f(\sigma_i)$ — минимальная не $H(\sigma_i)$ -формация.

Пусть K удовлетворяет условию а). Тогда K — группа кватернионов порядка 8 и $2 \notin \sigma_i$. По лемме 1.12 имеем $f(\sigma_i) = \text{form}(K)$ — минимальная неабелева формация. Пусть \mathfrak{M} — максимальная подформация формации $f(\sigma_i)$. Легко видеть, что \mathfrak{M} — формация абелевых групп экспоненты, делящей 4, и формация \mathfrak{M} порождается любой абелевой группой экспоненты 4. Среди подгрупп группы H имеется собственная абелева нормальная подгруппа экспоненты 4. Значит, $\mathfrak{M} \subseteq \text{form}\mathfrak{X}$, где \mathfrak{X} — множество всех собственных подгрупп группы K. Кроме того, подгруппы группы K абелевы и их экспоненты делят 4. Следовательно, form $\mathfrak{X} \subseteq \mathfrak{M}$. Таким образом, $\mathfrak{M} = \text{form}\mathfrak{X}$. Но по условию $\mathfrak{X} \subseteq H(\sigma_i)$. Значит, $\mathfrak{M} \subseteq H(\sigma_i)$. Итак, $f(\sigma_i)$ — минимальная не $H(\sigma_i)$ -формация.

Пусть K удовлетворяет условию б), т. е. K – неабелева группа порядка q^3 простой нечетной экспоненты $q \notin \sigma_i$. Тогда по лемме 1.12 $f(\sigma_i) = \text{form}(K)$ – минимальная неабелева формация. Пусть \mathfrak{M} – максимальная подформация формации $f(\sigma_i)$. Тогда \mathfrak{M} – абелева формация и все неединичные группы из \mathfrak{M} имеют экспоненту q. Поскольку по условию группа K является минимальной не $H(\sigma_i)$ -группой, то в $H(\sigma_i)$ входят группы порядка q. Поэтому $\mathfrak{M} \subseteq H(\sigma_i)$. Следовательно, $f(\sigma_i)$ – минимальная не $H(\sigma_i)$ -формация.

Пусть группа K удовлетворяет условию в), $|K| = q^n$, где $q \notin \sigma_i$. Обозначим через M максимальную подгруппу группы K. Тогда $M \in H(\sigma_i)$, но $K \notin H(\sigma_i)$. Значит, $f(\sigma_i) \not\subseteq H(\sigma_i)$ и form $M \subseteq H(\sigma_i)$.

Покажем теперь, что всякая собственная подформация из $f(\sigma_i)$ входит в form(M). Предположим, что в $f(\sigma_i)$ имеется такая собственная подформация \mathfrak{M} , что $\mathfrak{M} \not\subseteq$ form(M), и пусть A – группа минимального порядка из $\mathfrak{M} \setminus$ form(M). Тогда группа A монолитична. Так как при этом формация $f(\sigma_i)$ абелева, то A – циклическая группа порядка q^m . Согласно лемме 8.12 [4] экспонента q^m группы A делит экспоненту q^n группы K. Тогда если m=n, то $A \simeq K$ и, следовательно, имеют место включения

$$f(\sigma_i) \subseteq \text{form}(A) \subseteq \mathfrak{M} \subset f(\sigma_i)$$
.

Получаем противоречие. Поэтому m < n. Поскольку порядок группы M равен q^{n-1} , то либо A изоморфна некоторой собственной подгруппе группы M, либо $A \simeq M$. Последнее означает, что $A \in \text{form}(M)$. Снова получаем противоречие. Следовательно, $\mathfrak{M} \subseteq \text{form}(M)$. Но тогда $f(\sigma_i)$ — минимальная не $H(\sigma_i)$ -формация.

Привлекая теперь лемму 1.8 заключаем, что $\mathfrak{F}=l_{\sigma}\mathrm{form}(G)$ – минимальная σ -локальная не \mathfrak{H} -формация.

Приведем некоторые следствия теоремы А.

Напомним [37], что всякую формацию групп называют 0-кратно σ -локальной. При n>0 формацию \mathfrak{F} называют n-кратно σ -локальной, если либо $\mathfrak{F}=(1)$ – класс всех единичных групп, либо $\mathfrak{F}=LF_{\sigma}(f)$, где $f(\sigma_i)-(n-1)$ -кратно σ -локальная формация для всех $\sigma_i\in\sigma(\mathfrak{F})$.

Следствие 2.7. Пусть \mathfrak{H} – 2-кратно \mathfrak{H} – локальная формация и H – ее каноническое \mathfrak{H} – оскальное определение. Тогда и только тогда \mathfrak{H} является минимальной \mathfrak{H} – оскальной не \mathfrak{H} -формацией, когда $\mathfrak{H} = l_{\mathfrak{H}}$ form (G), где G – такая монолитическая группа G монолитом G – G , что выполняется одно из следующих условий:

- 1) G = P простая σ_i -группа, $\sigma_i \notin \sigma(\mathfrak{H})$;
- 2) P не σ -примарная группа и $P = G^{H(\sigma_i)}$ для всех $\sigma_i \in \sigma(P)$;
- 3) $G = P \rtimes K$, где $P = C_G(P) p$ -группа, $p \in \sigma_i$, а K такая монолитическая группа c монолитом $Q = K^{H(\sigma_i)}$, что $\sigma_i \notin \sigma(Q)$, $\Phi(K) = 1$ и $K^{H(\sigma_j)} \subseteq Q$ для всех $\sigma_i \in \sigma(Q)$.

Если \mathfrak{H} – σ -локальная формация классического типа и $\mathfrak{H}=LF_{\sigma}(h)$, где h – некоторое σ -локальное определение формации \mathfrak{H} , то в силу леммы 1.3(4) для канонического σ -локального определения H формации \mathfrak{H} имеем $H(\sigma_i)=\mathfrak{G}_{\sigma_i}(h(\sigma_i)\cap\mathfrak{H})=\mathfrak{G}_{\sigma_i}H(\sigma_i)$. Значит, из теоремы A получаем следующее утверждение.

Следствие 2.8. Пусть $\mathfrak{H}=LF_{\sigma}(h)-\sigma$ -локальная формация классического типа, где h – некоторое ее σ -локальное определение. Тогда и только тогда \mathfrak{H} является минимальной σ -локальной не \mathfrak{H} -формацией, когда $\mathfrak{H}=l_{\sigma}\mathrm{form}(G)$, где G – такая монолитическая группа c монолитом $P=G^{\mathfrak{H}}$, что выполняется одно из следующих условий:

- 1) G = P простая σ_i -группа, $\sigma_i \notin \sigma(\mathfrak{H})$;
- 2) P не σ -примарная группа и $P = G^{\mathfrak{G}_{\sigma_i}(h(\sigma_i) \cap \mathfrak{H})}$ для всех $\sigma_i \in \sigma(P)$;
- 3) $G = P \rtimes K$, где $P = C_G(P) p$ -группа, $p \in \sigma_i$, а K такая монолитическая группа c монолитом $Q = K^{\mathfrak{G}_{\sigma_i}(h(\sigma_i) \cap \mathfrak{H})}$, что $\sigma_i \notin \sigma(Q)$ и либо $\Phi(K) = 1$ и $K^{\mathfrak{G}_{\sigma_j}(h(\sigma_j) \cap \mathfrak{H})} \subseteq Q$ для всех $\sigma_i \in \sigma(Q)$, либо K минимальная не $h(\sigma_i)$ -группа одного из следующих типов:
 - а) группа кватернионов порядка 8, если $2 \notin \sigma_i$;
 - б) неабелева группа порядка q^3 простой нечетной экспоненты $q \notin \sigma_i$;
 - в) циклическая q-группа, $q \notin \sigma_i$.

Пусть $\mathfrak{H} = \mathfrak{N}_{\sigma}$ – формация всех σ -нильпотентных групп. Тогда всякую минимальную не \mathfrak{N}_{σ} -формацию будем называть *минимальной* σ -локальной не σ -нильпотентной формацией. Ввиду примера 1.2(iv) [37] $\mathfrak{N}_{\sigma} = LF_{\sigma}(H)$, где $H(\sigma_i) = \mathfrak{G}_{\sigma_i}$ – формация всех

 σ_i -групп, для всех i. Значит, \mathfrak{N}_{σ} является σ -локальной формацией классического типа. Поэтому из теоремы A получаем

Следствие 2.9. Тогда и только тогда \mathfrak{F} – минимальная σ -локальная не σ -нильпотентная формация, когда $\mathfrak{F} = l_{\sigma} \text{form}(G)$ и выполняется одно из следующих условий:

- 1) G простая не σ -примарная группа;
- 2) $G = P \rtimes K$, где $P = C_G(P) p$ -группа, $p \in \sigma_i$, а K простая σ_i -группа, $j \neq i$.

Пусть \mathfrak{H} — формация всех мета- σ -нильпотентных групп. Тогда, как нетрудно убедиться, формация \mathfrak{H} совпадает с произведением $\mathfrak{N}_{\sigma}\mathfrak{N}_{\sigma}=(\mathfrak{N}_{\sigma})^2$. Всякую минимальную не $(\mathfrak{N}_{\sigma})^2$ -формацию будем называть минимальной σ -локальной не мета- σ -нильпотентной формацией. Ввиду примера 4.4(iii) [41] $\mathfrak{H}=LF_{\sigma}(h)$, где $h(\sigma_i)=\mathfrak{N}_{\sigma}$ для всех i. Значит, $(\mathfrak{N}_{\sigma})^2$ является σ -локальной формацией классического типа, при этом в силу леммы 1.3(5) для канонического σ -локального определения H формации $(\mathfrak{N}_{\sigma})^2$ имеем $H(\sigma_i)=\mathfrak{G}_{\sigma_i}\mathfrak{N}_{\sigma}$ для всех i. Поэтому из теоремы Λ получаем

Следствие 2.10. Тогда и только тогда \mathfrak{F} является минимальной σ -локальной не мета- σ -нильпотентной формацией, когда $\mathfrak{F} = l_{\sigma} \text{form}(G)$, где G – такая монолитическая группа c монолитом $P = G^{\mathfrak{H}}$, что выполняется одно из следующих условий:

- 1) $P = G^{\mathfrak{N}_{\sigma}}$ не σ -примарная группа;
- 2) $G = P \rtimes K$, где $P = C_G(P) p$ -группа, $p \in \sigma_i$, а K такая монолитическая группа c монолитом $Q = K^{\mathfrak{N}_{\sigma}}$, что $\sigma_i \notin \sigma(Q)$.

Пусть \mathfrak{H} – формация всех групп с σ -нильпотентным коммутантом. Тогда, очевидно, формация \mathfrak{H} совпадает с произведением $\mathfrak{N}_{\sigma}\mathfrak{A}$ и, в силу примера 1.2(v) [37] $\mathfrak{H}=LF_{\sigma}(h)$, где $h(\sigma_i)=\mathfrak{A}$ – формация всех абелевых групп. Поэтому $\mathfrak{N}_{\sigma}\mathfrak{A}$ – σ -локальная формация классического типа. В силу леммы 1.3(5) для канонического σ -локального определения H формации $\mathfrak{N}_{\sigma}\mathfrak{A}$ имеем $H(\sigma_i)=\mathfrak{G}_{\sigma_i}\mathfrak{A}$ для всех i. Значит, из теоремы Λ получаем

Следствие 2.11. Тогда и только тогда \mathfrak{F} является минимальной σ -локальной не $\mathfrak{N}_{\sigma}\mathfrak{A}$ -формацией, когда $\mathfrak{F} = l_{\sigma}\mathrm{form}(G)$, где G – такая монолитическая группа с монолитом $P = G^{\mathfrak{N}_{\sigma}\mathfrak{A}}$, что выполняется одно из следующих условий:

- 1) $P = G^{\mathfrak{A}}$ не σ -примарная группа;
- 2) $G = P \rtimes K$, где $P = C_G(P) p$ -группа, $p \in \sigma_i$, а K oдна из следующих групп:
- а) монолитическая группа с таким монолитом $Q \not\subseteq \Phi(K)$, что $Q = K^{\mathfrak{A}}$ неединичная σ_j -группа если $j \neq i$;
 - б) группа кватернионов порядка 8, если $2 \notin \sigma_i$;
 - в) неабелева группа порядка q^3 простой нечетной экспоненты $q \notin \sigma_i$.

Приведем несколько следствий теоремы A в классическом случае, когда $\sigma = \sigma^1 = \{\{2\}, \{3\}, \{5\}, \ldots\}.$

Следствие 2.12 [3]. Пусть \mathfrak{H} – формация классического типа и H – ее максимальный внутренний локальный экран. Тогда и только тогда \mathfrak{H} является минимальной локальной не \mathfrak{H} -формацией, когда $\mathfrak{H} = l \text{form}(G)$, где G – такая монолитическая группа с монолитом $P = G^{\mathfrak{H}}$, что выполняется одно из следующих условий:

- 1) G = P группа простого порядка $p \notin \pi(\mathfrak{H})$;
- 2) P неабелева группа и $P = G^{H(p)}$ для всех $p \in \pi(P)$;
- 3) $G = P \rtimes K$, где $P = C_G(P) p$ -группа, а K mакая монолитическая группа c монолитом $Q = K^{H(p)}$, что $p \notin \pi(Q)$ и либо $\Phi(K) = 1$ и $K^{H(q)} \subseteq Q$ для всех $q \in \pi(Q)$, либо K минимальная не H(p)-группа одного из следующих типов:
 - а) циклическая примарная группа;
 - б) группа кватернионов порядка 8;
 - в) неабелева группа порядка q^3 простой нечетной экспоненты q.

Следствие 2.13 [3]. Пусть $\mathfrak{H} - 2$ -кратно локальная формация uh - ee максимальный внутренний локальный экран. Формация \mathfrak{F} в том u только e том случае является

 \mathfrak{H}_l -критической, когда $\mathfrak{F} = l \text{form}(G)$, где G – такая монолитическая группа с монолитом $P = G^{\mathfrak{H}}$, что выполняется одно из следующих условий:

- 1) G группа простого порядка;
- 2) P неабелева группа и $P = G^{h(p)}$ для всех $p \in \pi(P)$;
- 3) $G = P \rtimes K$, где $P = C_G(P) p$ -группа, а K mакая монолитическая группа c монолитом $Q = K^{h(p)}$, что (|Q|, |P|) = 1, $Q \not\subseteq \Phi(K)$ и для всех $q \in \pi(Q)$ имеет место $K^{H(q)} \subset Q$.

Следствие 2.14 [3]. Пусть $\mathfrak{H} = LF(h)$ – формация классического типа с локальным экраном h. Формация \mathfrak{F} в том и только том случае является \mathfrak{H}_l -критической, когда $\mathfrak{F} = l\text{form}(G)$, где G – такая монолитическая группа с монолитом $P = G^{\mathfrak{H}}$, что выполняется одно из следующих условий:

- 1) P = G группа простого порядка;
- 2) P неабелева группа и $P = G^{\mathfrak{N}_p(h(p) \cap \mathfrak{H})}$ для всех $p \in \pi(P)$;
- 3) $G = P \rtimes K$, где $P = C_G(P) p$ -группа, а K mакая монолитическая группа c монолитом $Q = K^{\mathfrak{R}_p(h(p) \cap \mathfrak{H})}$ (p не делит |Q|), что либо $\Phi(K) = 1$ и $K^{\mathfrak{R}_q(h(q) \cap \mathfrak{H})} \subseteq Q$ для всех $q \in \pi(Q)$, либо K минимальная не h(p)-группа одного из следующих типов:
 - а) циклическая примарная группа;
 - б) группа кватернионов порядка 8;
 - в) неабелева группа порядка q^3 простой нечетной экспоненты q.

Следствие 2.15 [3]. Тогда и только тогда \mathfrak{F} – минимальная локальная ненильпотентная формация, когда $\mathfrak{F} = l \text{form}(G)$, где G – либо простая неабелева группа, либо группа Шмидта.

Следствие 2.16 [4, с. 191]. Тогда и только тогда \mathfrak{F} – минимальная локальная неметанильпотентная формация, когда $\mathfrak{F} = l \text{form}(G)$, где G – такая монолитическая группа с монолитом P, что выполняется одно из следующих условий:

- 1) $P = G^{\mathfrak{N}}$ неабелева группа;
- $(Q) = P \rtimes (Q \rtimes N)$, где $P = C_G(P)$ p-группа, $Q = C_{Q \rtimes N}(Q)$ минимальная нормальная подгруппа в $Q \rtimes N$ и N нильпотентная группа.

Следствие 2.17 [4, с. 183]. Тогда и только тогда \mathfrak{F} – минимальная локальная не \mathfrak{NM} -формация, когда $\mathfrak{F} = l \text{form}(G)$, где G – такая монолитическая группа с монолитом P, что либо P – неабелева группа, совпадающая с коммутантом G, либо $G = P \rtimes K$, где $P = C_G(P)$, а K – одна из следующих групп:

- a) $Q \rtimes N$, $r\partial e \ Q = C_K(Q) = K' \neq 1$;
- б) неабелева группа порядка q^3 простой нечетной экспоненты q;
- в) группа кватернионов порядка 8.

Работа выполнена при финансовой поддержке Министерства образования Республики Беларусь (проект № 20211328).

Автор выражает глубокую признательность рецензенту за полезные замечания и предложения.

Литература

- 1. *Шеметков Л. А.* Экраны ступенчатых формаций // Тр. VI Всесоюзн. симпозиума по теории групп. Киев: Наукова думка, 1980. С. 37–50.
- 2. *Скиба А. Н.* О критических формациях // Изв. АН БССР. Сер. физ.-мат. наук. 1980. № 4. С. 27–33.
- 3. *Скиба А. Н.* О критических формациях // Бесконечные группы и примыкающие алгебраические структуры. Киев: Ин-т математики АН Украины, 1993. С. 258–268.
 - 4. Шеметков Л. А., Скиба А. Н. Формации алгебраических систем. М.: Наука, 1989.
 - 5. Скиба А. Н. Алгебра формаций. Минск: Беларуская навука, 1997.

- 6. *Сафонов В. Г.* О минимальных кратно локальных не \mathfrak{H} -формациях конечных групп // Вопросы алгебры. 1995. Вып. 8. С. 109–138.
- 7. *Сафонов В. Г.* О критических кратно локальных формациях конечных групп // Вес. Акад. навук Беларусі. Сер. фіз.-мат. навук. 1997. № 3. С. 57–61.
- 8. Джарадин Д. Минимальные p-насыщенные ненильпотентные формации // Вопросы алгебры. 1995. Вып. 8. С. 59–64.
- 9. *Сафонова И. Н.* О минимальных ω-локальных несверхразрешимых формациях // Вопросы алгебры. 1998. № 12. С. 123–130.
- 10. *Сафонова И. Н.* О минимальных ω -локальных не \mathfrak{H} -формациях // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. 1999. № 2. С. 23–27.
- 11. *Сафонова И. Н.* К теории $\mathfrak{H}_{l^{\varpi}}$ -критических формаций конечных групп // Изв. Гомельского гос. ун-та. 2001. № 3(6). Вопросы алгебры. С. 124–133.
- 12. *Селькин В. М.* Минимальные наследственные ω -локальные не \mathfrak{H} -формации // Украинский математический журнал. 2002. Т. 54, № 3. С. 373–380.
- 13. *Сафонова И. Н.* О критических частично насыщенных формациях конечных групп // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. 2006. № 2. С. 51–55.
- 14. *Селькин В. М.* О минимальных τ -замкнутых ω -локальных не \mathfrak{H} -формациях // Тр. Ин-та математики. 2008. Т. 16, № 1. С. 81–85.
- 15. Рябченко А. И. К теории частично насыщенных формаций // Изв. Гомельского гос. ун-та. 2008. № 6(51), Ч. 2. С. 153–160.
- 16. *Сафонов В. Г., Сафонова И. Н.* О минимальных тотально ω-насыщенных ненильпотентных формациях конечных групп // Вестн. Витебского гос. ун-та. 2014. № 6(84). С. 9–15.
- 17. Ведерников В. А., Сорокина М. М. Композиционные наследственные критические формации // Вопросы алгебры. 1997. Вып. 11. С. 59–64.
- 18. Сорокина М. М. О композиционных нормально наследственных критических формациях // Вопросы алгебры. 1998. Вып. 12. С. 23–36.
- 19. *Близнец И. В., Скиба А. Н.* О \mathfrak{H}_{Θ^2} -критических формациях // Изв. Гомельского гос. ун-та. 1999. № 1. С. 140–144.
- 20. *Близнец И. В.* Критические ω -композиционные формации // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. 2002. № 4. С. 115–117.
- 21. Задорожнюк М. В. О минимальных τ -замкнутых ω -композиционных ненильпотентных формациях // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. 2006. № 3. С. 21–24.
- 22. *Белоус Л. И., Селькин В. М., Скиба А. Н.* Об одном классе критических ω-композиционных формаций // Докл. Нац. акад. наук Беларуси. 2006. Т. 50, № 6. С. 36–40.
- 23. Belous L. I., Sel'kin V. M. On minimal ω -composition non- \mathfrak{H} -formations // Algebra and discrete mathematics. 2006. N 4. P. 1–11.
- 24. Жизневский П. А., Сафонов В. Г. О критических частично композиционных формациях // Вес. Нац. акад. наук Беларуси. Сер. фіз.-мат. навук. 2010. № 3. С. 44–49.
- 25. Жизневский П. А. О существовании критических формаций // Докл. Нац. акад. наук Беларуси. 2011. Т. 55, № 1. С. 27–30.
- 26. *Сафонов В. Г.* $\mathfrak{H}_{\infty}^{\tau}$ -критические формации // Изв. Гомельского гос. ун-та. 2008. № 2(47). С. 169–176.
- 27. *Сафонов В. Г.* О существовании минимальных τ -замкнутых тотально насыщенных не \mathfrak{H} -формаций // Тр. Ин-та математики. 2008. Т. 16, № 1. С. 67–72.
- 28. Ведерников В. А., Коптюх Д. Г. Наследственные критические Ω -композиционные формации // Укр. мат. журн. 2001. Т. 53, № 5. С. 579–588.
- 29. Сорокина М. М., Силенок Н. В. Критические Ω -расслоенные формации конечных групп // Математические заметки. 2002. Т. 72, Вып. 2. С. 269–282.

- 30. *Корпачева М. А., Сорокина М. М.* О критических ω-веерных формациях конечных групп // Математические заметки. 2006. Т. 79, Вып. 1. С. 87–94.
- 31. *Сафонов В. Г., Сафонова И. Н.* Приводимые ω -насыщенные формации с разрешимым дефектом ≤ 2 // Изв. Гомельского гос. ун-та. 2005. № 5(32). С. 162–165.
- 32. Сафонов В. Г., Сафонова И. Н. О коммутативных полугруппах разрешимых тотально ω -насыщенных формаций // Проблемы физики, математики и техники. 2015. № 4(25). С. 80–86.
- 33. *Сафонова И. Н.* О минимальных σ -локальных не \mathfrak{H} -формациях конечных групп // Проблемы физики, математики и техники. 2020. № 4(45). С. 105–112.
- 34. *Skiba A. N.* On σ -subnormal and σ -permutable subgroups of finite groups // J. Algebra. 2015. Vol. 436. P. 1–16.
- 35. *Skiba A. N.* On one generalization of the local formations // Probl. Phys. Math. Tech. 2018. N 1(34). P. 79–82.
- 36. *Chi Z.*, *Safonov V. G.*, *Skiba A. N.* On one application of the theory of *n*-multiply σ-local formations of finite groups // Probl. Phys. Math. Tech. 2018. N 2(35). P. 85–88.
- 37. *Chi Z., Safonov V. G., Skiba A. N.* On *n*-multiply σ-local formations of finite groups // Comm. Algebra. 2019. Vol. 47, N 3. P. 957–968.
- 38. *Tsarev A*. Laws of the lattices of σ-local formations of finite groups // Mediterranean Journal of Mathematics. 2020. Vol. 17, N 3. P. 75.
- 39. Safonova I. N., Safonov V. G. On some properties of the lattice of totally σ -local formations of finite groups // Journal of the Belarusian State University. Mathematics and Informatics. 2020. N 3. P. 6–16.
- 40. *Воробьев Н. Н., Стаселько И. И., Ходжагулыев А. О.* Отделимые решетки кратно о-локальных формаций // Сиб. мат. журн. 2021. Т. 62, № 4. С. 721–735.
- 41. *Safonova I. N.* A criterion for σ -locality of a non-empty formation // Comm. Algebra. 2022. Vol. 50, N 6. P. 2366–2376.
- 42. Safonova I. N. On properties of the lattice of all τ -closed *n*-multiply σ -local formations // Comm. Algebra. 2023. Vol. 51, N 10. P. 4454–4461.
- 43. Safonova I. N. On σ -inductive lattices of *n*-multiply σ -local formations of finite groups // J. Algebra and its Applications. https://doi.org/10.1142/S0219498824500178.

I. N. Safonova On critical σ-local formations of finite groups

Summary

In this article we study minimal σ -local non- \mathfrak{H} -formations of finite groups (or, in other words, \mathfrak{H}_{σ} -critical formations), i. e. such σ -local formations not included in the class of groups \mathfrak{H} , all of whose proper σ -local subformations are contained in \mathfrak{H} . A description of minimal σ -local non \mathfrak{H} -formations for an arbitrary σ -local formation \mathfrak{H} of classical type is obtained (a σ -local formation is called a σ -local formation of classical type if it has a σ -local definition such that all its non-Abelian values are σ -local). The main result of the work in the class of σ -local formations solves the problem of L. A. Shemetkov (1980) on the description of critical formations for given classes of finite groups. As corollaries, descriptions of \mathfrak{H}_{σ} -critical formations are given for a number of specific classes of finite groups, such as the classes of all σ -nilpotent, meta- σ -nilpotent groups, as well as the class all groups with σ -nilpotent commutator subgroup.