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Доказано, что не существует алгоритма для умножения 3×3 матриц мультипликативной длины 23, 
инвариантного относительно некоторой группы, изоморфной S4×S3. Доказательство использует 
описание орбит этой группы на разложимых тензорах в тензорном кубе 3

3( ( )) ,M ⊗  полученное 
ранее. 
  
1. Introduction. The present work is concerned with the problem of fast matrix multiplica-

tion, namely studying of algorithms with a nontrivial symmetry group. We show that there exists no 
algorithm for multiplication of 3 3×  matrices of length 23  that is invariant under a certain group 
G  isomorphic to 4 3.S S×  This paper is an immediate sequel of paper [1]. The more detailed discus-
sion, motivation, and further references can be found in [1]. Here we restrict ourselves with stating 
Theorem 1 of [1] (whose proof is the main aim of the present work), as well as the main result of 
[1], namely the classification of orbits on the decomposable tensors. 

For convenience of the reader who is not very experienced in algorithms we now state the re-
sult we are going to prove in purely group- and representation-theoretic terms. Let  

 3= ( ) = |1 , 3ijM M e i j〈 ≤ ≤ 〉  
be the space of complex 3 3×  matrices. Consider the tensor  

 
1 , , 3

= .ij jk ki
i j k

e e e M M M
≤ ≤

⊗ ⊗ ∈ ⊗ ⊗∑  

Let (3, )A GL≤   be the group of all monomial 3 3×  matrices whose nonzero elements are 1±  and 
the determinant is det = 1. It is easy to see that 4 ,A S≅  and A  is irreducible. This group A  acts on 

3M ⊗  “componentwise”, that is, a A∈  acts by a transformation  
 1 1 1( ) : .T a x y z axa aya aza− − −⊗ ⊗ ⊗ ⊗  

It may be shown that this action of A  preserves .  
Next, consider the following transformations:  
 ( ) = , ( ) =t t tx y z y x z x y z z x yρ ⊗ ⊗ ⊗ ⊗ σ ⊗ ⊗ ⊗ ⊗  

(where t  means transpose). It is easy to see that both ρ  and σ  preserve ,  and 3:= , .B S〈ρ σ〉 ≅  
Finally, it is not hard to show that A  and B  commute elementwise (for the details of these (and 
even more general) calculations the reader can consult [2] or [3]). Thus, the group 

4 3=G A B S S× ≅ ×  acts on 3M ⊗  and preserves .  
The tensors of 3M ⊗  of the form 1 2 3v v v⊗ ⊗  will be called elementary, or decomposable. 

A decomposition of length l  for   is an (unordered) set of l  elementary tensors  
 = { = | = 1, , }i i i it x y z i l⊗ ⊗   

such that 1 = .lt t+ +   
Obviously, any element of G  takes a length l  decomposition to a length l  decomposition. In 

particular, we can consider a notion of a G -invariant decomposition. Now we can state the main 
result of the present paper.  
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Theorem 1. Let   and =G A B×  be as described above. Then there exists no G -invariant 
decomposition of   of length 23.≤   

To prove this theorem it is necessary, first of all, to describe all orbits of length 23≤  for the 
group G  on the decomposable tensors in 3.M ⊗  This is done in [1] (in fact, it is sufficient to consid-
er orbits of length 18,≤  because | |G  is not divisible by 19 23).d≤ ≤  

Below in the paper St ( )G w  is the stabilizer of a tensor w  with respect to the action of ;G  ζ  

is the primitive cubic root of 1,  and = 1i −  (we use the same symbol i  for indices, but hope that 
this will not lead to a confusion even in the formulae like ij kie ie− ). Also,  

 11 22 33 12 21 13 31 23 32= , = = ,ij
i j

e e e e e e e e e e
≠

δ + + + + + + +∑  

 11 22 33 11 22 33= , = ,e e e e e eη + ζ + ζ η + ζ + ζ  
 12 23 31 21 32 13= .e e e e e eτ + + − − −  

In [1] the following was proved. 
Proposition 2. Any orbit of length 18≤  of G  on decomposable tensors in 3M ⊗  has a repre-

sentative of the form ( , , ),iw a b   1 44,i≤ ≤  where iw  are the tensors listed in the following table. 
i  il  ( , , )iw a b   

1 12  3
11 22 12 21 33 13 23 31 32( ( ) ( ) ( ))a e e b e e ce d e e e e ⊗+ + + + + + + +  

2  12  3
11 22 33 12 21( ( ))ae be ce d e e ⊗+ + + +  

3  6  3
11 22 33 12 21( ( ) ( ))a e e be c e e ⊗+ + + +  

4  6  3
11 22 33( )ae be ce ⊗+ +  

5  3  3
11 22 33( ( ) )a e e be ⊗+ +  

6  2  3a ⊗η  
7  1 3a ⊗δ  
8  16  3

12 23 31 21 32 13( ( ) ( ))a b e e e c e e e ⊗η+ + ζ + ζ + + ζ + ζ  
9  4  3( )a b ⊗δ +   
10  8  3

12 21 23 32 31 13( ( ( ) ( )))a b e e e e e e ⊗η+ + + ζ + + ζ +  
11 8  3

12 23 31 21 32 13( ( ) ( ))a b e e e c e e e ⊗δ + + + + + +  
12  6  3

11 22 12 21 33( ( ) ( ) )a e e b e e ce ⊗+ + − +  
13  12  3

11 22 12 21 33 13 23 31 32( ( ) ( ) ( ))a e e b e e ce d e e e e ⊗+ + + + + + − −  
14  12  3

11 22 12 21 33( ( ) )a e e be ce de ⊗+ + + +  
15  12  3

11 22 12 21 33( ( ) )ae be c e e de ⊗+ + − +  
16  18  11 22 33 11 22 33 11 22 33( ( ) ) ( ( ) ) ( ( ) )a e e be c e e de f e e ge+ + ⊗ + + ⊗ + +  
17  18  11 22 12 21 12 21( ) ( ) ( )a e e e e e e− ⊗ + ⊗ −  
18  9  2

11 22 11 22 33( ) ( ( ) )e e a e e be⊗− ⊗ + +  
19  9  2

12 21 11 22 33( ) ( ( ) )e e a e e be⊗+ ⊗ + +  
20  9  2

12 21 11 22 33( ) ( ( ) )e e a e e be⊗− ⊗ + +  
21 9  2

11 22 33 11 22 33( ( ) ) ( ( ) )a e e be c e e de⊗+ + ⊗ + +  
22  18  2

11 22 12 21 33 11 22 12 21 33( ( ) ( ) ) ( ( ) ( ) )a e e b e e ce d e e f e e ge⊗+ + + + ⊗ + + + +  
23 18  11 22 12 21 11 22 12 21 11 22 12 21 33( ( ) ( )) ( ( ) ( )) ( ( ) ( ) )a e e b e e a e e b e e c e e d e e fe− + − ⊗ − − − ⊗ + + + +  
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24  18  13 23 31 32 13 23 31 32 11 22 12 21 33( ( ) ( )) ( ( ) ( )) ( ( ) ( ) )a e e b e e b e e a e e c e e d e e fe+ + + ⊗ + + + ⊗ + + + +  
25  18  2

11 22 33 11 22 33( ) ( )ae be ce de fe ge⊗+ + ⊗ + +  
26  18  12 21 12 21 11 22 33( ) ( ) ( )ae be be ae ce de fe+ ⊗ + ⊗ + +  
27  18  11 22 12 21 33 11 22 12 21 33 11 22 33( ( ) ( ) ) ( ( ) ( ) ) ( ( ) )a e e b e e ce a e e b e e ce d e e fe+ + − + ⊗ + − − + ⊗ + +  
28  18  2

11 22 12 21 11 22 33( ( ) ( )) ( ( ) )a e e b e e c e e de⊗− + + ⊗ + +  
29  18  13 23 31 32 13 23 31 32 11 22 12 21( ( ) ( )) ( ( ) ( )) ( ( ) ( ))a e ie b e ie b e ie a e ie c e e d e e+ + + ⊗ + + + ⊗ − + +  
30  18  11 22 12 21 33 11 22 12 21 33 11 22 33( ( ) ( ) ) ( ( ) ( ) ) ( ( ) )a e e b e e ce a e e b e e ce d e e fe+ + + + ⊗ + − + + ⊗ + +  
31 18  2

11 22 12 21 11 22 33( ( ) ( )) ( ( ) )a e e b e e c e e de⊗− + − ⊗ + +  
32  18  13 23 31 32 13 23 31 32 11 22 12 21( ( ) ( )) ( ( ) ( )) ( ( ) ( ))a e e b e e b e e a e e c e e d e e+ + + ⊗ − + − ⊗ − + −  
33  18  11 22 33 11 22 33 11 22 33( ) ( ) ( ( ) )ae be ce be ae ce d e e fe+ + ⊗ + + ⊗ + +  
34  18  2

12 21 11 22 33( ) ( ( ) )ae be c e e de⊗+ ⊗ + +  
35  18  13 31 23 32 12 21( ) ( ) ( )ae be be ae ce de+ ⊗ + ⊗ +  
36  18  2

11 22 12 21 33 11 22 12 21 33( ( ) ( ) ) ( ( ) ( ) )a e e b e e ce d e e f e e ge⊗+ + − + ⊗ + + − +  
37  18  11 22 12 21 11 22 12 21 11 22 12 21 33( ( ) ( )) ( ( ) ( )) ( ( ) ( ) )a e e b e e a e e b e e c e e d e e fe− + + ⊗ − − + ⊗ + + − +  
38  18  13 23 31 32 13 23 31 32 11 22 12 21 33( ( ) ( )) ( ( ) ( )) ( ( ) ( ) )a e ie b e ie b e ie a e ie c e e d e e fe+ + + ⊗ − + − ⊗ + + − +  
39  6  aη⊗η⊗δ  
40  12  2( ) ( )a b c d⊗δ + ⊗ δ+   
41 12  2 ( )a b⊗τ ⊗ δ+   
42  12  11 22 33 11 22 33 11 22 33( ) ( ) ( )ae be ce ce ae be be ce ae+ + ⊗ + + ⊗ + +  
43 6  11 22 33 22 11 33 33 11 22( ( )) ( ( )) ( ( ))ae b e e ae b e e ae b e e+ + ⊗ + + ⊗ + +  
44  6  23 32 13 31 12 21( ) ( ) ( )ae be be ae ae be+ ⊗ + ⊗ +  

 
This proposition is Theorem 4 of [1], slightly shortened. Here il  is the length of the orbit. The num-

ber i  (the number of the row) will be referred to as the type of the tensor ( , , )iw a b   (and of its orbit). 
It should be noted the following. 
1) In general, the parameters , ,a b   for the tensor ( , , ),iw a b   which is a representative of a 

given orbit, are not uniquely defined. Particularly, in most part of cases we have 
( , , ) = ( , , ),l l

i iw a b w a bζ ζ   where = 0,1,2.l  Moreover, there are other situations, where the orbits 
of two tensors ( , , )iw a b   and ( , , )iw a b′ ′

  coincide, but ( , , ) ( , , )a b a b′ ′≠   (see [1] for details). 
2) For some “degenerate” , ,a b   the length of the orbit of ( , , )iw a b   can be less than il  (in 

fact, this length is the proper divisor of il ). In such a case there exists a type j i≠  an some parame-
ters , ,a b′ ′

  such that ( , , ) = ( , , ),i jw a b w a b′ ′
   and ( , , )a b′ ′

  is nondegenerate for type .j  

For instance, let = 4,i  3
4 11 22 33( , , ) = ( ) .w a b c ae be ce ⊗+ +  Then the orbit of 4 ( , , )w a b c  has 6  

points when ,a  ,b  and c  are pairwise distinct. If there are exactly 2  distinct among them, then the 
orbit has length 3  and is generated by a tensor of the form 5 ( , ).w a b′ ′  Say, if = ,a b c≠  then 

4 5( , , ) = ( , )Gw a b c Gw a b  (and when = = ,a b c  we have 3 3 3
4 7( , , ) = = ( )w a a a a w a⊗δ ). 

Below is  is the number of the parameters , ,a b   in the tensor ( , , ).iw a b   Also, for each 
type i  let iH G≤  be the “typical” stabilizer of ( , , ),iw a b   that is, the stabilizer for nondegenerate 
( , , ).a b   Say, for = 4i  the stabilizer 4H  is a certain subgroup isomorphic to 2

2 3,Z S×  specifically 
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the subgroup of all elements of the form ( , ),c b  where ,b B∈  and 1 2 3= diag( , , ) ,c Aε ε ε ∈  where 
= 1,iε ±  1 2 3 = 1.ε ε ε  Clearly, the index | : |iG H  is equal to .il   

2. Reduction to polynomial systems. The aim of this section is to show that the proof of 
Theorem 1 can be reduced to solution of several systems of polynomial equations (or, to be more 
precise, to the proof that these systems have no solutions). 

If 1= lV V V⊗ ⊗

  is the tensor product of several spaces and w V∈   is an arbitrary tensor, 
then finding all representations of w  as a sum of r≤  decomposable tensors reduces, as one can eas-
ily see, to the solution of a certain system of polynomial equations (which are known as (general-
ized) Brent equations, after the work [4]). Specifically, let = dim ,i id V  { |1 }ij iv j d≤ ≤  be the bases 
of ,iV  and 

1k kl
w



 be the coordinates of w  in the natural tensor basis, i. e.,  

 1, ,1 1
1

= .k k k l kl l
k di i

w w v v
≤ ≤

⊗ ⊗∑


  

Then, clearly, finding all decompositions of w  of length r≤  is equivalent to solving the system of 
1 ld d  equations  

 ( ) ( )
1, ,1 1

=1
= , 1

r
j j
k l k k k i il l

j
x x w k d≤ ≤∑



  

in 1( )lr d d+ +  unknowns ( )
, ,j

i ki
x  1 ,j r≤ ≤  1 .i ik d≤ ≤  

The latter statement has a “group-invariant” version. Namely, if X  is a finite group of linear 
transformations of ,V  preserving representation of V  as a tensor product (but possibly permuting 
the factors iV ), and w  is an X -invariant tensor, then finding all X -invariant decompositions of ,w  
whose length is ,r≤  can be reduced to the solution of some set of polynomial systems. It is not dif-
ficult to prove this statement in the general situation, but in the present paper we restrict ourselves 
with the particular case of 3= ,V M ⊗

  = = ,X G A B×  = ,w   and = 23.r  
Let = { = |1 }i i i it x y z i l⊗ ⊗ ≤ ≤  be a G -invariant decomposition of length l  for .  We 

have a partition of   into G -orbits: 1= .q     The type of   is the multiset 1{ , , },qn n  
where in  is the type of .i  Clearly, we can assume that in  are ordered: 1 .qn n≤ ≤  It is also clear 

that the length of a decomposition of type 1{ , , }qn n  is equal to 
1

.
q

ni
i

l
=
∑  

To describe all G -invariant decompositions of length 23≤  it is sufficient to describe all G -

invariant decompositions of a given type 1{ , , },qn n  for every type such that 
1

23.
q

ni
i

l
=

≤∑  Obvious-

ly, there exist finitely many such types. So, to show that the description of all G -invariant decom-
positions of length 23≤  reduces to the solution of some finitely many polynomial systems, it is suf-
ficient to show that the description of all G -invariant decompositions of a given type 1{ , , }qn n  
reduces to solution of several (in fact, one!) polynomial systems. 

Take some representatives ,ijh  1 ,ij l≤ ≤  for cosets / .iG H  Then any orbit of type i  is, clear-
ly, 1{ ( , , ) | = 1, , }ij i s ii

h w a a j l   for some 1, , .si
a a ∈   So a decomposition of type 1{ , , }qn n  is  

 , ,1 ,= { ( , , ) |1 ,1 },n j n i i u ni i i i
h w a a i q j l≤ ≤ ≤ ≤  

where = ,i ni
u s  for some array ( |1 ,1 ).im ia i q m u∈ ≤ ≤ ≤ ≤  

The condition that the sum of elements of   equals   now takes the following (rather clum-
sy) form:  
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 , ,1 ,
=1 =1

( , , ) = .
lnq i

n j n i i ui i i
i j

h w a a∑∑    (1) 

The tensor 1( , , )m sm
w a a  depends polynomially on its parameters, by Proposition 2. So the left-

hand side of the latter condition depends on the parameters ija  polynomially also, and so equality 
(1) is equivalent to some system of polynomial equations in ,ija  as required. 

There exists another condition, which is equivalent to (1), but looks simpler and does not in-
volve subgroups or cosets. Note that since G  is finite and the characteristics is 0,  3=N M ⊗  de-
composes as 0= ,GN N N⊕  where = { | = }GN x N gx x g G∈ ∀ ∈  is the subspace of invariants of 
G  in ,N  and 0N  is the subspace of all elements whose averaging over G  is 0 :   

 0

1 = 0= .
| | g G

gxN x N
G ∈

 
∈ 

 
∑  

By p  we denote averaging operator, i. e., ( ) = (1/ | |) .
g G

p x G gx
∈
∑  It is clear that p  is nothing else 

but the projection onto GN  parallel to 0N  : = pr .GN
p  

Let H G≤  be an arbitrary subgroup of index = | : |,l G H  1, , lg g  be the representatives of 
the cosets / ,G H  and let w N∈  be an H -invariant tensor (not decomposable, in general). Then the 
G -orbit of w  is = { | = 1, , }.iGw g w i l  (Strictly speaking, if we consider { | = 1, , }ig w i l  as a 
multiset, then it is an integer multiple of an orbit, of multiplicity 1| : |,H H  where 1 = St ( )GH w  is 
the stabilizer of .w  But we neglect the possibility that 1 > ,H H  for simplicity). And it is clear that 

the sum of elements of an orbit is 
1

= ( ).
l

i
i

g w lp w
=
∑  Hence the condition (1) can be restated as  

 ,1 ,
=1

( ( , , )) = .
q

n n i i ui i i
i

l p w a a∑    (2) 

Remark. Strictly speaking, the condition (1), or equivalently (2), should be augmented by the 
requirement that ,1 ,( , , )i i ui

a a  is a nondegenerate array of parameters for type .in  But if this array 

of parameters is degenerate, then  
 , 1 ,{ ( , , ) |1 }n j n i i u ni i i i

h w a a j l≤ ≤  

is an integer multiple (of multiplicity > 1) of an orbit of smaller length, and we obtain a G -

invariant decomposition for   whose length is 
1

< .
q

ni
i

l
=
∑  (It should be noticed here that always 

( , , ) = ( , , ),i izw a b w z a z b′ ′
   for any ,z∈  where =z z′  for = 6,7,17,18,19,20,39,41i  and 

1/3=z z′  for the other .i ) 
This way or that, but we see that the statement that studying of G -invariant decompositions 

of length 23≤  for   reduces to solution of several polynomial systems, is still true, despite of pos-
sibility of degenerate arrays of parameters.  

3. The subspace of G-invariants. 
In this section we consider the subspace = GR N  and the projection onto R  in more details. 
Let F  be the set of ordered triples of ordered pairs of elements of {1,2,3}:  
 1 1 2 2 3 3= {(( , ), ( , ), ( , )) | , {1,2,3}}.k kF i j i j i j i j ∈  

That is, F  is precisely the set of “indices” for the standard basis of N  :  
 1 1 2 2 3 31 1 2 2 3 3

= | , = , = (( , ), ( , ), ( , )).i j i j i jN e F e e e e i j i j i jα α〈 α∈ 〉 ⊗ ⊗ α  
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Note that F  is acted on by group 3 3.S S×  The first 3S  acts on indices:  
 1 1 2 2 3 3 1 1 2 2 3 3 3( ,1) (( , ), ( , ), ( , )) = (( , ), ( , ), ( , )), .g i j i j i j gi gj gi gj gi gj g S∈  

The second factor permutes the pairs, and transposes each pair, if the acting element is odd:  
 1 1 2 2 3 3 3 3 1 1 2 2(1, (123)) (( , ), ( , ), ( , )) = (( , ), ( , ), ( , )),i j i j i j i j i j i j  
 1 1 2 2 3 3 2 2 1 1 3 3(1, (12)) (( , ), ( , ), ( , )) = (( , ), ( , ), ( , )).i j i j i j j i j i j i  

It is not difficult to check that with these definitions we obtain an action of 3 3S S×  indeed; the de-
tails are left to the reader. 

Consider natural homomorphisms 3A S→  and 3.B S→  Namely, to a matrix a A∈  corre-
sponds the permutation of the lines 1 ,e〈 〉  2 ,e〈 〉  3e〈 〉  induced by .a  And to an element b B∈  corre-
sponds the permutation of factors in the tensor product ,M M M⊗ ⊗  associated to .b  Now we can 
define a homomorphism 3 3: = ,G A B S Sϕ × → ×  “by components”. We denote ( )gϕ  also by .g  

It is convenient to consider a group slightly larger than ,G  namely 1 1= ,G A B×  where 1A  is 
the group of all (that is, not necessary of determinant 1+ ) monomial 3 3×  matrices whose nonzero 
elements are 1.±  Obviously, 1 2= ,A A E×〈− 〉  where E  is the identity matrix, whence 

1 2= .G G E×〈− 〉  However, the action of 1G  on N  reduces to the action of ,G  because, clearly, 
( ) = id .NT E−  Also, let 1 1 2 3= {diag( , , ) | = 1},iC ε ε ε ε ±  and 1=C C G∩  be the subgroup of matrices 

satisfying 1 2 3 = 1.ε ε ε  It is obvious that 1 2= .C C E×〈− 〉  
The advantage of considering 1G  is that all permutation matrices are in 1,A  and any element 

of 1A  is uniquely representable in the form ˆ= ,a cπ  where π  is the permutation, corresponding to 
,a  π̂  is the corresponding permutation matrix, and 1.c C∈  

It is easy to note that 1G  permutes the elements of the standard basis { }eα  up to sign, that is, 
the set { | }e Fα± α∈  is 1G -invariant. More precisely, the following fact is true.  

Lemma 2. For any Fα∈  and 1g G∈  holds = .gge eα α±   
Proof. This statement is easy, nevertheless we give a detailed proof. First of all, if the desired 

equality is true for two elements 1,g h G∈  and for all ,Fα∈  then it is true for gh  also. Indeed,  
 ( ) ( )( ) = ( ) = ( ) = ( ) = ( ) = = .h h g h gh ghgh e g he g e ge e e eα α α α α α α

± ± ± ± ± ±  
So we only need to prove the equality for some set of generators for 1.G  

First consider σ  and ,ρ  which generate .B  We have  
 

1 1 2 2 3 3 3 3 1 1 2 2
( ) = ( ) = = ,i j i j i j i j i j i je e e e e e e eα βσ σ ⊗ ⊗ ⊗ ⊗  

where 3 3 1 1 2 2= (( , ), ( , ), ( , )) = ,i j i j i jβ σα  as = (1, (123)).σ  Similarly  
 

1 1 2 2 3 3 2 2 11 3 3
( ) = ( ) = = ,i j i j i j j i j i j ie e e e e e e eα βρ ρ ⊗ ⊗ ⊗ ⊗  

where 2 2 1 1 3 3= (( , ), ( , ), ( , )) = (1, (12)) = .j i j i j iβ α ρα  
Next consider elements of 1.A  Any of these elements is ˆ ,cπ  where 1c C∈  and π̂  is a permuta-

tion matrix. An element of 1C  takes any eα  to ,eα±  and = 1c  ( = id ,F  to be precise). So = cce eα α±  
is evident. Next, it is easy to show that for any matrix unity ije  and any permutation 3Sπ∈  the 
equality 1

,ˆ ˆ =ij i je e−
π ππ π  is true. Hence for 1 1 2 2 3 3= (( , ), ( , ), ( , ))i j i j i jα  we have  

 1 1 1
, , ,1 1 2 2 3 3 1 1 2 2 3 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) = = = ,i j i j i j i j i j i je e e e e e e e− − −
α π π π π π π βπ π π ⊗π π ⊗π π ⊗ ⊗  

where 1 1 2 2 3 3 ˆ= (( , ), ( , ), ( , )) = ( ,1) = .i j i j i jβ π π π π π π π α πα  That is, = gge eα α  if ˆ= .g π    
We shall call 1 1 2 2 3 3= (( , ), ( , ), ( , ))i j i j i jα  even if any = 1,2,3m  occurs evenly many times 

among 1 3, , .i j  For instance, ((1,3), (1,3), (3,3))  is even and ((1,3), (2,3), (3,1))  is not. It is clear 
that the set of even elements of F  is invariant under 3 3.S S×  
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In the following proposition, and in the sequel, we write “11,12,21” instead of 
((1,1), (1, 2), (2,1))  etc., for brevity.  

Proposition 4. The group 3 3S S×  has 12 orbits 1 12, ,   on the set of even elements of .F  
Their lengths and representatives are listed in the following table.  

i  iα∈  | |i  i  iα∈  | |i  i  iα∈  | |i  
1 11,11,11 3  5  11,21,12  18  9  12,23,31 6  
2  11,11,22  18  6  11,22,33  6  10  12,23,13  18  
3  11,12,21 18  7  11,23,23  18  11 12,32,13 18  
4  11,12,12  36  8  11,23,32  18  12  12,31,23  6  

 
Proof. These rather elementary considerations are left to the reader.   
Further we need the following simple lemma. 
Lemma 5. If X  is a linear group acting on a space ,V  Y X≤  is a subgroup and v V∈  is an 

element such that = 0,
y Y

yv
∈
∑  then = 0.

x X
xv

∈
∑   

Proof. Let 1, , ng g  be the representatives of cosets / .X Y  Then  

 
=1 =1 =1

= = ( ) = (0) = 0.
n n n

i i i
x X i y Y i y Y i

xv g yv g yv g
∈ ∈ ∈
∑ ∑∑ ∑ ∑ ∑    

Proposition 6. 1) =ce eα α  for all 1c C∈  (or, equivalently, for all c C∈ ) if and only if α  is even. 
2) If α  is even, then = gge eα α  for any g G∈  (or for any 1g G∈ ). In other words, G  per-

mutes ,eα  where α  is even, always with the plus sign. 
3) If α  is not even, then = 0.

g G
geα

∈
∑  

4) For 1 12i≤ ≤  let = .i

i

eα
α∈

γ ∑


 Then the elements iγ  constitute a basis of .GN  

5) For an element w N∈  its projection to GN  is equal to  

 
12

=1
( ) = pr ( ) = (1/ | |) ( ) ,G i i iN

i
p w w r w γ∑   (3) 

where ( )ir w  is the sum of coefficients in w  at all eα  with .iα∈   
Proof. 1) This is easy. For instance, if 1 1 2 2 3 3= , ,i j i j i jα  and = diag( 1,1,1),c −  then 

= ( 1) ,mce eα α−  if exactly m  of 1 1 3, , ,i j j  are equal to 1.  
2) This easily follows from the arguments in the proof of Lemma 3, taking into account 

statement 1), because ,σ  ,ρ  and π̂  permute the tensors eα  (all of them, including those with α  not 
even) always with plus sign. 

3) If α  is not even, then by 1) there exists c C∈  such that = ,ce eα α−  and we can apply 
Lemma 5 to the group = ,X G  subgroup = {1, },Y c  and the space element = .v eα  

4) As the characteristics equals 0  and { | }e Fα α∈  is a basis of ,N  the elements 
g G

geα
∈
∑  span 

.GN  If α  is not even, then the latter element equals 0.  If α  is even, this element is a scalar multi-
ple of ,iγ  where i  is such that .iα∈  Therefore the elements iγ  span .GN  The independence of 
these elements is obvious. 

5) If α  is not even, then G -average of ,eα  that is ( ),p eα  is 0.  If α  is even, then 
( ) = ,ip e xα γ  where i  is such that .iα∈  The coefficient x  can be found using the condition that 

the sums of all coefficients, at all ,eβ  ,Fβ∈  for eα  and ( )p eα  must be the same, whence 
1 = | |,ix   = 1/ | | .ix   Thus, ( ) = (1/ | |) .i ip eα γ  Hence the formula (3) easily follows.   
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Using the last statement of the proposition, we can easily calculate for each tensor of the form 
( , , )iw a b   its orbit sum, i. e., the sum of all its G -conjugates. 

Example. Calculate the orbit sum for  
27 11 22 12 21 33 11 22(1, 2,3, 4,5) = (( ) 2( ) 3 ) (( )w e e e e e e e+ + − + ⊗ + −  

12 21 33 11 22 332( ) 3 ) (4( ) 5 ).e e e e e e− − + ⊗ + +  
Make the table containing all even α  such that w  involves ,eα  with the corresponding coefficient 
vα  and the number 1 12i≤ ≤  such that .iα∈   

α  i  vα  α  i  vα  α  i  vα  
11,11,11 1 4  11,11,22  2  4  11,11,33 2  5  
11,22,11 2  4  11,22,22  2  4  11,22,33  6  5  
22,11,11 2  4  22,11,22  2  4  22,11,33  6  5  
22,22,11 2  4  22,22,22  1 4  22,22,33  2  5  
11,33,11 2  12  11,33,22  6  12  11,33,33 2  15  
22,33,11 6  12  22,33,22  2  12  22,33,33  2  15  
33,11,11 2  12  33,11,22  6  12  33,11,33 2  15  
33,22,11 6  12  33,22,22  2  12  33,22,33  2  15  
33,33,11 2  36  33,33,22  2  36  33,33,33 1 45  
12,12,11 4  16−  12,12,22  4  16−  12,12,33 7  20−  
12,21,11 3  16  12,21,22  5  16  12,21,33  8  20  
21,12,11 5  16  21,12,22  3  16  21,12,33  8  20  
21,21,11 4  16−  21,21,22  4  16−  21,21,33  7  20−  

 
Using this table we can find the coefficients of the orbit sum in the basis { }.iγ  As an example, 

find the coefficient at 1.γ  The coefficients in w  at 11,11,11 11 11 11= ,e e e e⊗ ⊗  22,22,22 ,e  and 33,33,33e  are 4,  
4,  and 45,  respectively. The coefficient in ( )p w  at 1γ  is 1 1( )/ | | = (4 4 45) / 3 = 53 / 3,r w + +  accord-
ing to Proposition 6.5). The orbit of w  has length 18, whence the orbit sum is 18 ( ),p w  and the coeffi-
cient at 1γ  in this sum is 53 6 = 318.⋅  Similarly one can calculate the other coefficients (which is rec-
ommended to the reader as an exercise) and find the complete orbit sum, which is equal to  

 1 2 3 4 5 6 7 8318 214 32 32 32 174 40 40γ + γ + γ − γ + γ + γ − γ + γ  
(note that 9 12, ,γ γ  are not involved in this sum). 

Thus, we see that the calculation turns out to be rather long. However, to prove Theorem 1 we 
shall not need the orbit sums for all tensors ( , , )iw a b   for arbitrary , ,a b  ! Knowing the coeffi-
cients at some iγ  in some sums will be sufficient.  

4. The proof of Theorem 1. Now we can start proving Theorem 1. Assume on the contrary 
that a G -invariant decomposition of length 23≤  for   does exist, and among all such decomposi-
tions take the one of the smallest length.  

Proposition 7. 1) A minimal G -invariant decomposition for   does not contain an orbit of 
any of the types 16,  18,  21,  25,  33,  or 42.  

2) There exists a minimal decomposition not containing orbits of type 4,  39,  or 43.   
Proof. 1) Consider three tensors 3

7= (1) = ,w w ⊗′ δ  3
6= (1) = ,w w ⊗′′ η  and 3

5 33= (0,1) = .w w e⊗′′′  
Their orbits are 3= { },' ⊗δ  3 3= { , },'' ⊗ ⊗η η  and 3 3 3

11 22 33= { , , },''' e e e⊗ ⊗ ⊗  respectively, and the orbit 
sums are 1 2 6= ,′σ γ + γ + γ  1 2 6= 2 2 ,′′σ γ − γ + γ  and 1= .'''σ γ  So any linear combination of 1,γ  2 ,γ  
and 6γ  is a linear combination of ,′σ  ,′′σ  and ′′′σ  and can be therefore expressed as a sum of some 
G -invariant set of decomposable tensors of 6≤  elements. 
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Note that for any {16,18,21,25,33,42}i∈  the tensor ( , , )iw a b   involves summands of the 
forms jj kk lle e e⊗ ⊗  only, so its orbit sum is a linear combination of 1,γ  2 ,γ  and 6.γ  Therefore, this 
orbit sum is the sum of a G -invariant set of decomposable tensors of 6≤  elements. But this orbit 
contains > 6  tensors. Thus it can be replaced by a smaller G -invariant set of decomposable tensors 
with the same sum. This contradicts the assumption that the decomposition under consideration is 
of minimal possible length. 

2) The argument is similar. An orbit of each of the types 4,  39,  or 43 can be replaced by a un-
ion of orbits of types 5,  6,  and 7  having the same sum. Since the length of an orbit of type 4,  39,  
or 43 is 6,  the overall length of the decomposition does not increase after such a replacement.     

Lemma 8. The orbit sum for the tensor 3
9 ( , ) = ( )w a b a b ⊗δ +   is 3

9 10 11 124 ( ) ,b Dγ + γ + γ + γ +  
where 1 8, , .D∈〈γ γ 〉   

Proof. We have 1 2= ,N N N⊕  where 1N  is the span of all eα  such that ,iα∈  
= 9,10,11,12,i  i. e., of all 

1 1 2 2 3 3i j i j i je e e⊗ ⊗  such that 1 1 2 2 3 3{{ , },{ , },{ , }} =i j i j i j  

{{1,2},{2,3},{1,3}},=  and 2N  is the span of remaining .eα  It is clear that both 1N  and 2N  are 
G -invariant. For a tensor t N∈  let 1t  and 2t  be its 1N - and 2N -components. 

It is more or less obvious that 3 3 3 3
1 1 1[( ) ] = [( ) ] = [ ] .a b b b⊗ ⊗ ⊗δ +     Next, it is clear that 

3
1[ ]⊗  is the sum of all eα  such that ,iα∈  = 9,10,11,12,i  and the latter sum is, clearly, nothing 

else but 9 10 11 12.γ + γ + γ + γ  Thus, 3
9 1 9 10 11 12[ ( , )] = ( ).w a b b γ + γ + γ + γ  So the orbit sum for 9 ( , )w a b  is  

 9 9 1 9 2 9 14 ( ( , )) = 4 (( ( , )) ( ( , )) ) = 4 (( ( , )) )p w a b p w a b w a b D p w a b+ + =  
 3 3

9 10 11 12 9 10 11 12= 4 ( ( )) = 4 ( ) ,D p b b D+ γ + γ + γ + γ γ + γ + γ + γ +  
 where 9 2= 4 (( ( , )) ).D p w a b  Finally, it is clear that 1 8( ) , ,p x ∈〈γ γ 〉  for any 2.x N∈    

Proposition 9. A G -invariant decomposition of length 23≤  can not contain an orbit of any 
of the types 17,22,23,26,27,28,30,31,36,37.   

Proof. Let = {17,22,23,26,27,28,30,31,36,37}I  be the set of types listed in the hypothesis. 
Assume on the contrary that a decomposition containing an orbit   of a type i I∈  does exist. 
Since an orbit of any type i I∈  is of length 18,  the rest of the decomposition contains 5≤  tensors, 
and so can only contain orbits of types 5,  6,  7,  or 9.  

We can immediately see from the table of orbits that the tensor ( , , )iw a b   with i I∈  does 
not involve summands proportional to ,eα  ,jα∈  = 9,10,11,12.j  Therefore its orbit sum does not 
involve such summands also, and so is in 1 8, , .〈γ γ 〉  The same is true for = 5,6,7.i  But 

1 3 9= .γ + γ + γ  So the decomposition necessary contains an orbit of type 9,  that is, the orbit of the 
tensor 3

9 ( , ) = ( )w a b a b ⊗δ +   with 0.b ≠  By Lemma 8 the orbit sum of the latter tensor is 
3

9 10 11 124 ( ) ,b Dγ + γ + γ + γ +  where 1 8, , .D∈〈γ γ 〉  So the sum of all the tensors of the decomposi-
tion involves 9 ,γ  10 ,γ  11,γ  and 12γ  with the same coefficients – but this is not the case for .    

Our next aim is to eliminate the remaining orbits of length 18.   
Lemma 10. Let = ( , , )lw w a b   be a decomposable tensor of type = 24,29,32,38,l  and s  be 

its orbit sum. Then the coefficients in s  at ,mγ  where = 9, ,12,m   are listed in the following table: 
 24  29  32  38  

9γ  26a d  26ia d  26a d  26ia d  

10γ  22 4a d abd+  22 4ia d iabd+  22 4a d abd+  22 4ia d iabd− +  

11γ  22 4b d abd+  22 4ib d iabd+  22 4b d abd−  22 4ib d iabd−  

12γ  26b d  26ib d  26b d−  26ib d−  
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Proof. A direct computation similar to the Example in the end of Section 3.   
Proposition 11. A G -invariant decomposition for   of length 23≤  can not contain an orbit 

of any of types = 24,29,32,38.l   
Proof. Assume on the contrary that such a decomposition does exist. Then = ,ls s′+  where 

ls  is the orbit sum for ( , , ),lw a b   containing 18  summands, and s′  is the sum of the remaining 
summands. Obviously, s′  contains 5≤  summands (tensors). So one of the following cases holds: 
(a) s′  contains an orbit of length 4  (and therefore of type 9 ), and may be an orbit of type 7,  that 
is, a multiple of 3,⊗δ  or (b) s′  only contains orbits of types 5,  6,  or 7.  We take these two cases to 
a contradiction separately. 

(a) In this case s′  is the sum of two summands, namely the orbit sum for 3
9 ( , ) = ( )w a b a b ⊗δ +   

and another summand 3.c ⊗δ  Note that lw  and therefore ls  does not involve any summands proportion-
al to , , .i i j j k ke  On the other hand, in 3( )a b ⊗δ +   such summands are the same as in 3( ) ,a ⊗δ  with the 
same coefficients. Therefore the sum of all summands of this form in = ls s′+  is the same as in 

3 3( 4 ) .c a ⊗+ δ  But this contradicts to the fact that   involves 11,11,11e  but not 11,11,22.e  
(b) In this case, obviously, s′  does not involve mγ  with = 9, ,12.m   Since   involves 9 ,γ  

but not 10 ,γ  11,γ  or 12 ,γ  we conclude that ls  also involves 9 ,γ  but not 10,11,12.γ  By Lemma 10 the 

condition that   involves 9γ  implies 2 0,a d ≠  and the condition that   does not involve 12γ  im-
plies 2 = 0.b d  Then , 0a d ≠  and = 0,b  whence the coefficient in   at 10γ  is not equal to 0,  a 
contradiction.      

Proposition 12. A G -invariant decomposition for   of length 23≤  does not contain an or-
bit of type 35.   

Proof. In the same way like in the previous proposition we have two cases (a) and (b). In the 
case (a) the contradiction can be obtained by the same argument. As to (b) case, note that neither the 
orbit sum for 35 ( , , )w a b   nor s′  can involve a summand proportional to 11,12,21.e  But   involves 
such a summand.    

Lemma 13. For any tensor =w u u v⊗ ⊗  the sum =
g G

s gw
∈
∑  involves 3γ  and 5γ  with the 

same coefficients.  
Proof. Let 12 : x y z y x zπ ⊗ ⊗ ⊗ ⊗  be the usual (i. e., without transposing of matrices) 

transposition of the first two factors in the tensor cube .M M M⊗ ⊗  Obviously, 12 = .w wπ  Clearly, 

12π  commutes with any element .a A∈  It is also easy to see that 12π  commutes with ,Bρ∈  and the 
conjugation by 12π  inverts .σ  So 12π  normalizes ,G  12 12 = ,G Gπ π  12 12= .G Gπ π  Now we have  

 12 12 12 12 12= ( ) = ( ) = ( ) = ( ) = = .
g G g G g G g G g G

s gw g w g w g w gw s
∈ ∈ ∈ ∈ ∈

π π π π π∑ ∑ ∑ ∑ ∑  

Further, observe that 12π  preserves the set of all tensors eα  and leaves the set of all eα  with α  even 
invariant. Since 12π  normalizes ,G  it preserves the partition of the set { }eα  with even α  into G -
orbits, and therefore permutes { | = 1, ,12}.i iγ   

It is clear that 12π  permutes 12,21,11e  with 21,12,11.e  So it permutes the orbit sum for 12,21,11,e  
which is equal to 3,γ  with the orbit sum for 21,12,11e  which is equal to 5.γ  

If 3 5= ,s a b zγ + γ +  where := | 3,5 ,iz L i∈ 〈γ ≠ 〉  then 12 5 3= = ,s s a b z′π γ + γ +  where z L′∈  
also. So = .a b      

Now we can finish the proof of Theorem 1. Assume on the contrary that there exists a G -
invariant decomposition   for   of length 23.≤  By Proposition 7.2) we can assume that   con-
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tains no orbits of type 4,  39,  or 43.  Next,   contains no orbits of types 16,18,21,25,33,42  by 
Proposition 7.1); no orbits of types 17,22,23,26,27,28,30,31,36,  or 37  by Proposition 9; no orbits 
of types 24,29,32,38  by Proposition 11; and no orbits of type 35  by Proposition 12. The remain-
ing types are the following: 1, ,15,  except for 4;  and 19,20,34,40,41,44.  For each of these 
types, except for 44,  the tensor ( , )iw a b  is of the form 2 ,u v⊗ ⊗  and therefore its orbit sum involves 

3γ  and 5γ  with the same coefficients. Also, for type 44  the orbit sum does not involve neither 3γ  
nor 5 ,γ  because 44w  does not involve eα  such that 3α∈  or 5.α∈  Therefore,   must involve 

3γ  and 5γ  with the same coefficients, a contradiction. 
The proof of Theorem 1 is complete.    
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V. P. Burichenko 

Non-existence of a short algorithm for multiplication  
of 3 × 3 matrices whose group is S4 × S3, II 

 
Summary 

It is proved that there is no algorithm for multiplication of 3 3×  matrices of multiplicative 
length 23≤  that is invariant under a certain group isomorphic to 4 3S S× . The proof uses description 
of the orbits of this group on decomposable tensors in the tensor cube 3

3( ( ))M ⊗  which was ob-
tained earlier. 


