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Аннотация. Рассматривается сеть массового обслуживания (СеМО) с отрицательными
задачами с однолинейными узлами и ограничением на время пребывания задач в узлах.
Если в момент поступления отрицательной задачи в узле имеются положительные зада-
чи, то одна из положительных задач мгновенно исчезает из сети. Если же в этот момент
в узле отсутствуют положительные задачи, то поступающая в этот узел отрицательная
задача пропадает, не оказывая в дальнейшем никакого влияния на поведение сети.
Положительные задачи, время пребывания которых в узле закончилось, мгновенно и
независимо от других положительных задач перемещаются по сети в соответствии с мат-
рицей переходных вероятностей, отличной от матрицы маршрутизации обслуженных
положительных задач. Доказывается нечувствительность стационарного распределения
к форме распределения длительностей обслуживания задач, при фиксированных первых
моментах.
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Abstract. We consider a queueing network with negative customers, single-server nodes,
and constraints on the sojourn time of customers in nodes. If, at the moment a negative
customer arrives at a node, there are positive customers present, one of the positive customers
instantly disappears from the network. If, however, no positive customers are present in
the node at that moment, the incoming negative customer vanishes immediately and has no
further effect on the network’s behavior. Positive customers whose sojourn time in a node has
expired instantly and independently of other positive customers begin routing according to
a transition matrix that differs from the routing matrix used by positively served customers.
The insensitivity of the stationary distribution to the shape of the service time distribution
given fixed first moments is proven. The conditional distribution of customer sojourn times in
nodes is exponential.

1. Введение

Сети массового обслуживания представляют собой один из ключевых объектов исследования
в теории вероятностей, прикладной математике и инженерии. Они служат мощным аппаратом
для описания, анализа и оптимизации процессов обслуживания заявок в различных прикладных
системах: от компьютерных и телекоммуникационных сетей до логистики, систем управления,
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биологических процессов и облачных вычислений. Классические модели, такие как сети Джексона
и Баккета не учитывают важные эффекты взаимодействия между задачами, характерные для
современных высоконагруженных и распределенных систем.

В ответ на эти ограничения была предложена модель сетей с отрицательными заявками,
впервые систематически исследованная Э. Геленбе (G-networks) [1]. Такие сети расширяют тра-
диционные СеМО, вводя в рассмотрение так называемые деструктивные (отрицательные) задачи,
которые, в отличие от обычных (положительных), не обслуживаются в традиционном смысле,
а взаимодействуют с другими задачами, удаляя их из сети. Это позволяет описывать такие явления,
как вытеснение задач из очереди, отмена операций, репликация и восстановление. Благодаря
этим возможностям сети Геленбе нашли применение в моделировании отказоустойчивости, систем
с перегрузкой, а также в нейроморфных вычислениях и биоинформатике.

Одним из важнейших направлений в теории СеМО с отрицательными заявками является
изучение стационарного режима функционирования сети, т. е. такого состояния, при котором
вероятностные характеристики системы становятся стабильными во времени. Особое внимание при
этом уделяется временам пребывания задач в узлах сети [2], поскольку они отражают ключевые
показатели эффективности системы: среднее время отклика, задержки, потери и загрузку ресурсов.
Для широкого класса систем с положительными задачами давно установлено, что стационарное
распределение времени пребывания в узлах может обладать определенной инвариантностью –
устойчивостью к изменениям в структуре маршрутизации, начальным условиям или отдельным
параметрам. В [3] был получен результат для сетей Геленбе с экспоненциальным ограничением
на время пребывания задач в узлах, и где распределение времен обслуживания задач в узлах
является экспоненциальным.

В условиях присутствия отрицательных задач, обладающих возможностью удалять другие
задачи, вопрос об инвариантности стационарного распределения времен пребывания приобретает
особенно острый и нетривиальный характер. В [4–7] получены фундаментальные результаты по
инвариантности стационарного распределения по отношению к закону распределения времен об-
служивания задач в узлах. Деструктивные взаимодействия могут существенно изменить динамику
системы, вызывая эффекты нелинейного характера, что делает невозможным прямое применение
традиционных методов анализа. Тем не менее, наличие структурной инвариантности в стационарных
характеристиках таких сетей может служить ценным инструментом как для теоретического анализа,
так и для практического проектирования и управления. В первую очередь, это связано с тем, что
в реальных сетях распределение продолжительности обслуживания обычно отличается от пока-
зательного, а доказательство инвариантности стационарного распределения позволит применять
методы исследования ТМО к реальным сетям обслуживания.

В [8; 9] представлены некоторые современные результаты по сетям с положительными и
отрицательными задачами. В работе [10] для открытой СеМО с дисциплиной обслуживания LCFS
Preemptive Resume доказана инвариантность стационарного распределения по отношению к рас-
пределениям длительностей обслуживания при фиксированных первых моментах. В [11] доказана
инвариантность стационарного распределения для открытых и замкнутых СеМО с обходами узлов
задачами. Ранее Гомельской школой по мультипликативным сетям был получен результат по
инвариантности стационарного распределения для СеМО с отрицательными задачами [12].

Цель настоящей работы – доказательство инвариантности стационарного распределения
относительно времен обслуживания задач в узлах сети массового обслуживания с положительными
и отрицательными задачами и экспоненциальным ограничением на время пребывания задач в узлах,
при условии, что их первые моменты (математические ожидания) остаются фиксированными.

Практическая значимость результатов связана с возможностью использовать полученные
свойства для упрощения моделирования и анализа сложных распределенных систем, не прибегая
к трудоемкому вычислению конкретных переходных вероятностей и временных характеристик
для каждой конфигурации сети.
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2. Марковский случай

В сеть массового обслуживания, состоящую из N однолинейных экспоненциальных узлов
с интенсивностью обслуживания µi для i-го узла, поступает 2N независимых простейших потоков
задач, причем в i-й узел поступают два потока: поток положительных (обычных, требующих
обслуживания) задач, поток отрицательных задач (i = 1,N). Состояние сети в момент времени t
задается вектором n(t) = (n1(t), . . . ,nN(t)), где ni(t) обозначает количество задач в i-м узле в момент
времени t. Число мест для ожидания в каждом из узлов бесконечно. Если положительный запрос
поступает в узел, свободный от запросов, он сразу начинает обслуживаться. Если положительный
запрос поступает в узел, в котором уже есть запрос, то он вытесняет запрос, находящийся на приборе,
и сразу же начинает обслуживаться, а вытесненный с прибора положительный запрос становится
в начало очереди (дисциплина LCFS Preemptive Resume). При поступлении отрицательной задачи
в узел удаляется положительная задача, стоящая последней в очереди (если такие имеются), а если
прибор занят, а в очереди нет задач, то удаляется задача, находящаяся на приборе. Пусть Λi и λi

соответственно – интенсивности потоков положительных и отрицательных задач, поступающих
в i-й узел извне. Будем предполагать, что промежутки времени между моментами поступления
задач извне в сеть, времена их обслуживания и времена их пребывания в узлах суть взаимно
независимые между собой случайные величины, а Λi > 0, λi > 0 для всех i = 1,N. В момент
окончания обслуживания положительной задачи в i-м узле эта задача: с вероятностью p+i j переходит
в j-й узел, оставаясь положительной задачей, с вероятностью p−i j переходит в j-й узел, превращаясь
в отрицательную задачу, с вероятностью pi0 покидает сеть (i, j = 1,N,∑N

j=0 pi j = 1, где pi j = p+i j +

+ p−i j для j ̸= 0). Если задача покидает узел за счет окончания времени пребывания, эта задача:
с вероятностью r+i j переходит в j-й узел, оставаясь положительной задачей, с вероятностью r−i j
переходит в j-й узел, превращаясь в отрицательную задачу, с вероятностью ri0 покидает сеть
(i, j = 1,N,∑N

j=0 ri j = 1, где ri j = r+i j + r−i j для j ̸= 0).
Длительности обслуживания задач в узлах имеют произвольную функцию распределения

Bi(t), причем

(µi)
−1 =

w
∞

0
[1−Bi(t)]dt. (1)

При рассмотрении марковского случая будем предполагать, что время обслуживания положи-
тельной задачи единственным прибором i-го узла имеет показательное распределение с параметром
µi(i = 1,N), т. е. Bi(t) = 1−exp{−µit}(t > 0). Время пребывания задачи в i-м узле является случай-
ной величиной, условное распределение которой (если в i-м узле находится ni задач) показательное
с параметром νi

ni
. Другими словами, условная вероятность того, что пребывания каждой задачи

в i-м узле закончится в промежутке [t, t + h), если в момент t в узле находилось ni задач, равна
νi
ni

h+o(h) при h → 0, а условная вероятность завершения пребывания хотя бы одной из этих
задач равна νih+o(h). В таком случае, процесс n(t) представляет собой однородный марковский
процесс с непрерывным временем и фазовым пространством состояний, которое является не
более чем счетным.

Обозначим через λ+i и λ−i соответственно интенсивности потоков положительных и отрица-
тельных задач, поступающих в i-й узел (извне и из других узлов, i = 1,N) в стационарном режиме.
В [3] показано, что в стационарном режиме выполняется следующий закон сохранения:

λ+i = Λi +
N

∑
j=1

(µ jρ j p+i j +ν jρ jr+i j ), (2)

λ−i = λi +
N

∑
j=1

(µ jρ j p−i j +ν jρ jr−i j ), i = 1,N, (3)

где ρi =
λ+i

µi+νi+λ−i
– загрузка i-го узла сети. Уравнения (2) и (3) назовем уравнениями трафика.

В [3] для данной сети массового обслуживания доказано, что при λ+i
µi+νi+λ−i

< 1, i = 1,N, цепь
Маркова, описывающая количество задач в сети в момент времени t, эргодична, а ее единственное
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стационарное распределение имеет форму произведения. Приведем из [3] уравнения глобального
равновесия для марковского случая

p(n)
N

∑
i=1

Λi +(µi +νi +λi)I{ni ̸=0} =
N

∑
i=1

p(n− ei)ΛiI{ni ̸=0}+
N

∑
i=1

p(n+ ei)(µi pi0 +νiri0 +λi)+

+
N

∑
j=1

N

∑
i=1,i̸= j

p(n+ e j − ei)(µ j p+ji +ν jr+ji)I{ni ̸=0}+

+
N

∑
j=1

N

∑
i=1,i̸= j

p(n+ e j + ei)(µ j p−ji +ν jr−ji)+ p(n+ e j)(µ j p−ji +ν jr−ji)I{ni=0}.

Здесь ei-единичный вектор i-го направления.

3. Немарковский случай

Теперь будем предполагать, что времена обслуживания задач в узлах имеют произвольную
функцию распределения Bi(t), причем математическое ожидание фиксированно с помощью (1).
В этом случае процесс n(t) не является марковским. Далее докажем, что для такого процесса
справедлива следующая теорема.

Теорема. При λ+i
µi+νi+λ−i

< 1, i= 1,N, процесс, описывающий количество задач в узле в момент
времени t, имеет финальное строго положительное распределение в форме произведения p(n) =
= p1(n1) . . . pN(nN), с множителями

pi(ni) = ρi
ni(1−ρi), ni = 0,1, . . . ,

где {λ+i ,λ
−
i , i = 1,N} – решение уравнения трафика (2) и (3).

Доказательство. Пусть τik(t) – остаточное время обслуживания положительной задачи в i-м
узле с момента t до момента окончания времени обслуживания, а τi(t) = (τi1(t),τi2(t), . . . ,τini(t)) –
вектор, описывающий остаточное время обслуживания задач в i-м узле; где k – номер позиции,
на которой находится задача от «хвоста» к прибору. Поскольку, вообще говоря, n(t) не является
марковским процессом, рассмотрим марковский процесс ζ(t) = (n(t),τ(t)), добавляя к n(t) непре-
рывную компоненту τ(t) = (τ1(t); . . . ;τN(t)). Пусть выполнено условие λ+i

µi+νi+λ−i
< 1, i = 1,N, т. е.

в случае, когда n(t) – марковский процесс, существует стационарное эргодическое распределение
n(t), а, следовательно, в общем случае и процесса ζ(t), так как ζ(t) получается из n(t) добавлением
непрерывных компонент. Положим, что

F(n,x) = F(n,x11, ...,x1n1 ,x21, ...,x2n2 , ...,xN1, ...,xNnN ) =

= lim
t→∞

P{n(t) = n,τi1(t)< xi1, ...,τini(t)< xini , i = 1,N}.

Введем обозначения: [x̃i] – вектор, все элементы которого совпадают с элементами вектора
x1, . . . ,xN , а на месте i-го элемента находится элемент x̃i, [x̃i, x̃ j] – вектор, все элементы которого
совпадают с элементами вектора x1, . . . ,xN , а на месте i-го и j-го элемента находятся элементы x̃i и
x̃ j соответственно.

Для F(n,x) справедлива следующая система дифференциально-разностных уравнений:

F(n,x)
N

∑
i=1
λiBi(xi,ni)Ini ̸=0 +F(n,x)

N

∑
i=1

Λi +F(n,x)
N

∑
i=1
νiBi(xi,ni)Ini ̸=0+

+
N

∑
i=1

(
∂F(n, [xi,1, . . . ,xi,ni−1,0])

∂xi,ni

− ∂F(n,x)
∂xi,ni

)
Ini ̸=0 =

=
N

∑
i=1

F(n− ei, [xi,1, . . . ,xi,ni−1])Ini ̸=0Bi(xi,ni)Λi +
N

∑
i=1

∂F(n+ ei, [xi,1, . . . ,xi,ni ,0])
∂xi,ni+1

pi0+
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+
N

∑
i=1

F(n+ ei, [xi,1, . . . ,xi,ni ,+∞])νiri0+

+
N

∑
j=1

N

∑
i=1

∂F(n+ e j − ei, [x j,1, . . . ,x j,n j ,0], [xi,1, . . . ,xi,ni−1 ])

∂x j,n j+1
Bi(xi,ni)p+jiIni ̸=0+

+
N

∑
j=1

N

∑
i=1

F(n+ e j − ei, [x j,1, . . . ,x j,n j ,+∞], [xi,1, . . . ,xi,ni−1 ])ν jBi(xi,ni)r
+
ji Ini ̸=0+

+
N

∑
i=1

F(n+ei, [xi,1, . . . ,xi,ni ,+∞])λi+ +
N

∑
i=1

N

∑
j=1
j ̸=i

∂F(n+ e j + ei, [x j,1, . . . ,x j,n j ,0], [xi,1, . . . ,xi,ni ,+∞])

∂x j,n j+1
p−ji+

+
N

∑
i=1

N

∑
j=1
j ̸=i

F(n+ e j + ei, [x j,1, . . . ,x j,n j ,+∞], [xi,1, . . . ,xi,ni ,+∞])ν jr−ji+

+
N

∑
i=1

N

∑
j=1
j ̸=i

∂F(n+ e j, [x j,1, . . . ,x j,n j ,0])
∂x j,n j+1

p−ji −
N

∑
i=1

N

∑
j=1
j ̸=i

∂F(n+ e j, [x j,1, . . . ,x j,n j ,0])
∂x j,n j+1

Bi(xi,ni)p−jiIni ̸=0+

+
N

∑
i=1

N

∑
j=1 j ̸=i

F(n+e j, [x j,1, . . . ,x j,n j ,+∞])ν jr−ji −
N

∑
i=1

N

∑
j=1 j ̸=i

F(n+e j, [x j,1, . . . ,x j,n j ,+∞])ν jBi(xi,ni)r
−
ji Ini ̸=0.

Разобьем уравнение (5) на уравнения локального равновесия, приравнивая члены слева и справа, не
содержащие множителя Ini ̸=0, а затем члены, содержащие этот множитель:

F(n,x)
N

∑
i=1

Λi =
N

∑
i=1

∂F(n+ ei, [xi,1, . . . ,xi,ni ,0])
∂xi,ni+1

pi0+

+
N

∑
i=1

F(n+ ei, [xi,1, . . . ,xi,ni ,+∞])νiri0 +
N

∑
i=1

F(n+ ei, [xi,1, . . . ,xi,ni ,+∞])λi+

+
N

∑
i=1

N

∑
j=1
j ̸=i

∂F(n+ e j + ei, [x j,1, . . . ,x j,n j ,0], [xi,1, . . . ,xi,ni ,+∞])

∂x j,n j+1
p−ji+

+
N

∑
i=1

N

∑
j=1
j ̸=i

F(n+ e j + ei, [x j,1, . . . ,x j,n j ,+∞], [xi,1, . . . ,xi,ni ,+∞])ν jr−ji+

+
N

∑
i=1

N

∑
j=1
j ̸=i

∂F(n+ e j, [x j,1, . . . ,x j,n j ,0])
∂x j,n j+1

p−ji +
N

∑
i=1

N

∑
j=1 j ̸=i

F(n+ e j, [x j,1, . . . ,x j,n j ,+∞])ν jr−ji ;

F(n,x)
N

∑
i=1
λiBi(xi,ni)+F(n,x)

N

∑
i=1
νiBi(xi,ni)+

N

∑
i=1

(
∂F(n, [xi,1, . . . ,xi,ni−1,0])

∂xi,ni

− ∂F(n,x)
∂xi,ni

)
=

=
N

∑
i=1

F(n− ei, [xi,1, . . . ,xi,ni−1])Bi(xi,ni)Λi+

+
N

∑
j=1

N

∑
i=1

∂F(n+ e j − ei, [x j,1, . . . ,x j,n j ,0], [xi,1, . . . ,xi,ni−1 ])

∂x j,n j+1
Bi(xi,ni)p+ji+

+
N

∑
j=1

N

∑
i=1

F(n+ e j − ei, [x j,1, . . . ,x j,n j ,+∞], [xi,1, . . . ,xi,ni−1 ])ν jBi(xi,ni)r
+
ji−
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−
N

∑
i=1

N

∑
j=1
j ̸=i

∂F(n+ e j, [x j,1, . . . ,x j,n j ,0])
∂x j,n j+1

Bi(xi,ni)p−ji−−
N

∑
i=1

N

∑
j=1 j ̸=i

F(n+e j, [x j,1, . . . ,x j,n j ,+∞])ν jBi(xi,ni)r
−
ji .

Нетрудно убедиться, что неотрицательным абсолютно непрерывным по x решением уравнений
локального равновесия, а следовательно, и уравнения глобального равновесия является

F(n,x) = p(n)
N

∏
i=1

ni

∏
k=1
µi

w xik

0
[1−Bi(u)]du, (4)

где p(n) – стационарная вероятность состояния n в процессе n(t) в марковском случае. Подставив (4)
в первое уравнение локального равновесия, умножив обе части полученного равенства на p(n)

F(n,x) ,
получим первое уравнение локального равновесия для марковского случая из [3]. Затем, подста-
вив (4) во второе уравнение локального равновесия, умножив обе части полученного равенства

на p(n)
r xi,ni

0 [1−Bi(u)]du
F(n,x)Bi(xi)

, получим второе уравнение локального равновесия СеМО для марковского
случая из [3]. Сложив уравнения локального равновесия, учитывая, что Ini=0 = 1− Ini ̸=0, получим
уравнение глобального равновесия открытой СеМО для марковского случая (4), и с учетом, что
F(n,+∞) = p(n), теорема доказана.

В заключение автор выражает глубокую благодарность профессору Ю. В. Малинковскому за
постоянное внимание к работе и неоценимую помощь, оказанную в подготовке статьи.

4. Заключение

Основным теоретическим вкладом данной работы является строгое доказательство инвариант-
ности стационарного распределения по отношению ко времени обслуживания задач в обобщенных
G-сетях, учитывающих как положительные, так и отрицательные заявки. В отличие от классических
моделей, в которых взаимодействие между заявками отсутствует или сводится к пассивному накоп-
лению, здесь рассматривается механизм удаления задач из очереди. Получено фундаментальное
свойство: форма стационарного распределения времени пребывания сохраняется при изменении
закона распределения времени обслуживания задач в узлах.

Таким образом, результаты исследования представляют собой значимый шаг в развитии
теории сетей массового обслуживания, углубляя понимание структуры стационарного режима
в условиях наличия разрушительных взаимодействий и подтверждая наличие универсальных
инвариантных свойств, устойчивых к усложнению сетевой архитектуры и динамики.
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