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Аннотация. Изучается новое линейное интегро-дифференциальное уравнение на за-
мкнутой кривой, расположенной на комплексной плоскости. На кривую и на коэффици-
енты уравнения накладываются некоторые ограничения. Уравнение содержит гипер-
сингулярные интегралы с искомой функцией. Характерной особенностью уравнения
является наличие также регулярных интегралов с искомой функцией и ее комплексно-
сопряженным значением. Решение уравнения сводится к решению смешанной краевой
задачи для аналитических функций и последующему решению дифференциальных
уравнений с дополнительными условиями на решение. Явно указываются условия раз-
решимости исходного уравнения. При их выполнении решение строится в замкнутой
форме. Приводится пример.
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Abstract. A new linear integro-differential equation is studied on a closed curve located on the
complex plane. There are some restrictions on the curve and the coefficients of the equation.
The equation contains hypersingular integrals with the desired function. A characteristic
feature of the equation is the presence of regular integrals with the desired function and its
complex conjugate value. The solution of the equation is reduced to solving a mixed boundary
value problem for analytic functions and the subsequent solutijn of differential equations
with additional conditions on the solution. The conditions for the solvability of the original
equation are explicitly stated. When these are performed, the solution is in closed form. An
example is given.

1. Введение

Пусть L — простая замкнутая положительно ориентированная кривая класса C1 на ком-
плексной плоскости. Обозначим D+ внутренность, а D− внешность этой кривой. Искомой будет
в дальнейшем функцияφ(t), t ∈ L, H-непрерывная (т. е. удовлетворяющая условию Гельдера) вместе
со своими производными, входящими в исходное уравнение.

Для предельных значений на кривой L интеграла типа Коши

Φ±(z) =
1

2πi

w

L

φ(τ)dτ
τ− z

, z ∈ D±,

и его производных справедливы полученные в [1] обобщенные формулы Сохоцкого

Φ
(k)
± (t) =±1

2
φ(k)(t)+

k!
2πi

w

L

φ(τ)dτ
(τ− t)k+1 , t ∈ L. (1)

Формулы (1) справедливы в случае H-непрерывности производных φ(k)(t), при этом предельные
значения также H-непрерывны. Гиперсингулярные интегралы в формулах (1) понимаются в смысле



104 А. П. Шилин

конечной части по Адамару, что согласно [1] приводит для их вычисления к формулам

w

L

φ(τ)dτ
(τ− t)k+1 =

πiφ(k)(t)
k!

+
w

L

φ(τ)−∑
k
j=0

φ( j)(t)
j! (τ− t) j

(τ− t)k+1 dτ,

в правых частях которых интегралы сходятся в обычном смысле. Интегро-дифференциальное
уравнение с такими гиперсингулярными интегралами введено в рассмотрение в [2] – это линейное
уравнение с постоянными коэффициентами, которое решено в явном виде. С частными случаями
переменных коэффициентов подобные уравнения изучались в [3; 4] и других работах.

Если в сингулярных интегральных уравнениях наряду с сингулярными интегралами присут-
ствуют регулярные интегралы с искомой функцией, то такие уравнения принято называть полными.
Если в гиперсингулярные интегральные или интегро-дифференциальные уравнения входят регу-
лярные интегралы, то такие уравнения естественно тоже называть полными. Исследования полных
гиперсингулярных интегро-дифференциальных уравнений начаты недавно [5–7] и продолжаются
в настоящей работе. Эти исследования отличает конструктивный характер, когда явно указываются
условия разрешимости и при их выполнении явно записываются сами решения.

2. Постановка задачи. Некоторые обозначения и факты

Зададим числа ak ∈ C, bk ∈ R, k = 0,n, n ∈ N, an ̸= 0, bn ̸= 0. Зададим также H-непрерывные
функции a(t) ̸= 0, b(t) ̸= 0, h(t), t ∈ L. Обозначим

ε j = e
2πi
m j, j ∈ E = {0,1, ...,m−1}, (2)

комплексные корни степени m из единицы, m ∈ N, m ⩾ 2. Кривую L возьмем теперь расположенной
в угловой области {z : 0 < argz < π

m}. Будем решать уравнение
n

∑
k=0

[
(a(t)ak +b(t)bk)φ

(mk)(t)+
(a(t)ak −b(t)bk)(mk)!

πi

m−1

∑
j=0

(w
L

φ(τ)dτ
(τ−ε jt)mk+1−

−
w

L

φ(τ) dτ
(τ−εm− jt)mk+1

)]
= h(t), t ∈ L, (3)

εm = ε0. Гиперсингулярными интегралами в уравнении (3) являются интегралы сφ(τ) во внутренней
сумме при j = 0. Остальные интегралы, в том числе все интегралы с φ(τ), являются регулярными.
Обозначим

L = {t : t = τ, τ ∈ L}, D+ = {z : z = ζ, ζ ∈ D+},

Lβ = {t : t = εβτ, τ ∈ L}, Dβ = {z : z = εβζ, ζ ∈ D+},

Lβ = {t : t = εβτ, τ ∈ L}, Dβ = {z : z = εβζ, ζ ∈ D+}, β= 1,m−1,

D∗ = Ĉ\{L
⋃

D+

⋃
L
⋃

D+

m−1⋃
β=1

Lβ
m−1⋃
β=1

Dβ
m−1⋃
β=1

Lβ
m−1⋃
β=1

Dβ},

где Ĉ – расширенная комплексная плоскость.
Возможный вид некоторых введенных объектов изображен на рис. 1.
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Рис. 1. Возможный вид кривой L и областей D+, D∗ в случае m = 3

Числа ε j, вычисляемые по формуле (2) для j ∈ Z, образуют по умножению циклическую
группу порядка m (с образующим элементом ε1), поэтому в дальнейшем эти числа для j ∈ Z\E
можно заменять на равные им числа для соответствующего значения j ∈ E. Отметим также
равенство ε j = ε− j, j ∈ Z.

3. Сведение уравнения к краевой задаче для аналитических функций

Введем аналитические функции

1
2πi

m−1

∑
j=0

(
w

L

φ(τ)dτ
τ−ε jz

−
w

L

φ(τ) dτ
τ−εm− jz

)
=

{
Ψ+(z), z ∈ D+,
Ψ∗(z), z ∈ D∗.

(4)

Обоснуем, что функция Ψ∗(z) обладает свойствами

Ψ∗(ε1z) = Ψ∗(z), (5)

Ψ∗(z) = Ψ∗(z), (6)

Ψ∗(∞) = 0. (7)

Так как числа ε j образуют циклическую группу, то для любых чисел m1, m2 ∈ Z
m−1

∑
j=0

w

L

φ(τ)dτ
τ−ε j+m1z

=
m−1

∑
j=0

w

L

φ(τ)dτ
τ−ε jz

,

m−1

∑
j=0

w

L

φ(τ) dτ
τ−εm− j+m2z

=
m−1

∑
j=0

w

L

φ(τ) dτ
τ−εm− jz

.

Поэтому, взяв в частности m1 = m2 = 1, придем к равенству (5):

Ψ∗(ε1z) =
1

2πi

m−1

∑
j=0

(
w

L

φ(τ)dτ
τ−ε j+1z

−
w

L

φ(τ) dτ
τ−εm− j+1z

)
= Ψ∗(z).

Свойство (6), выражающее симметрию функции относительно действительной оси, вытекает
из равенства

1
2πi

m−1

∑
j=0

(
w

L

φ(τ)dτ
τ−ε jz

−
w

L

φ(τ) dτ
τ−εm− jz

)
=

1
2πi

m−1

∑
j=0

w

L

φ(τ)dτ
τ−ε jz

+
1

2πi

w

L

φ(τ)dτ
τ−ε jz

.
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Наконец, равенство (7) есть очевидное следствие известного свойства интеграла типа Коши.
Функция Ψ∗(z) вполне характеризуется своими значениями в области

{z : 0 ⩽ argz ⩽
π

m
}\
(

D+

⋃
L
)

(область берется вместе с соответствующими лучами). На остальную часть области D∗ ее можно
распространить, например, сначала продолжая по симметрии относительно действительной оси
на симметричную область

{z : −π
m

⩽ argz ⩽ 0}\
(

D+

⋃
L
)
.

Затем «удвоенную» область

{z : −π
m

⩽ argz ⩽
π

m
}\
(

D+

⋃
L
⋃

D+

⋃
L
)

следует вращать вокруг точки z = 0 на углы, кратные 2π
m , сохраняя в соответствующих точках те

же значения функции, что и в этой «удвоенной» области.
Для производных функции Ψ∗(z) порядков mk, k = 1,n, получим

Ψ
(mk)
∗ (z) =

(mk)!
2πi

m−1

∑
j=0

(
w

L

εmk
j φ(τ)dτ

(τ−ε jz)mk+1 −
w

L

εmk
m− jφ(τ) dτ

(τ−εm− jz)mk+1

)
=

=
(mk)!
2πi

m−1

∑
j=0

(
w

L

φ(τ)dτ
(τ−ε jz)mk+1 −

w

L

φ(τ) dτ
(τ−εm− jz)mk+1

)
,

откуда понятно, что на эти производные переносятся все свойства вида (5), (6), (7).
Запишем предельные значения на кривой L функций (4) и их производных порядков, крат-

ных m:

Ψ
(mk)
+ (t) =

1
2
φ(mk)(t)+

(mk)!
2πi

m−1

∑
j=0

(
w

L

φ(τ)dτ
(τ−ε jt)mk+1 −

w

L

φ(τ) dτ
(τ−εm− jt)mk+1

)
, (8)

Ψ
(mk)
∗ (t) =−1

2
φ(mk)(t)+

(mk)!
2πi

m−1

∑
j=0

(
w

L

φ(τ)dτ
(τ−ε jt)mk+1 −

w

L

φ(τ) dτ
(τ−εm− jt)mk+1

)
, k = 0,n, t ∈ L. (9)

Формулы (8), (9) получаются после применения к функциям в формуле (4) обобщенных формул
Сохоцкого для интеграла с φ(τ) в случае j = 0 и дифференцирования под знаком интеграла для
остальных интегралов. Вычитая и складывая равенства (8), (9), получим пару равносильных равенств

φ(mk)(t) = Ψ
(mk)
+ (t)−Ψ

(mk)
∗ (t), (10)

(mk)!
πi

m−1

∑
j=0

(
w

L

φ(τ)dτ
(τ−ε jt)mk+1 −

w

L

φ(τ) dτ
(τ−εm− jt)mk+1

)
= Ψ

(mk)
+ (t)+Ψ

(mk)
∗ (t),

с помощью которых уравнению (3) можно придать вид краевой задачи
n

∑
k=0

[
(a(t)ak +b(t)bk)

(
Ψ

(mk)
+ (t)−Ψ

(mk)
∗ (t)

)
+(a(t)ak −b(t)bk)

(
Ψ

(mk)
+ (t)+Ψ

(mk)
∗ (t)

)]
= h(t), t ∈ L,

или после очевидных упрощений
n

∑
k=0

akΨ
(mk)
+ (t) =

b(t)
a(t)

n

∑
k=0

bkΨ
(mk)
∗ (t)+

h(t)
2a(t)

, t ∈ L. (11)

Сумма в левой части равенства (11) является предельным значением на кривой L функции
Y+(z) = ∑

n
k=0 akΨ

(mk)
+ (z), аналитической в области D+. Сумма в правой части равенства (11) является

предельным значением на кривой L функции Y∗(z) = ∑
n
k=0 bkΨ

(mk)
∗ (z), аналитической в области D∗.

Поскольку все производные Ψ
(mk)
∗ (z) обладают свойствами, аналогичными (5), (6), (7), то этими же

свойствами будут обладать и их линейные комбинации с действительными коэффициентами, т. е.

Y∗(ε1z) = Y∗(z), (12)
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Y∗(z) = Y∗(z), (13)

Y∗(∞) = 0. (14)

Возникшей краевой задаче можно придать вид

Y+(t) =
b(t)
a(t)

Y∗(t)+
h(t)
2a(t)

, t ∈ L. (15)

Такая задача относится к смешанным краевым задачам. Вид краевого условия аналогичен виду
краевого условия задачи Римана. Требование (12) на одну из искомых функций имеет характер
краевого условия задачи Карлемана, а требование (13) – краевого условия задачи Гильберта. На эту
задачу удается распространить классическую схему решения двухэлементных краевых задач [8].
В результате получится, что общее решение задачи (15) записывается по формулам

Y+(z) = X+(z)(T+(z)+R(z)) , Y∗(z) = X∗(z)(T∗(z)+R(z)) ,

где
X+(z) = eΓ+(z), X∗(z) = (zm − zm

0 )
−α (zm − z0)

−α eΓ∗(z), z0 ∈ D+,

α= IndL
b(t)
a(t)

,
1

2πi

m−1

∑
j=0

[w
L

ln((τm − zm
0 )

−α(τm − z0
m)−αb(τ)/a(τ))dτ

τ−ε jz
−

−
w

L

ln
(
(τm − zm

0 )
−α(τm − z0

m)−αb(τ)/a(τ)
)

dτ
τ−εm− jz

]
=

{
Γ+(z), z ∈ D+,
Γ∗(z), z ∈ D∗,

1
4πi

m−1

∑
j=0

[
w

L

h(τ)dτ
a(τ)X+(τ)(τ−ε jz)

−
w

L

h(τ) dτ

a(τ) X+(τ)(τ−εm− jz)

]
=

{
T+(z), z ∈ D+,
T∗(z), z ∈ D∗,

R(z) =
{

∑
2α−1
k=0 ckzmk, ck – произвольные действительные постоянные, если α> 0,

0, если α⩽ 0.

При α ⩾ 0 задача разрешима безусловно, а при α < 0 для ее разрешимости необходимы и до-
статочны условия

Im
w

L

h(τ)τmk−1dτ
a(τ)X+(τ)

= 0, k = 1,−2α. (16)

Предположим, что задача (15) разрешима. Далее следует решать дифференциальные уравнения
n

∑
k=0

akΨ
(mk)
+ (z) = Y+(z), z ∈ D+, (17)

n

∑
k=0

bkΨ
(mk)
∗ (z) = Y∗(z), z ∈ D∗, (18)

и в случае нахождения их решений воспользоваться формулой (10) при k = 0:

φ(t) = Ψ+(t)−Ψ∗(t), t ∈ L. (19)

4. Решение дифференциальных уравнений

Общее решение уравнения (17), записанное после применения метода вариации произвольных
постоянных, имеет вид

Ψ+(z) =
mn

∑
σ=1

uσ(z)
(

C+
σ +

w z

z1

Uσ(ζ)dζ
U(ζ)

)
. (20)

В этой формуле функции uσ(z), явный вид которых хорошо известен и здесь не приводится, образуют
фундаментальную систему решений соответствующего однородного уравнения, C+

σ – произвольные
комплексные постоянные, U(ζ) – вронскиан функций uσ(ζ), Uσ(ζ) – определитель, полученный
изU(ζ) заменой элементов σ-го столбца на 0,0, ...,0,Y+(ζ)/an, σ= 1,mn, z1 – фиксированная точка
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в области D+. Интегрирование в формуле (20) производится по любой кривой, принадлежащей
D+ и соединяющей точки z1 и z, и вследствие конечности и односвязности области D+ приводит
к однозначным функциям.

Решение уравнения (18), в котором затем еще нужно будет учитывать условия (5), (6), (7),
записывается по аналогичной формуле

Ψ∗(z) =
mn

∑
σ=1

vσ(z)
(

C∗
σ+

w z

0

Vσ(ζ)dζ
V (ζ)

)
. (21)

В формуле (21) vσ(z) – фундаментальная система решений соответствующего однородного урав-
нения, C∗

σ – произвольные постоянные, V (ζ) – вронскиан функций vσ(ζ), Vσ(ζ) – определители,
полученные из V (ζ) заменой элементов σ-го столбца на 0,0, ...,0,Y∗(ζ)/bn, σ= 1,mn. Интегрирова-
ние производится по кривым, соединяющим в области D∗ точки 0 и z, и вследствие многосвязности
области D∗ может привести к многозначным аналитическим функциям. В дальнейшем следует
требовать выполнение равенств

w

L

Vσ(ζ)dζ
V (ζ)

= 0, σ= 1,mn, (22)

w

Lβ

Vσ(ζ)dζ
V (ζ)

= 0, β= 1,m−1, σ= 1,mn, (23)

w

L

Vσ(ζ)dζ
V (ζ)

= 0,
w

Lβ

Vσ(ζ)dζ
V (ζ)

= 0, β= 1,m−1, σ= 1,mn, (24)

являющихся необходимыми и достаточными условиями однозначности решения (21). Фундамен-
тальная система решений в формуле (21) может быть любой, однако для учета условий (5), (6), (7)
будем строить фундаментальную систему решений с некоторыми дополнительными свойствами.

Пусть уравнение
n

∑
k=0

bkλ
k = 0

имеет действительные корни λp кратностей соответственно kp, p = 1,P, и комплексно-сопряженные
корни θq, θq кратностей соответственно mq, q = 1,Q, ∑

P
p=1 kp +2∑

Q
q=1 mq = n. Для определенности

считаем, что среди чисел λp нет равного нулю. Также для определенности можно считать Imθq > 0,
q = 1,Q. Произвольным образом выберем и зафиксируем одно из значений m

√
λp, это значение

будем в дальнейшем обозначать µp, p = 1,P. Аналогично произвольным образом выберем и
зафиксируем одно из значений m

√
θq, это значение будем в дальнейшем обозначать sq, q = 1,Q.

Тогда корни уравнения
n

∑
k=0

bkµ
mk = 0,

являющегося характеристическим для однородного уравнения (18), можно записать в виде

ε0µp, ε1µp, ..., εm−1µp, p = 1,P,
ε0sq, ε1sq, ..., εm−1sq, q = 1,Q,
ε0sq, ε1sq, ..., εm−1sq, q = 1,Q,

(25)

причем каждый корень имеет соответствующую кратность kp или mq. Запишем функции

flγp(z) = zl
m−1

∑
j=0
ε
−γ
j eε jµpz, l = 0,kp −1, γ= 0,m−1, p = 1,P, (26)

glγq(z) = zl
m−1

∑
j=0
ε
−γ
j eε jsqz, l = 0,mq −1, γ= 0,m−1, q = 1,Q, (27)

hlγq(z) = zl
m−1

∑
j=0
ε
−γ
j eε jsqz, l = 0,mq −1, γ= 0,m−1, q = 1,Q. (28)
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Из работы [7] следует, что совокупность функций (26), (27), (28) образует фундаментальную систему
решений однородного уравнения (18), причем для всех этих функций справедливы равенства

flγp(ε1z) = εl+γ flγp(z), glγq(ε1z) = εl+γglγq(z), hlγq(ε1z) = εl+γhlγq(z). (29)

Если µp – комплексное число, то для некоторого j = j0 ε j0µp = µp. Учитывая тот факт,
что при j = 0,m−1 как все значения ε j− j0 , так и все значения ε j совпадут со всеми значениями
ε j, получим

m−1

∑
j=0
ε
−γ
j eε jµpz =

m−1

∑
j=0
ε
−γ
j0

(
ε−1

j0 ε j

)−γ
eε jε

−1
j0
(ε j0µp)z = ε−γj0

m−1

∑
j=0
ε
−γ
j− j0eε j− j0µpz =

= ε−γj0

m−1

∑
j=0
ε
−γ
j eε jµpz = ε−γj0

m−1

∑
j=0
ε j

−γeε j µpz.

В фундаментальной системе решений (26), (27), (28) каждую из функций в (26), для которой
соответствующая постоянная εγj0 ̸=−1, заменим на эту же функцию, умноженную на постоянную(

1+εγj0

)
. В результате получим функции

f̃lγp(z) =
(

1+εγj0

)
zl

m−1

∑
j=0
ε
−γ
j eε jµpz = zl

(
m−1

∑
j=0
ε
−γ
j eε jµpz +

m−1

∑
j=0
ε j

−γeε j µpz

)
,

симметричные относительно действительной оси. Если же εγj0 =−1, то к симметричным относи-
тельно действительной оси функциям придем по формулам

f̃lγp(z) = i flγp(z).

Среди чисел m
√
λp могут оказаться действительные числа (в количестве не более двух

для каждого p = 1,P). Если выбранное число µp ∈ R, то можно считать µp = µp, j0 = 0, тогда
ε
−γ
0 = 1. Снова заменим функцию в (26) на функцию f̃lγp(z). В этом случае функция flγp(z) лишь

удваивается, но оказывается при этом представленной в виде, в котором симметрия относительно
действительной оси очевидна.

Для функций (27) (как и для функций (28)) подобные рассуждения не приведут к симметрич-
ным функциям, поскольку среди чисел (25) нет ни действительных, ни пар комплексно-сопряженных
чисел. Теперь в совокупностях (27), (28) каждую пару функций

glγq(z), hlγq(z) = zl
m−1

∑
j=0
ε
−γ
j eε jsqz = zl

m−1

∑
j=0
ε j

−γeε j sqz

заменим на новую пару функций

g̃lγq(z) = glγq(z)+hlγq(z) = zl

(
m−1

∑
j=0
ε
−γ
j eε jsqz +

m−1

∑
j=0
ε j

−γeε j sqz

)
,

h̃lγq(z) = i
(
glγq(z)−hlγq(z)

)
= i zl

(
m−1

∑
j=0
ε
−γ
j eε jsqz −

m−1

∑
j=0
ε j

−γeε j sqz

)
,

симметрия которых относительно действительной оси очевидна.
В результате получим фундаментальную систему решений однородного уравнения (18)

f̃lγp(z), l = 0,kp −1, γ= 0,m−1, p = 1,P, (30)

g̃lγq(z), l = 0,mq −1, γ= 0,m−1, q = 1,Q, (31)

h̃lγq(z), l = 0,mq −1, γ= 0,m−1, q = 1,Q, (32)

все функции которой обладают свойством симметрии относительно действительной оси. Поскольку
линейные комбинации функций, обладающих свойствами вида (29), сохраняют эти свойства, то
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для всех функций (30), (31), (32) будут выполняться равенства

f̃lγp(ε1z) = εl+γ f̃lγp(z), g̃lγq(ε1z) = εl+γg̃lγq(z), h̃lγq(ε1z) = εl+γh̃lγq(z). (33)

Если индексы l +γ каких-то чисел εl+γ не принадлежат множеству E, то заменим эти индексы
на значения из E, сравнимые с ними по модулю m. В результате получится, что для каждого
фиксированного значения l = 0,kp −1 и для каждого фиксированного значения p = 1,P среди
функций f̃lγp(z) есть ровно одна функция со свойством вида f̃ (ε1z) = εγ f̃ (z) для каждого значения
γ= 0,m−1. Аналогичные рассуждения справедливы для функций g̃lγq(z) и h̃lγq(z). Следовательно,
в дальнейшем в качестве функций vσ(z) можно взять переобозначенные функции (30), (31), (32),
причем σ = km+ j, а

vkm+ j(ε1z) = ε j−1vkm+ j(z), k = 0,n−1, j = 1,m. (34)

Формула решения уравнения (18), приводящая вследствие равенств (34) к выполнению свойства (5),
указана в [7]:

Ψ∗(z) =
n−1

∑
k=0

C∗
km+1vkm+1(z)+

mn

∑
σ=1

vσ(z)
w z

0

Vσ(ζ)dζ
V (ζ)

. (35)

Эта формула получается из формулы (21), когда часть констант C∗
σ равна нулю.

Поскольку элементы вронскиана V (ζ) и элементы всех определителей Vσ(ζ) будут теперь
симметричными функциями относительно действительной оси, симметричными будут и все подын-
тегральные функции в формуле (35). А так как интегралы вида

r z
0 сохраняют симметрию функций,

то решение (35) будет удовлетворять еще и свойству (6), если в нем считать в дальнейшем все
постоянные C∗

km+1 действительными.
В [7] обосновано, что при наличии свойств (34) из равенств (22), (23) достаточно оставить лишь

равенства (22), поскольку равенства (23) являются следствием равенств (22). Но если справедливы
равенства (22), (23), то будут справедливы и равенства (24), поскольку интегралы по симметричным
относительно действительной оси кривым от симметричных функций одновременно либо равны
нулю, либо не равны нулю, так что и равенства (24) оказываются следствием равенств (22).

Осталось учесть условие (7). Для этого разложим функцию Ψ∗(z) в ряд Лорана в окрестно-
сти бесконечности и приравняем к нулю коэффициенты при неотрицательных степенях z этого
разложения. В результате получим следующую бесконечную систему линейных алгебраических
уравнений, которой должны удовлетворять постоянные C∗

km+1:
n−1

∑
k=0

dlkC∗
km+1 = δl, l = 0,1,2, ..., (36)

где

dlk =
w

|t|=ρ

vkm+1(t)dt
tml+1 , δl =−

mn

∑
σ=1

w

|t|=ρ

vσ(t)dt
tml+1

w t

0

Vσ(ζ)dζ
V (ζ)

,

ρ – достаточно большое положительное число.

5. Формулировка результата. Пример

Используя формулу (19), сформулируем окончательный результат.
Теорема. Для разрешимости уравнения (3) необходимо и достаточно, чтобы выполнялись

равенства (16) при α < 0, равенства (22) и была совместна система (36). Если эти условия
выполняются, то общее решение уравнения (3) находится по формуле

φ(t) =
mn

∑
σ=1

[
uσ(t)

(
C+
σ +

w t

z1

Uσ(ζ)dζ
U(ζ)

)
− vσ(t)

w t

0

Vσ(ζ)dζ
V (ζ)

]
−

n−1

∑
k=0

C∗
km+1vkm+1(t), t ∈ L, (37)

гдеC+
σ – произвольные комплексные постоянные,σ= 1,mn, аC∗

km+1 – действительные постоянные,
являющиеся решением системы (36), k = 0,n−1.
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Приведем пример уравнения (3), для которого оказываются выполненными все условия раз-
решимости. Возьмем в качестве кривой L окружность |t −1− i|= 1

2 . Из уравнения этой окружности
в виде τ = 1+ i+ 1

2 e2iσ, σ ∈ [0,π], получим dτ = − dτ
4(τ−1−i)2 . Запишем уравнение

3φ′′(t)− (1+4i)φ(t)+
1−4i
πi

(
w

L

φ(τ)dτ
τ− t

+
w

L

φ(τ)dτ
4(τ−1− i)2(τ− t)

+
w

L

φ(τ)dτ
τ+ t

+

+
w

L

φ(τ)dτ
4(τ−1− i)2(τ+ t)

)
+

2
πi

(
w

L

φ(τ)dτ
(τ− t)3 +

w

L

φ(τ)dτ
4(τ−1− i)2(τ− t)3 +

w

L

φ(τ)dτ
(τ+ t)3 +

+
w

L

φ(τ)dτ
4(τ−1− i)2(τ+ t)3

)
=

2(t12 +11t8 +20t6 +40t4 −48t2 +48)
(t4 +4)3 , t ∈ L. (38)

Так на указанной окружности выглядит пример уравнения (3) при n = 1, m = 2, a(t) = b(t) = 1,
a1 = 2, b1 = 1, a0 =−4i, b0 =−1. Задача (15) для уравнения (38) приобретает вид задачи о скачке

Y+(t)−Y∗(t) =
t12 +11t8 +20t6 +40t4 −48t2 +48

(t4 +4)3 , t ∈ L. (39)

Области D+ и D∗ аналитичности функций соответственно Y+(z) и Y∗(z) изображены на рис. 2.

Рис. 2. Области D+ и D∗ для задачи (39)

Дляm= 2 получим ε0 = 1, ε1 =−1, поэтому условие (12) примет видY∗(−z)=Y∗(z) и будет выражать
четностьфункцииY∗(z). Совокупность условий (12), (13)можноистолковать как симметриюфункции
Y∗(z) относительно обеих осей – действительной и мнимой.

Задача (39) (с учетом условия (14)) безусловно разрешима и имеет единственное решение.
Легко найти представление

t12 +11t8 +20t6 +40t4 −48t2 +48
(t4 +4)3 = 1− t8 −20t6 +8t4 +48t2 +16

(t4 +4)3 ,

из которого, очевидно, получим

Y+(z) = 1, Y∗(z) =
z8 −20z6 +8z4 +48z2 +16

(z4 +4)3 .

Далее следует решать уравнения

2Ψ
′′
+(z)−4 i Ψ+(z) = 1, z ∈ D+, (40)
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Ψ
′′
∗(z)−Ψ∗(z) =

z8 −20z6 +8z4 +48z2 +16
(z4 +4)3 , z ∈ D∗. (41)

Общее решение уравнения (40) можно записать, например, по формуле

Ψ+(z) =C+
1 ch((1+ i)z)+C+

2 sh((1+ i)z)+
i
4
.

Свойства вида (33) для двух симметричных относительно действительной оси функций, образующих
фундаментальную систему решений однородного уравнения (41), сведутся к четности одной и
нечетности другой функции; такими функциями будут соответственно chz и shz. Формула (35)
примет вид

Ψ∗(z) =C∗
1chz− chz

w z

0

ζ8 −20ζ6 +8ζ4 +48ζ2 +16
(ζ4 +4)3 shζdζ+

+shz
w z

0

ζ8 −20ζ6 +8ζ4 +48ζ2 +16
(ζ4 +4)3 chζdζ.

Оба возникших интеграла можно вычислить:
w z

0

ζ8 −20ζ6 +8ζ4 +48ζ2 +16
(ζ4 +4)3 shζdζ=

chz
z4 +4

+
4z3shz
(z4 +4)2 −

1
4
,

w z

0

ζ8 −20ζ6 +8ζ4 +48ζ2 +16
(ζ4 +4)3 chζdζ=

shz
z4 +4

+
4z3shz
(z4 +4)2 ,

и тогда после упрощений получим

Ψ∗(z) =
(

C∗
1 +

1
4

)
chz− 1

z4 +4
.

Очевидно, что для выполнения условия (7) следует взятьC∗
1 =−1

4 , поэтому записывать соответству-
ющую систему (36) нет необходимости. Наконец, по формуле (19) приходим к решению примера (38):

φ(t) =C+
1 ch((1+ i)t)+C+

2 sh((1+ i)t)+
i
4
+

1
t4 +4

, |t −1− i|= 1
2
,

где C+
1 , C+

2 – произвольные комплексные постоянные.

6. Заключительное замечание

Отметим наличие произвольных комплексных постоянныхC+
σ в формуле (37) общего решения

исходного уравнения, что нетипично для линейных уравнений, содержащих наряду с неизвестной
функцией ее комплексно-сопряженное значение. Этому факту можно дать следующее объяснение.
В формуле (19) произвольные комплексные постоянные содержатся лишь в выражении для Ψ+(t).
При подстановке такой функции в интегралы с φ(τ) в исходном уравнении получим

w

L

Ψ+(τ) dτ
(τ−εm− jt)mk+1 =

w

L

Ψ+(τ)dτ
(τ−ε jt)mk+1 .

Для t ∈ L ε jt ∈ D−, j = 0,m−1, поэтому функции Ψ+(z)
(z−ε jt)mk+1 будут аналитическими в области D+

и по интегральной теореме Коши

w

L

Ψ+(τ)dτ
(τ−ε jt)mk+1 = 0.

Следовательно, при подстановке решения в виде (19) в левую часть исходного уравнения наличие или
отсутствие интегралов с φ(τ) не влияет на вычисления, связанные с Ψ+(t), из-за чего постоянные
C+
σ остаются произвольными комплексными.
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