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Abstract. A two-dimensional anti-Perron effect of changing arbitrary different positive
Lyapunov exponents of a linear differential system to negative ones by a perturbation of a
higher order of smallness is realized.

Рассматриваем двумерные дифференциальные системы: линейную

ẋ = A(t)x, x ∈ R2, t ⩾ t0 ⩾ 0, (1)

с ограниченными бесконечно дифференцируемыми коэффициентами и характеристическими
показателями

λ2(A)⩾ λ1(A)> 0

и нелинейную

ẏ = A(t)y+ f (t,y), y ∈ R2, t ⩾ t0, (2)

также с бесконечно дифференцируемым так называемым (см., например [1]) m-возмущением f (t,y),
имеющим порядок m > 1 малости в окрестности начала координат y = 0 и допустимого роста вне ее:

∥ f (t,y)∥⩽C f ∥y∥m, C f = const > 0, y ∈ R2, t ⩾ t0. (3)

Эффект Перрона [2, см. также 3, с. 50–51] устанавливает существование двумерных си-
стемы (1) со всеми отрицательными показателями и m-возмущения (3) таких, что возмущенная
система (2) имеет нетривиальные решения с положительными показателями Ляпунова. Его иссле-
дованию посвящена серия работ авторов, в том числе и совместных с С. К. Коровиным. Бо́льший
интерес своими возможными приложениями представляет противоположный антиперроновский
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эффект смены положительных характеристических показателей линейного приближения (1) на отри-
цательные у (некоторых) нетривиальных решений возмущенных систем (2) с малыми возмущениями,
в частности, m-возмущениями (3) высшего порядка малости.

В работе [4] антиперроновский эффект в случае положительных совпадающих характеристи-
ческих показателей реализован на одном нетривиальном решении системы (2) с отрицательным
показателем.

В этом же случае совпадения положительных показателей линейного приближения дву-
мерный антиперроновский эффект реализован [5] на большем числе нетривиальных решений
с отрицательными показателями возмущенной системы (2) с соответствующим m-возмущением –
на 4 таких решениях.

Возникает вопрос о возможной реализации двумерного антиперроновского эффекта смены
m-возмущениями (3) положительных различных показателей λ2(A) > λ1(A) > 0 линейного при-
ближения (1) на отрицательные у (некоторых) нетривиальных решений возмущенной системы (2).
Положительный ответ содержит

Теорема. Для любых параметров

λ2 > λ1 > 0, m > 1, θ> 1

существуют:
1) двумерная линейная система (1) с ограниченными бесконечно дифференцируемыми

коэффициентами и характеристическими показателями λi(A) = λi, i = 1,2;
2) также бесконечно дифференцируемое по m-возмущение

f (t,y) : [t0,+∞)×R2 → R2

такие, что нелинейная возмущенная система (2) имеет решение y(t)> 0 с показателем

λ[y] =−(θ+1)
mθλ1 +λ2

m2θ2 −1
. (4)

1. Доказательство 1◦. Определение линейной системы

Будем строить ее в диагональном виде

ẋ = diag[a1(t),a2(t)]x ≡ A(t)x, x ∈ R2, t ⩾ t0, (5)

с ограниченными бесконечно дифференцируемыми коэффициентами и характеристическими
показателями λi(A) = λi, i = 1,2. Для этого, как обычно, будем использовать моменты времени
tk = θk, k ∈ N0 ≡ N ∪{0}, и обеспечивающую бесконечную дифференцируемость коэффициентов
a1(t) и a2(t) системы (5) известную функцию Гелбаума–Олмстеда [6, с. 54]

eγδ(τ,τ1,τ2) = γ+(δ−γ)exp{−(τ−τ1)
−2 exp[−(τ−τ2)

−2]}, τ ∈ (τ1,τ2),

принимающую на концах рассматриваемого интервала значения γ и δ и нулевые значения своих
односторонних производных любого порядка.

В рассматриваемом случае различных значений λ2 > λ1 > 0 коэффициенты a1(t) и a2(t),
в отличие от работы [5] с совпадающими положительными построенными λ1 и λ2, определим
на отрезках

T2k+ j = [t2k+ j, t ′2k+ j+1], t
′
2k+ j+1 ≡ t2k+ j+1 −ε(t2k+ j+1), ε(t)≡ exp(−t2), k ∈ N0, j = 0,1,

равенствами

ai(t) = (−1)i−1

{
αi, t ∈ T2k+ j,

−αi, t ∈ T2k+ j+1,
k ∈ N0, i = 1,2, j = 0,1. (6)

В них постоянные αi имеют представление

αi = λi
θ+1
θ−1

,

а номер j при всяком фиксированном i ∈ {1,2} принимает значения 0 и 1.
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Определим теперь коэффициенты a1(t) и a2(t) с помощью функций eγδ на интервалах

I2k+ j ≡ (t ′2k+ j+1, t2k+ j+1), k ∈ N0, j = 0,1,

используя для этого уже определенные равенствами (6) их значения на концах интервалов I2k+ j :

ai(t) = eai(t ′2k+ j+1)ai(t2k+ j+1)(t), t ∈ I2k+ j+1, k ∈ N0, j = 0,1.

В силу свойств функций Гелбаума–Олмстеда так определенные при всех k ∈ N0 и j = 0,1
коэффициенты являются бесконечно дифференцируемыми на всей полуоси t ⩾ 1.

Для вычисления характеристических показателей построенной системы линейного прибли-
жения (5) воспользуемся вспомогательной также диагональной линейной системой

ẋ = diag[b1(t),b2(t)]x ≡ B(t)x, x ∈ R2, t ⩾ t0, (51)

коэффициенты bi(t), i = {1,2}, которой определяются равенствами

bi(t)≡ ai(t2k+ j), t ∈ [t2k+ j, t2k+ j+1), k ∈ N0, j = 0,1.

Очевидно, для коэффициентов систем (5) и (51) справедливы соотношения

|ai(t)−bi(t)|=

{
≡ 0, t ∈ [t2k+ j, t ′2k+ j+1),

⩽ 2α2, t ∈ [t ′2k+ j+1, t2k+ j+1), j = 0,1.

Тем самым в силу малой длины

0 < t2k+ j+1 − t ′2k+ j+1 ⩽ exp(−t2
2k), k ∈ N0, j = 0,1,

промежутков [t ′2k+ j+1, t2k+ j+1) неравенство
+∞w

t0

∥B(τ)−A(τ)∥eστdτ<+∞

выполнено при любом конечном σ> 0. Поэтому [7] линейные системы (5) и (51) являются асимп-
тотически эквивалентными и их характеристические показатели совпадают. Последние же для
системы (51) с кусочно-постоянными «периодически повторяющимися» коэффициентами имеют
необходимые представления

λi(A) = λi(B) = αi
θ−1
θ+1

= λi, i = 1,2.

2. Построение возмущенной системы и ее решения с отрицательным показателем

Эти построения будем вести методом, изложенным в нашей работе [4] c необходимыми
изменениями и дополнениями.

На отрезке [t2k, t2k+2] с произвольно фиксированным k > k0 осуществим одновременные
построения:

1) бесконечно дифференцируемого m-возмущения

f (t,y) = ( f1(t,y2), f2(t,y1)) : [t2k, t2k+2]×R2
+ → R2

с положительным октантом

R2
+ = {y = (y1,y2) ∈ R2 : y1 ⩾ 0, y2 ⩾ 0}

и нулевыми значениями

fi(t2k+ j,y3−i)≡ 0, y ∈ R2
+, i = 1,2, j = 0,2,

его компонент и такими же значениями их правосторонних производных любого порядка при
j = 0 и левосторонних при j = 2;

2) решения y(t) = (y1(t),y2(t)) системы (2) с построенным m-возмущением f (t,y), принимаю-
щего на концах рассматриваемого отрезка начальные и конечные значения

yi(t2k+ j) = eβit2k+ j , i = 1,2, j = 0,2 (6i j)
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своих компонент

0 < yi(t)⩽ eβ2t , t ∈ [t2k, t2k+2], i = 1,2, (6i)

в которых отрицательные постоянные β1 и β2 определяются системой равенств

β1 = mθ2β2 +(θ−1)2α1, (71)

β2 = mβ1 +(θ−1)(mα1 +α2). (72)

Из этой системы получаем их следующие явные значения

β1 =−(θ−1)
[
α1 +

θ(α1 +mθα2)

m2θ2 −1

]
< β2 =−(θ−1)

mθα1 +α2

m2θ2 −1
< 0. (8)

Исходя из уже полученных выше нулевых значений

fi(t2k,y3−i) = 0, i = 1,2,

компонент возмущения f (t,y), продолжим их аналогичным образом

fi(t,y3−i)≡ 0, t ∈ [t2k,η2k+3−i], η2k+i ≡ t2k+i −1, y ⩾ 0, i = 1,2, (8i)

на максимально возможные по длине временные промежутки.
Для определения этих компонент f1(t,y2) и f2(t,y1) соответственно на интервалах

(η2k+2, t2k+2) и (η2k+1, t2k+1) воспользуемся функциями

E(τ,τ1,τ2,τ3,τ4) =


e0,1(τ,τ1,τ2), τ ∈ [τ1,τ2],

1, τ ∈ (τ2,τ3],

e10(τ,τ3,τ4), τ ∈ (τ3,τ4],

Fk(yi) =

{
ym

i e01(yi,0,ε(tk)), yi ∈ [0,ε(tk)], i = 1,2,
ym

i , yi > ε(tk), i = 1,2,

построенными нами в работе [4].
В соответствии с определением (81) первой компоненты f1(t,y2) возмущения f (t,y) для

первой же компоненты y1(t) решения y(t) с начальным условием (610) имеем представления

y1(t) =


exp[β1t2k +α1(t − t2k)], t ∈ [t2k, t ′2k+1],

y1(t ′2k+1)exp
tw

t ′2k+1

a1(τ)dτ≡ y1(t ′2k+1)x1(t, t ′2k+1), t ∈ [t ′2k+1, t2k+1].
(91)

На следующем промежутке [t2k+1, t ′2k+2] компонента y1(t) определяется равенством

y1(t) = y1(t2k+1)exp[−α1(t − t2k+1), t ∈ [t2k+1, t ′2k+2]. (92)

Оценим ее сверху на отрезке [t2k, t2k+1] :

λ1(t)≡ t−1 lny1(t)⩽ t−1[β1t2k +α1(t − t2k)] = (β1 −α1)t2kt−1 +α1 ⩽

⩽ (β1 −α1)θ
−1 +α1 = [β1 +α1(θ−1)]θ−1 (8)

= −(θ−1)
α1 +mθα2

m2θ2 −1
< β2, t ∈ [t2k, t2k+1]. (10)

На следующем отрезке [t2k+1, t ′2k+2] производная

λ′1(t) = t−2[− lny1(t2k+1)]−α1t2k+1

для компоненты y1(t) (см. (91), (92)) не меняет знака на интервале (t2k+1, t ′2k+2) и поэтому функция
λ1(t) принимает следующее наибольшее значение:

maxλ1(t) = max{λ1(t2k+1),λ1(t ′2k+2)}, t ∈ [t2k+1, t ′2k+2].
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И если неравенство λ1(t2k+1) < β2 уже установлено (см. (10)), то для λ1(t ′2k+2) в силу равенства
(92) и (71) справедливы оценки

max{λ1(t ′2k+2),λ1(t2k+2)}⩽ [β1 − (θ−1)2α1 +2α1ε(t2k+2)]θ
−2 < β2 < 0,

при k ⩾ k0 и соответствующем k0 ∈ N.
Для последующего построения второй компоненты f2(t,y1) m-возмущения f (t,y) на отрезке

[η2k+1, t2k+1] необходимо получить на нем оценку снизу первой компоненты y1(t) решения y(t).
Из представлений (91) и первой оценки (10) имеем неравенства

exp[(β1 −α1)t2k +α1t]⩾ y1(t)⩾ exp[(β1 −α1)t2k +α1t −2α1ε(t2k+1)]≡

≡ d′
2k+1 exp[(β1 −α1)t2k +α1t]⩾ c′2k+1 exp[−α1 +(β1 +(θ−1)α1)]t2k, t ∈ [η2k+1, t2k+1].

Из предыдущего неравенства с использованием представлений (71) и (8) величины β1
получаем оценки

y1(t)> c2k+1 exp
[
−θ(θ−1)α2t2k

mθ−1

]
> c2k+1 exp(−α2t2k+1)> exp(−t2

2k+1)≡

≡ ε(t2k+1), t ∈ [η2k+1, t2k+1], k ⩾ k0,

с постоянными c2k+1 = c′2k+1e−α1 и очевидным k0 ∈ N.
Полученная оценка позволяет представить на отрезке [η2k+1, t2k+1] вторую компоненту

f2(t,y1) возмущения f (t,y) в следующем виде:

f2(t,y1)|y1=y1(t) =−d2k+1F2k+1(y1)|y1=y1(t)×E(t,η2k+1,η
′
2k+1, t

′
2k+1, t2k+1) =

=−d2k+1ym
1 (t)E(t, ·, ·, ·, ·),η′2k+1 = η2k+1 +ε(t2k+1), t ∈ [η2k+1, t2k+1].

На предыдущем [t2k,η2k+1] и последующем [t2k+1, t2k+2] промежутках эта вторая компонента
f2(t,y1) тождественно равна нулю (см. (82)). При этом постоянная d2k+1 подлежит последующему
определению.

Исследуем теперь поведение второй компоненты y2(t) на отрезке [t2k, t2k+2]. На первой его
половине [t2k, t2k+1] она будет являться решением линейного неоднородного уравнения

ẏ2 = a2(t)y2 + f2[t,y1(t)]

с начальным значением y2(t2k) = exp(β2t2k). На отрезке [t2k,η2k+1], на котором f2(t,y1)≡ 0, имеем
представление

y2(t) = exp[β2t2k −α2(t − t2k)],

а тем самым в силу неравенства β2 > −α2 и необходимую оценку

0 < y2(t)⩽ expβ2t, t ∈ [t2k,η2k+1].

На следующем отрезке [η2k+1, t2k+1] компонента y2(t), являясь решением приведенного неодно-
родного уравнения, имеет представление

y2(t) = y2(t2k)x2(t, t2k)−d2k+1

tw

η2k+1

E(τ,η2k+1,η
′
2k+1, t

′
2k+1, t2k+1)×

×ym
1 (τ)x2(t,τ)dτ≡ z(t)−d2k+1J2(η2k+1, t), t ∈ [η2k+1, t2k+1], (11)

в котором x2(t,τ)≡ exp
tr

τ

a2(ξ)dξ и J2(η2k+1, t) – интеграл. Постоянная же d2k+1 > 0 определяется
из условия

z(t2k+1)−d2k+1J2(η2k+1, t2k+1) = ỹ2(t2k+1)> 0, (12)

в котором

ỹ2(t2k+1) = x−1
2 (t2k+2, t2k+1)exp(β2t2k+2) (13)

– новое значение компоненты y2(t) в момент t = t2k+1.



Двумерный антиперроновский эффект 101

Из равенств (12) и (13) получим значение постоянной d2k+1 > 0и установим его ограниченность
сверху не зависящей от k величиной, что позволит считать строящееся возмущение необходимым
m-возмущением на всей полуоси t ⩾ t0. Для этого оценим снизу интеграл J2(η2k+1, t2k+1), учитывая
при этом неравенство

y1(τ)⩾ y1(η2k+1), τ ∈ [η2k+1, t ′2k+1].

Справедливы также следующие неравенства

J2(η2k+1, t2k+1)⩾

t ′2k+1w

η′2k+1

ym
1 (η2k+1)x2(t2k+1,τ)dτ⩾ [1−2ε(t2k+1)]×

×exp{−2mα2 +[mβ1 +(θ−1)mα1]t2k} ≡ c2 exp{[mβ1 +(θ−1)mα1]t2k}= c2 exp[β2 − (θ−1)α2]t2k,

причем последнее равенство имеет место в силу определения величин β1 и β2 (см. (71)− (72)).
Из представления (13) нового значения ỹ2(t2k+1) компоненты y2(t) имеем неравенства

0 < ỹ2(t2k+1)⩽ c3 exp[β2t2k+2 − (θ−1)α2t2k+1]

с независящей от k постоянной c3 > 0.Из равенства (12) получаем представление постоянной d2k+1 :

0 < d2k+1 = [z(t2k+1)− ỹ2(t2k+1)]J2(η2k+1, t2k+1)< z(t2k+1)J−1
2 (η2k+1, t2k+1)⩽ c = const.

Положительность d2k+1 следует из неравенств

ỹ2(t2k+1)z−1(t2k+1)< exp[β2(t2k+2 − t2k)− (θ−1)α2(t2k+1 − t2k)]→ 0.

При этом справедлива оценка

y2(t) = ỹ2(t2k+1)exp[α2(t − t2k+1)]⩽ exp[β2(2t2k+2 − t)], t ∈ [t2k+1, t2k+2].

Для оценки сверху |y2(t)| второй компоненты y2(t) на отрезке [η2k+1, t2k+1], определенной
равенством (11), представим ее в следующем виде:

y2(t) = x2(t, t2k)

eβ2t2k −d2k+1

tw

η2k+1

x−1
2 (τ, t2k)E(τ, . . .)ym

1 (τ)dτ

 ,
причем согласно (12) и (13) в момент t2k+1 справедливо неравенство

eβ2t2k −d2k+1

t2k+1w

η2k+1

. . .dτ> 0. (14)

Так как первая компонента y1(t) возрастает на всем промежутке [η2k+1, t ′2k+1] (влияние
промежутка [t ′2k+1, t2k+1] длины ε[t2k+1] не сказывается), то неравенство (14) будет сохраняться и
для интеграла с верхним пределом t ∈ [η2k+1, t2k+1]. Это устанавливает положительность y2(t) на
отрезке [η2k+1, t2k+1], т. е. имеем 0 < y2(t)⩽ z(t) на этом же отрезке, а значит, y2(t)⩽ expβ2t. Это
неравенство сохранится и на следующем отрезке [t2k+1, t2k+2].

Единственный на отрезке [t2k, t2k+2] промежуток действия первой компоненты f1(t,y2) m-
возмущенная f (t,y) – отрезок [η2k+2, t2k+2] с левым концом η2k+2 = t2k+2 −1. На нем выполнена
очевидная оценка y2(t)⩾ ε(t2k+2) и поэтому F2k+2[y2(τ)] = ym

2 (τ), τ ∈ [η2k+2, t2k+2]. Тем самым на
рассматриваемом отрезке [η2k+2, t2k+2] первая компонента имеет представление

y1(t) = x1(t,η2k+2)y1(η2k+2)−d2k+2

tw

η2k+2

ym
2 (τ)E(τ, . . .) . . .dτ≡

≡ u(t)−d2k+2J1(η2k+2, t), t ∈ [η2k+2, t2k+2],

с постоянной d2k+2 > 0, определяемой условием

u(t2k+2)−d2k+2J1(η2k+2, t2k+2) = exp[β1t2k+2].
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Все последующие рассуждения по доказательству ограниченности сверху (не зависящей от k ∈ N
постоянной) и положительности величины d2k+2 аналогичны рассуждениям, проведенным выше
на отрезке [η2k+1, t2k+1].

Таким образом, на отрезке [t2k, t2k+2] построены необходимые m-возмущение и решение
y(t) = (y1(t),y2(t)) возмущенной системы с начальными и конечными значениями (6i j) и удовлетво-
ряющие неравенствам (6i).Методом математической индукции распространим эти построения на
всю полуось t ⩾ t0. Необходимое неравенство λ[y]⩽ β2 установлено. Теорема доказана.

Замечание. В нашем докладе [8] показатели λ[Yi] должны иметь представление (4).
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